

Report on Salinity Investigation and Management Plan

Pendle Hill High School Development Cornock Avenue, Toongabbie

> Prepared for TSA Management Pty Ltd

> > Project 86977.01 March 2021

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	86977.01	Document No.	R.002.Rev0
Document title	Report on Salinity Inv	estigation and Mana	agement Plan Pendle Hill High
	School Development		
Site address	Cornock Avenue, Too	ngabbie	
Report prepared for	TSA Management Pty	/ Ltd	
File name	86977.01.R.002.Rev0		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Tom Graham	Ray Blinman	17 March 2021
Revision 1	Lisa Teng	Ray Blinman	31 March 2021

Distribution of copies

Status	Electronic	Paper	Issued to	
Revision 0	1	-	SINSW c/o TSA Management Pty Ltd	
Revision 1	1	-	SINSW c/o TSA Management Pty Ltd	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	LisaTeng	31 March 2021
Reviewer	ABL'O	31 March 2021

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Introd	uction	1	
2.	Scope	e of Work	1	
3.	Site Description			
4.	Regio	nal Geology, Soil Landscapes and Hydrogeology	2	
	4.1	Site Soil Landscape and Geology	2	
	4.2	Acid Sulfate Soils	3	
	4.3	Groundwater and Surface Water	3	
	4.4	Salinity Potential	3	
5.	Field	Work Methods	3	
6.	Field	Work and Laboratory Test Results	4	
	6.1	Sub-surface Conditions	4	
	6.2	Laboratory Results	4	
	6.3	Aggressivity	5	
	6.4	Salinity	6	
	6.5	Sodicity and Dispersibility	7	
7.	Impac	ct and Management of Site Materials on the Proposed Development	8	
8.	Refer	ences:	8	
9.	Limita	itions	9	

Appendix A:	Notes About this Report
Appendix B:	Drawings
Appendix C:	Table C1 - Summary of Laboratory Results
Appendix D:	Borehole Logs
Appendix E:	Laboratory Certificates of Analysis

Report on Salinity Investigation and Management Plan Pendle Hill High School Development Cornock Avenue, Toongabbie

1. Introduction

This report presents the results of a salinity investigation and management plan undertaken for the State Significant Development (the 'site') at Pendle Hill High School (PHHS) located at Cornock Avenue, Toongabbie (see Drawing 1, Appendix A). The investigation was commissioned by School Infrastructure NSW (SINSW) C/O TSA Management Pty Ltd and was undertaken in accordance with Douglas Partners' proposal SYD201350 dated 7 December 2020.

Saline soils affect much of the Western Sydney region. Buildings and infrastructure located on shales of the Wianamatta Group are particularly at risk. Salinity can affect urban structures in a number of ways, including corrosion of concrete, breakdown of bricks and mortar, corrosion of steel (including reinforcement), break up of roads, attack on buried infrastructure, reduced ability to grow vegetation and increased erosion potential.

We understand that the proposed development includes the construction of a new three-storey courtyard building on Binalong Road comprising:

- Two new 3 storey wings under a connected roof which will accommodate a library, staff unit, lecture theatre, multimedia and senior learning, administration unit and student amenities;
- External transport infrastructure upgrade works;
- New covered walkways and upgraded landscape; and
- New hardstand areas for bicycle parking.

An assessment of soil salinity is required to assist in planning of the proposed development as required under general requirement 17 of the Planning Secretary's Environmental Requirements (SEARS). An extracted architectural drawing showing the proposed development is included in Appendix B.

DP notes that this investigation was undertaken in conjunction with a supplementary contamination assessment and is reported under a separate cover¹.

2. Scope of Work

The scope of works for the current report included a salinity assessment based upon:

 Collection of samples at regular depth intervals from thirteen boreholes to 3.0 m depth or prior practical refusal;

¹ DP Report on Supplementary Contamination Assessment, Pendle Hill High School Development, Cornock Avenue, Toongabbie dated 17 March 2021 (DP reference: 86977.01.R.001.Rev0)

- Inspection of the Site for signs of salinity;
- Analysis of electrical conductivity (EC1:5), pH and soil texture test results for soil and weathered rock samples determined at a NATA accredited analytical laboratory, for classification of salinity and aggressivity;
- Laboratory analysis of additional salinity, aggressivity and erodibility indicators, including chloride and sulphate ion concentrations and dispersibility testing at a NATA accredited analytical laboratory; and
- Assessment of the results with respect to potential for salinity impacts on the development.

3. Site Description

The summary of Site information is presented in Table 1 below and a drawing of the site and the approximate boundary of the Site is included as Drawing 1 in Appendix B.

Table	1:	Site	Identification	Details
IUDIC		Onco	achthoution	Detunio

Address	Cornock Avenue, Toongabbie
Lot Identification	Lot 101, Deposited Plan 1141329
Approximate Site Area	6.6 ha
Local Government Area	City of Parramatta Council
Approximate Stage 2 Site Area	4600 m ²

The Site is located in the eastern portion of PHHS. It is significantly lower in surface level compared to the school and the grassed area to the south. A footpath follows the site's northern edge, and the ground level falls moderately steeply to the north to meet the ground level of the adjacent residential buildings. This is indicative of cut and fill activities having taken place during the construction of the school.

4. Regional Geology, Soil Landscapes and Hydrogeology

4.1 Site Soil Landscape and Geology

The Penrith 1:100,000 Soils Landscape Series Sheet indicates that the site is situated on the Blacktown Soils Group, which is characterised by shallow to moderately deep (<100 cm) Red and Brown Podzolic Soils on crests, upper slopes and well drained areas; and deep (150-300 cm) Yellow Podzolic Soils and Soloths on lower slopes and in areas of poor drainage.

The Penrith 1:100,000 Geology Series Sheet indicates that the site is underlain by Ashfield Shale. Ashfield Shale comprises dark-grey to black claystone-siltstone and fine sandstone-siltstone laminite.

4.2 Acid Sulfate Soils

A review of the acid sulfate Soils risk mapping indicates that the site is located in an area with an extremely low probability for the occurrence of ASS.

4.3 Groundwater and Surface Water

The nearest surface water receptor is Pendle Creek, which is approximately 600 m west of the site. Based on local topography observed in the regional map information, groundwater is anticipated to flow west towards the creek.

A search of the WaterNSW database of registered groundwater bores on 5 November 2019 indicated no registered groundwater bores / wells within 500 m of the site.

4.4 Salinity Potential

Reference to the *Map of Salinity Potential in Western Sydney* (2002), indicates that the site is located within an area of 'moderate salinity potential', where "saline areas may occur, which have not yet been identified or may occur if risk factors change adversely."

5. Field Work Methods

Field investigations were undertaken on 21 and 22 January 2021 by a DP environmental scientist. The field work included the drilling of 13 boreholes (BH109N, BH109E, BH109S, BH109W and BH201 to BH209) using a 3.5 tone excavator fitted with either a 300 mm or 100 mm diameter auger. Boreholes were drilled to a depth of 3 m below ground level (bgl) or prior refusal.

Borehole locations were nominated by DP and were co-ordinated in the field using a DGPS unit. Borehole locations are shown on Drawing 2, in Appendix B.

The subsurface conditions encountered in the boreholes were logged on site by a DP environmental scientist (refer to Borehole logs in Appendix D). Representative samples were collected at 0.5 m depth intervals for laboratory testing and to assist in strata identification.

All field measurements and mapping for this project have been carried out using the Geodetic Datum of Australia 1994 (GDA94) and the Map Grid of Australia (MGA94), Zone 56. All reduced levels are given in relation to the Australian Height Datum (AHD).

6. Field Work and Laboratory Test Results

6.1 Sub-surface Conditions

The borehole logs for this assessment are included in Appendix D and recorded the following general sub-surface profile as shown in Table 2 below.

Table 2:	Summary	of Ground	Profile
----------	---------	-----------	---------

Depth Range	Description
	TOPSOIL / FILL:
	Topsoil generally comprised dark brown clayey silt with trace rootlets;
From 0 m bal to depths of	• Fill encountered beneath the topsoil generally comprised red-brown to brown silty clay with ironstone and shale gravels;
between 0.2 m bgl and 2.3 m bgl	• Tile, brick and concrete fragments were identified within BH109N, BH109E, BH109S, BH109W and BH209;
	• Ash and clinker were observed in BH109N, BH109E, BH109S and BH109W at depths of between 1.2 and 1.5 m bgl; and
	• A concrete slab underlies the fill in BH109N, BH109E, BH109S, and BH109W at a depth of 1.5 m bgl.
Underlying the above to depths of between 0.2 m bgl and 3.0 m bgl	RESIDUAL SILTY CLAY: Red-brown, red and grey residual silty clay weathered from Ashfield Shale.
1.3 m bgl to 3.0+ m bgl	SHALE: Pale grey and yellow-brown shale, highly to moderately weathered

No free groundwater was observed whilst drilling. Backfilling of the boreholes at the completion of drilling precluded long-term monitoring of groundwater.

6.2 Laboratory Results

The laboratory test results and assessments of aggressivity, salinity, sodicity and dispersibility are summarised in Table C1 in Appendix C. Aggressivity to concrete was determined using pH values and sulphate concentrations and aggressivity to steel was determined using pH values, chloride concentrations and resistivities. The salinity class was inferred from EC_e values using the method of Richards (1954) and sodicity was determined using the cation exchange capacity (CEC) and exchangeable sodium concentration. Dispersion potentials were derived from the Soils for Landscaping Category Tests. The detailed laboratory test reports and chain of custody documents are provided in Appendix E.

The results of the laboratory tests were compared to various salinity and aggressivity classifications. The range of values obtained are presented as maximum and minimum values in Table 3 together with the number of samples tested for each parameter.

Para	meter	Units	Samples	Minimum	Maximum
рН		pH units	62	4.5	6.5
Chle	orides	(mg/kg) 19 <10		<10	100
Sulp	ohates	(mg/kg)	19	<10	110
Aggropoivity	to Concrete	[AS2159]	-	non-aggressive	Moderate
Aggressivity	to Steel	[AS2159]	-	non-aggressive	Moderate
Exchangeab	le Sodium (Na)	(meq/100g)	8	<0.1	0.7
CEC (cation exchange capacity)		(meq/100g)	8	6.1	15
Sodicity [Na/CEC]		(ESP%)	8	2	14
Sodici	ty Class	[after DLWC]	-	Non-sodic	Highly sodic
EC _{1:t}	5 [Lab.]	(µS/cm)	62	27	150
EC _e [M	x EC _{1:5}] ¹	(dS/m)	62	<2	<2
Res	istivity	(Ω.cm)	62	6667	37037
Salinity Class		[after Richards 1954]	-	non-saline	non-saline
Dispersibility (H2O)		Category	7	4	4
Dispersib	ility (CaCl2)	Category	7	2	2

Table 3: Summary of Test Results

1 M is soil textural factor

6.3 Aggressivity

Figure 1 presents variations of aggressivity with depth, based on pH profiles at the borehole locations, together with the aggressivity class ranges indicated in Australian Standard AS2159 (2009). The absence of free groundwater in the boreholes and the low permeability of the sampled clay-rich soils indicate that soils in all boreholes are in Condition B, as defined by AS2159.

The pH profiles of Figure 1 indicate that the materials throughout the Site, at all investigated depths, are non-aggressive to steel. The chloride and resistivity concentration guidelines of AS2159 support this non-aggressive classification.

Figure 1: Vertical Soil pH Profiles and Aggressivity Classes

The results indicate that the samples collected from the site are predominantly mildly aggressive to concrete and non-aggressive to steel elements.

6.4 Salinity

Figure 2 presents the variations of salinity with depth, based on salinity (EC_e) profiles at test pit locations, together with the salinity classifications of Richards (1954).

Page 7 of 10

Figure 2: Vertical Soil Salinity Profiles and Salinity Classes

The results indicate the following:

• 100% of all soil samples were non-saline.

The laboratory test results indicate that the samples collected from the site are generally non-saline. As such, the entire site has been classified as non-saline.

6.5 Sodicity and Dispersibility

The sodicity tests reported in the Summary Table shows that shallow soils were general non-sodic overlying some deeper non-sodic to sodic soils, indicating some potential for erodibility of soils left exposed.

The dispersion potential of the soils tested at depths of between 0.1 m bgl to 3 m bgl tested by the Dispersibility test (refer Summary Table, Appendix D) was identified as Category 4 in water (minimal flocculation) and Category 2 in calcium chloride (moderate flocculation). Where soils treated in the calcium chloride is 2 or more categories lower than that tested in water, the soil is deemed dispersive and unacceptable without some treatment e.g. gypsum. Therefore, soils at the site have the potential to exhibit poor drainage and there is a tendency for water logging to occur.

7. Impact and Management of Site Materials on the Proposed Development

The mild aggressivity to concrete and the highly sodic soils are naturally occurring features of the local landscape and are not considered significant impediments to the proposed development, provided appropriate management techniques are employed.

Aggressivity affects the durability of concrete and steel by causing premature breakdown of concrete and corrosion of steel. This has impacts on the longevity of structures in contact with these materials. As a result, management of aggressivity with respect to concrete should be managed in accordance with the requirements of AS2159 and AS3600.

Sodic soils have low permeability due to infilling of interstices with fine clay particles during the weathering process, restricting infiltration of surface water and potentially creating perched water tables, seepage in cut faces or ponding of water in flat open areas. In addition, sodic soils tend to erode when exposed. Management of sodic soils is therefore required to prevent these adverse effects from occurring on the site. Management strategies should include covering the site with a working platform layer during construction and all exposed areas on completion with appropriate vegetation cover.

To maintain the non-saline nature of the site, all imported materials should be firstly assessed for salinity and only those proven to be non-saline should be imported to the site.

8. References:

- Chhabra, R. 1966, *Soil Salinity and Water Quality*, A. Bakema/Rotterdam/Brookfield, New York, 284 pp.
- Department of Mines 1985, Geology of Wollongong Port Hacking 1:100 000 Geological Series Sheet No 9029 – 9129.
- Cement, Concrete and Aggregates, Australia 2005, *Guide to Residential Slabs and Footings in a Saline Environment, Introduction to Urban Salinity.*
- Department of Infrastructure, Planning and Natural Resources, New South Wales (DIPNR) 2003, *Salinity Potential in Western Sydney 1:100 000 Sheet* (now managed by the Department of Primary Industries – DPI).
- Department of Natural Resources (DNR) 2002, *Broad Scale Resources for Urban Salinity* Assessment Sydney (now managed by DPI).
- DNR 2002, *Guidelines to Accompany Map of Salinity Potential in Western Sydney* (now managed by DPI).
- DNR 2002, Indicators of Urban Salinity (now managed by DPI).
- DNR 2002, Map of Salinity Potential in Western Sydney (now managed by DPI).
- DNR 2002, Site Investigations for Urban Salinity (now managed by DPI).
- DNR 2003, *Building in a Saline Environment* (now managed by DPI).
- DNR 2003, Roads and Salinity (now managed by DPI).
- DNR 2004, Urban Salinity Processes (now managed by DPI).

- DNR 2004, Waterwise Parks and Gardens (now managed by DPI).
- Hazelton, P. A. and Murphy B. W. 2007, *Interpreting Soil Test Results* Department of Natural Resources.
- McNally, G. 2005, Investigation of Urban Salinity Case Studies from Western Sydney, Urban Salt 2005 Conference Paper, Parramatta.
- Richards, L. A. (ed.) 1954, *Diagnosis and Improvement of Saline and Alkaline Soils* USDA Handbook No. 60, Washington D.C.
- Soil Conservation Service of New South Wales 1990, Soil Landscapes of Wollongong and Port Hacking 1:100 000 Sheet.
- Spies, B. and Woodgate, P. 2004, *Technical Report Salinity Mapping Methods in the Australian Context*, Natural Resource Management Ministerial Council.
- Standards Australia 1995, AS 2159 2009 Piling Design and Installation.
- Standards Australia 1996, AS 2870 1996 Residential Slabs and Footings.
- Standards Australia 1996, AS 4419 2018 Soils for Landscaping and Garden Use.

9. Limitations

Douglas Partners (DP) has prepared this report for this project at Pendle Hill High School in accordance with DP's proposal SYD201350 dated 7 December 2020 and acceptance received from SINSW c/o TSA Management Pty Ltd (TSA). The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of TSA for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and / or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and / or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

Notes About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Drawings

	Cl
() Douglas Partners	OF
Geotechnics Environment Groundwater	SC

CLIENT: TSA Management R	Pty Ltd		TITLE:	Site Location Plan
OFFICE: Sydney	DRAWN BY:	NW		Supplementary Contamination Services
SCALE: 1:1500 @ A3	DATE:	16.03.2021		Cornock Avenue, Toongabbie

Notes: 1. Basemap from metromap.com.au (dated 07/12/2020). 2. Boundaries shown are approximate only.

Legend

- Approximate School Boundary
- Approximate Site Boundary

(h)	Doug	7	as Pa		rtners
	Geotechnics	1	Environment	1	Groundwater

CLIENT: TSA Management R	Pty Ltd	TITLE:	Borehole Location Plan
OFFICE: Sydney	DRAWN BY: NW		Supplementary Contamination Services
SCALE: 1:1200 @ A3	DATE: 17.03.2021		Cornock Avenue, Toongabbie

	109W 109 109S	9N 2109E	
: Sample Locatio	ons around	109	
Leger	nd		
	Approximat	te School Boundar	у
	Approxima	te Site Boundary	
*	Current Inv	estigation Boreho	le Location
•	DP (2020) Location	Environmental Bo	rehole
*	DP (2020) Environme	Geotechnical and ntal Borehole Loca	ation
0	25	50	75 m
Notes: 1. Basen 07/12/20 2. Bounc approxim	nap from me 120). Iaries and te nate only.	etromap.com.au (est locations show	dated vn are
		PROJECT No:	86997.01
		DRAWING No:	2
		REVISION:	0

PLAN PROPOSED SITE PLAN - SSDA SCALE: 1:500

Image: Image:

Copyright

This drawing shows design features and elements of a design prepared by Fulton Trotter Architects and is to be used only for work authorised in writing by the designers. It cannot be copied directly or indirectly, in whole or in part, nor shall it be used for any other building purposes. Unauthorised use will be considered an infringement of these rights.

Appendix C

Table C1 - Summary of Laboratory Results

	Т	est Location	1		Sample	pН	Chloride	Sulphate	Resistivity	Soil Condition		Samp	le Aggressivity Clas	SS		Exchangeable	Cation	Sodicity	Sodicity Class	Dispersibility	Dispersibilit	Dispersion?	Soil Texture Group	Textural Factor (M) EC _{1:5}	EC _e	Sample Salinity Class
							Concentration	Concentration	By inversion of		Aggr. to Concrete -	Aggr. to Concrete -	Aggr. to Steel -	Aggr. to Steel -	Aggr. to Steel -	Sodium (Na)	Exchange	[Na/CEC]		Category	y Category	(from	(for detailed soil logs see		[Lab.]	[M x EC _{1:5}]	(Based on sample ECe)
Boreho	le			Sample ID	Average				EC1:5		from sample pH	from Sulphate conc.	from sample pH	from Chloride conc.	from sample	Concentration	Capacity	· ·		(H2O)	(CaCl2)	Landscaping	Report Appendix)				,
	East	North	RL		Depth										Resistivity			1				Soil Categories)					
	(m MGA56)	(m MGA56)	(m AHD)	(m hal)	(nH unite	(ma/ka)	(ma/ka)	0 cm	[4\$2159-2009]		1	[4\$2159-2009]	1		(meg/100g)	(meg/100g)	(%)	[after DI WC]	[454410]	[45//10]	[45//10]	[after DI WC]	[after DI WC]	(microS/cm)	(deciS/m)	[Richards 1954]
	(11110/100)	((/	(iii bgi)	(pri units	(ing/kg)	(iiig/kg)	11.0111	[A02103-2003]		-	[A02103-2003]			(med/100g)	(meg/100g)	(70)	[alter DEWO]	[//04413]	[//04413]	[//04413]	[alter DEff0]	[alter DEWO]	(meroo/em)	(decid/iii)	[richards 1554]
			58.7	BH109N/0.05-0.5	0.25	5.4			17544	В	Mild		Non-Aggressive		Non-Aggressive	9							Clay loam	9	57	0.5	Non-Saline
109N			58.7	BH109N/0.5-1.0	0.75	4.9	<10	10	30303	В	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	9							Medium clay	7	33	0.2	Non-Saline
			58.7	BH109N/1.0-1.5	1.25	6.5			23256	В	Non-Aggressive		Non-Aggressive		Non-Aggressive								Clay loam	9	43	0.4	Non-Saline
			58.7	BH109E/0.05-0.5	0.25	5.3			23256	В	Mild		Non-Aggressive		Non-Aggressive								Clay loam	9	43	0.4	Non-Saline
109E			58.7	BH109E/0.5-1.0	0.75	5.2	<10	10	27027	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	9							Medium clay	7	37	0.3	Non-Saline
			58.7	BH109E/1.0-1.5	1.25	4.8			20000	В	Mild		Non-Aggressive		Non-Aggressive	9							Medium clay	7	50	0.4	Non-Saline
			58.7	BH109S/0.05-0.5	0.25	5.4			27027	В	Mild		Non-Aggressive		Non-Aggressive	9							Clay loam	9	37	0.3	Non-Saline
1095			58.7	BH109S/0.5-1.0	0.75	4.9	10	36	23256	В	Mild	Non-Agaressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	9	1						Medium clay	7	43	0.3	Non-Saline
			58.7	BH109S/1.0-1.5	1.25	5.5			10526	В	Mild		Non-Aggressive		Non-Aggressive	9							Clav loam	9	95	0.9	Non-Saline
			58.6	BH109W/0.05-0.5	0.25	5.6			29412	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	2	1						Clay loam	9	34	0.3	Non-Saline
109W	/		58.6	BH109W/0.5-1.0	0.75	5	<10	20	29412	В	Mild	Non-Agaressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	9	1						Medium clay	7	34	0.2	Non-Saline
			58.6	BH109W/1.0-1.5	1.25	5.5			28571	В	Mild		Non-Aggressive		Non-Aggressive	2							Clay loam	9	35	0.3	Non-Saline
			58.0	BH201/0.1	0.1	5.5			30303	В	Mild		Non-Aggressive		Non-Aggressive	9	1						Medium clay	7	33	0.2	Non-Saline
201			58.0	BH201/0.5	0.5	5.5	<10	<10	34483	В	Mild	Non-Agaressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	9	1						Medium clay	7	29	0.2	Non-Saline
201			58.0	BH201/1.0	1	5.7			37037	В	Non-Agaressive		Non-Aggressive		Non-Aggressive	2							Light medium clay	8	27	0.2	Non-Saline
			58.0	BH201/1.5	1.5	5.3			15873	В	Mild		Non-Aggressive		Non-Aggressive	2							Medium clay	7	63	0.4	Non-Saline
			59.1	BH202/0 1	0.1	5.5			6667	B	Mild		Non-Aggressive		Non-Aggressive	2	1	1					Clay loam	9	150	1.4	Non-Saline
			59.1	BH202/0.5	0.5	6.2			27778	B	Non-Aggressive		Non-Aggressive		Non-Aggressive		1	1					Medium clay	7	36	0.3	Non-Saline
	-		59.1	BH202/1.0	1	5.9	<10	10	30303	B	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	0.21	10	2	Non-Sodic	4	2	Dispersive	Light medium clay	8	33	0.3	Non-Saline
202			59.1	BH202/15	15	5.2			11364	B	Mild		Non-Aggressive	33	Non-Aggressive	2		1 -		-	_		Light medium clay	8	88	0.7	Non-Saline
			59.1	BH202/2.0	2	5.1			10000	B	Mild		Non-Aggressive		Non-Aggressive		1	1					Medium clay	7	100	0.7	Non-Saline
	-		50.1	BH202/2.5	2.5	5.3	<10	110	11765	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	07	51	14	Sodic	4	2	Dispersive	Medium clay	7	85	0.6	Non-Saline
			58.3	BH203/0 1	0.1	5.4	110	110	15625	B	Mild		Non-Aggressive	33	Non-Aggressive					-	_		Clay loam	9	64	0.6	Non-Saline
	-		58.3	BH203/0.5	0.5	5.2			37037	B	Mild		Non-Aggressive		Non-Aggressive								Medium clay	7	27	0.0	Non-Saline
	-		58.3	BH203/1.0	1	5			28571	B	Mild		Non-Aggressive		Non-Aggressive								Medium clay	7	35	0.2	Non-Saline
203	-		58.3	BH203/1.5	15	52	<10	10	34483	B	Mild	Non-Angressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	-	1						Clay loam	9	29	0.3	Non-Saline
	-		58.3	BH203/2.0	215	5.2	110	10	30303	B	Mild	Hon Aggreeone	Non-Aggressive	Hon Aggrooono	Non-Aggressive								Clay loam	ğ	33	0.3	Non-Saline
			58.3	BH203/2.5	25	53			32258	B	Mild		Non-Aggressive		Non-Aggressive		1	1					Clay loam	9	31	0.3	Non-Saline
			58.3	BH203/3.0	3	5.1	<10	32	20000	В	Mild	Non-Agaressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	0.21	9.4	2	Non-Sodic	4	2	Dispersive	Clay loam	9	50	0.5	Non-Saline
			59.2	BH204/0.1	0.1	5.5			35714	В	Mild		Non-Aggressive		Non-Aggressive	2							Clay loam	9	28	0.3	Non-Saline
			59.2	BH204/0.5	0.5	5.5			37037	В	Mild		Non-Aggressive		Non-Aggressive	9	1						Clay loam	9	27	0.2	Non-Saline
204			59.2	BH204/1.0	1	4.7			20408	В	Mild		Non-Aggressive		Non-Aggressive	9	1						Medium clay	7	49	0.3	Non-Saline
			59.2	BH204/1.5	1.5	4.7			11364	В	Mild		Non-Aggressive		Non-Aggressive	9	1						Medium clay	7	88	0.6	Non-Saline
			59.2	BH204/2.0	2	4.9	20	43	18519	В	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	9	1						Medium clay	7	54	0.4	Non-Saline
			59.6	BH205/0.1	0.1	4.2			17241	В	Moderate		Non-Aggressive		Non-Aggressive	e e e e e e e e e e e e e e e e e e e							Medium clay	7	58	0.4	Non-Saline
			59.6	BH205/0.5	0.5	4.5	10	30	23810	В	Moderate	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive								Medium clay	7	42	0.3	Non-Saline
205			59.6	BH205/1.0	1	5.1			26316	В	Mild		Non-Aggressive		Non-Aggressive								Medium clay	7	38	0.3	Non-Saline
			59.6	BH205/1.5	1.5	4.5			15385	В	Moderate		Non-Aggressive		Non-Aggressive	9							Medium clay	7	65	0.5	Non-Saline
			59.6	BH205/2.0	2	4.8			13699	В	Mild		Non-Aggressive		Non-Aggressive	9							Medium clay	7	73	0.5	Non-Saline
			58.9	BH206/0.1	0.1	5.3	10	<10	15385	В	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	< 0.1	12	<1	Non-sodic	4	2	Dispersive	Clay loam	9	65	0.6	Non-Saline
			58.9	BH206/0.5	0.5	5.8			16667	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	e							Clay loam	9	60	0.5	Non-Saline
206			58.9	BH206/1.0	1	5.9	<10	<10	37037	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	0.23	12	2	Non-Sodic	4	2	Dispersive	Clay loam	9	27	0.2	Non-Saline
			58.9	BH206/1.5	1.5	4.8			12658	В	Mild		Non-Aggressive		Non-Aggressive	e							Medium clay	7	79	0.6	Non-Saline
			58.9	BH206/2.0	2	5	10	59	16393	В	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	9							Medium clay	7	61	0.4	Non-Saline
			58.4	BH207/0.1	0.1	6			10638	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	9							Medium clay	7	94	0.7	Non-Saline
			58.4	BH207/0.5	0.5	5.8			17241	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	3							Medium clay	7	58	0.4	Non-Saline
207			58.4	BH207/1.0	1	4.8			11494	В	Mild		Non-Aggressive		Non-Aggressive	9							Medium clay	7	87	0.6	Non-Saline
			58.4	BH207/1.5	1.5	4.5	32	84	10638	В	Moderate	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	9							Medium clay	7	94	0.7	Non-Saline
			58.4	BH207/2.0	2	4.7			13158	В	Mild		Non-Aggressive		Non-Aggressive	2	1						Medium clay	7	76	0.5	Non-Saline
			59.5	BH208/0.1	0.1	5.7			21739	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	9							Clay loam	9	46	0.4	Non-Saline
			59.5	BH208/0.6	0.6	6.6	<10	20	22727	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	0.26	15	2	Non-Sodic	4	2	Dispersive	Medium clay	7	44	0.3	Non-Saline
			59.5	BH208/1.0	1	5.2			14493	В	Mild		Non-Aggressive		Non-Aggressive	3							Medium clay	7	69	0.5	Non-Saline
208			59.5	BH208/1.5	1.5	5.3			12346	В	Mild		Non-Aggressive		Non-Aggressive	9							Medium clay	7	81	0.6	Non-Saline
			59.5	BH208/2.0	2	5.3	100	39	8333	В	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	3							Medium clay	7	120	0.8	Non-Saline
			59.5	BH208/2.5	2.5	5.4			8333	В	Mild		Non-Aggressive		Non-Aggressive	9							Medium clay	7	120	0.8	Non-Saline
			59.5	BH208/3.0	3	5.5		1	10204	В	Mild		Non-Aggressive		Non-Aggressive		1	1					Clav loam	9	98	0.9	Non-Saline
			58.4	BH209/0.1	0.1	5.5		1	20408	В	Mild		Non-Aggressive		Non-Aggressive		1	1					Clay loam	9	49	0.4	Non-Saline
			58.4	BH209/0.5	0.5	5.4			23256	В	Mild		Non-Aggressive		Non-Aggressive	9							Clav loam	9	43	0.4	Non-Saline
200			58.4	BH209/1.0	1	5.3	<10	10	31250	В	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive		1	1					Clay loam	9	32	0.3	Non-Saline
209			58.4	BH209/1.5	1.5	5.1			16949	В	Mild		Non-Aggressive		Non-Aggressive		1	1					Medium clav	7	59	0.4	Non-Saline
			58.4	BH209/2.0	2	4.8		1	12987	В	Mild		Non-Aggressive		Non-Aggressive		1	1					Medium clav	7	77	0.5	Non-Saline
			58.4	BH209/2.5	2.5	5.2	<10	42	17544	В	Mild	Non-Agaressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	0.53	5.7	9	Sodic	4	2	Dispersive	Medium clav	7	57	0.4	Non-Saline

Appendix D

Borehole Logs

SURFACE LEVEL: 58.7 AHD Pendle Hill High School, Proposed Development EASTING: 6258786 NORTHING: 311479.5 DIP/AZIMUTH: 90°/--

BORE No: BH109E PROJECT No: 86977.01 DATE: 21-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample ⊾ Construction of Depth Type Results & Comments (m) Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, brown, 0.05 0.05 trace rootlets, w<PL, generally in a firm condition PID<3ppm FILL/Silty CLAY: medium to high plasticity, red-brown and А e sample taken at Sie grey with ironstone and shale gravel, tile, brick and 0.05-1.0 concrete fragments, generally in a firm to stiff condition 0.5 А PID<3ppm 1.0 - 1 1 A PID<3ppm Between 1.2-1.5m depth: with ash and clinker fragments 1.5 1.5 Bore discontinued at 1.5m Refusal on concrete - 2 -2 -20 3 -3 22 -4 - 4

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 300mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

LOGGED: TG

CASING: Nil

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 58.7 AHD Pendle Hill High School, Proposed Development EASTING: 6258787 NORTHING: 311478.9 DIP/AZIMUTH: 90°/--

BORE No: BH109N PROJECT No: 86977.01 DATE: 21-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample 宧 Construction of Depth Results & Comments (m) Type Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, brown, 0.05 0.05 trace rootlets, w<PL, generally in a firm condition PID<3 ppm FILL/Silty CLAY: medium to high plasticity, red-brown and Sieve samples taken at 0.05-1.0 and 1.0-1.5 А grey with ironstone and shale gravel, tile and concrete fragments, generally in a firm to stiff condition 0.5 A* PID<3 ppm 1.0 1 - 1 A PID<3 ppm Between 1.3-1.5m depth: with ash and clinker fragments 1.5 1.5 Bore discontinued at 1.5m Refusal on concrete - 2 -2 56 3 -3 22 4 - 4 CASING: Nil

RIG: IHI 3.5 tonne excavator DRILLER: A&A LOGGED: TG TYPE OF BORING: 300mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56. * Replicate sample BD1/20210121 taken at 0.5-1.0m SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U, W

Core drilling Disturbed sample Environmental sample

₽

CDF

PROJECT: LOCATION:

CLIENT:

Cornock Avenue, Toongabbie

SINSW c/o TSA Management

SURFACE LEVEL: 58.7 AHD NORTHING: 311478.5

BORE No: BH109S PROJECT No: 86977.01 DATE: 21-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample ⊾ Construction of Depth Type Results & Comments (m) Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, brown, 0.05 0.05 trace rootlets, w<PL, generally in a firm condition PID<3ppm FILL/Silty CLAY: medium to high plasticity, red-brown and Sieve samples taken at 0.05-1.0 and 1.0-1.5 А grey with ironstone and shale gravel, tile, brick and concrete fragments, generally in a firm to stiff condition 0.5 А PID<3ppm 1.0 1 - 1 Between 1.2-1.5m depth: with ash and clinker fragments A PID<3ppm 1.5 1.5 Bore discontinued at 1.5m Refusal on concrete - 2 -2 -20 3 -3 22 -4 - 4

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 300mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U W

₽

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

LOGGED: TG

CASING: Nil

Geotechnics | Environment | Groundwater

CLIENT: **PROJECT:** LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

Pendle Hill High School, Proposed Development EASTING: 6258785.5 DIP/AZIMUTH: 90°/--

SURFACE LEVEL: 58.6 AHD Pendle Hill High School, Proposed Development EASTING: 6258786.5 NORTHING: 311477.9 DIP/AZIMUTH: 90°/--

BORE No: BH109W PROJECT No: 86977.01 DATE: 21-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample ⊾ Construction of Depth Type Results & Comments (m) Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, brown, 0.05 0.05 trace rootlets, w<PL, generally in a firm condition PID<3 ppm FILL/Silty CLAY: medium to high plasticity, red-brown and Sieve samples taken at 0.05-1.0 and 1.0-1.5 А grey with ironstone and shale gravel, tile, brick and concrete fragments, generally in a firm to stiff condition 0.5 А PID<3 ppm 1.0 1 - 1 A PID<3 ppm Between 1.3-1.5m depth: with ash and clinker fragments 1.5 1.5 Bore discontinued at 1.5m Refusal on concrete - 2 -2 92 3 -3 22 -4 - 4

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 300mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

LOGGED: TG

SURFACE LEVEL: 58.0 AHD Pendle Hill High School, Proposed Development **EASTING**: 6258802 **NORTHING:** 311458.1 **DIP/AZIMUTH:** 90°/--

BORE No: BH201 **PROJECT No: 86977.01** DATE: 22-1-2021 SHEET 1 OF 1

			1						
	Denth	Description	ліс П		San	npling 8	& In Situ Testing	5	Well
RL	(m)	of	Log	e	t	ple	Results &	Vate	Construction
	. ,	Strata	G	μ	Del	San	Comments	-	Details
	- - 0.25	FILL/Silty CLAY: low plasticity, trace rootlets, shale and ironstone gravel, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A</td><td>0.1</td><td></td><td></td><td></td><td>-</td></pl,>		A	0.1				-
	- - - -	FILL/Silty CLAY: medium plasticity, red-brown and grey, with ironstone and shale gravel, trace rootlets, w <pl, generally in a firm to stiff condition</pl, 		A	0.5 0.6				- - - - -
57	- 1 -			A	1.0 1.1				- 1 - 1 -
-	- 1.3 - - 1.5	SHALE: grey and yellow-brown, with ironstone bands and hard clay seams, inferred low strength, highly weathered,dry.		A	· 1.4 1.5				-
-	-	Bore discontinued at 1.5m Refusal on shale							-
56	-2								-2
-	-								-
	-								-
55	- -3 -								3 -
	-								-
	-								-
54	- - 4								-4
-	-								
-	-								-
-	-								-

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

CLIENT:

PROJECT:

SINSW c/o TSA Management

LOCATION: Cornock Avenue, Toongabbie

LOGGED: TG

SURFACE LEVEL: 59.1 AHD Pendle Hill High School, Proposed Development EASTING: 6258788.5 **NORTHING:** 311447.1 DIP/AZIMUTH: 90°/--

BORE No: BH202 PROJECT No: 86977.01 DATE: 21-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample 宧 Construction of Depth Results & Comments (m) Type Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, dark red -22 0.1 and brown, trace rootlets, w<PL A 0.15 0 15 FILL/ Silty CLAY: medium to high plasticity, red-brown and grey with ironstone and shale gravels, w<PL, generally in a firm to stiff condition 0.5 А 0.6 1.0 1 -1 А -82 1.1 1.3 Silty CLAY: grey and red-brown mottled, very stiff, relict rock texture, residual 15 А 16 - 2 2.0 -2 А 21 -12 2.2 SHALE: grey and yellow-brown, with ironstone bands and hard clay seams, inferred low strength, highly weathered, dry. 2.5 А 2.6 2.6 Bore discontinued at 2.6m Refusal on shale 3 - 3 -20 4 - 4 -12

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

LOGGED: TG

CASING: Nil

PROJECT:	Pendle Hill High School, Prope
LOCATION:	Cornock Avenue, Toongabbie

CLIENT:

SINSW c/o TSA Management

SAMPLING & IN SITU TESTING LEGEND LECERNU PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

SURFACE LEVEL: 58.3 AHD Pendle Hill High School, Proposed Development EASTING: 6258781.6 **NORTHING: 311498** DIP/AZIMUTH: 90°/--

BORE No: BH203 PROJECT No: 86977.01 DATE: 22-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample 宧 Construction of Depth Type Results & Comments (m) Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, brown, 0.1 trace rootlets, w<PL, generally in a firm condition A 0.15 0 15 FILL/Silty CLAY: medium to high plasticity, red-brown and grey with ironstone and shale gravel, tile and concrete fragments, generally in a firm to stiff condition 0.5 А 0.6 1.0 -1 1 А 1.1 15 А 16 -2 2.0 -2 А 2.1 -92 2.3 Silty CLAY: grey and red-brown mottled, very stiff, relict rock texture, residual 2.5 А 2.6 2.9 А 3 3.0 Bore discontinued at 3.0m Target Depth Achieved 22 -4 - 4 -12

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

LOGGED: TG

CASING: Nil

Douglas Partners

Geotechnics | Environment | Groundwater

SURFACE LEVEL: 59.2 AHD Pendle Hill High School, Proposed Development EASTING: 6258768.3 NORTHING: 311458.1 DIP/AZIMUTH: 90°/--

BORE No: BH204 PROJECT No: 86977.01 DATE: 21-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Well Description Water Depth Log 宧 Sample of Depth Construction Results & Comments (m) Type Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, dark red 0.1 and brown, trace rootlets, w<PL, generally in a firm A 0.15 0 15 -22 \condition FILL/ Silty CLAY: medium to high plasticity, red-brown and grey with ironstone and shale gravels, w<PL, generally in a firm to stiff condition 0.5 А 0.6 0.8 Silty CLAY: grey and red-brown mottled, very stiff, relict rock texture, residual 1.0 -1 1 А 1.1 -80 15 А 16 17 SHALE: grey and yellow-brown, with ironstone bands and hard clay seams, inferred low strength, highly weathered, dry - 2 2.0 -2 А 2.1 2.2 -12 Bore discontinued at 2.2m Refusal on shale - 3 -3 -20 -4 - 4 -12

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

LOGGED: TG

SURFACE LEVEL: 59.6 AHD Pendle Hill High School, Proposed Development EASTING: 6258756.1 NORTHING: 311442.9 DIP/AZIMUTH: 90°/--

BORE No: BH205 PROJECT No: 86977.01 DATE: 21-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Well Description Water Depth Log Sample 宧 Construction of Depth Results & Comments (m) Type Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, dark red 0.1 and brown, trace rootlets, w<PL, generally in a firm А 0.2 condition 0.2 Silty CLAY: grey and red-brown mottled, very stiff, relict rock texture, residual 0.5 А 0.6 1.0 -1 1 А 1.1 15 А 16 1.6 SHALE: grey and yellow-brown, with ironstone bands and hard clay seams, inferred low strength, highly weathered, dry -2 - 2 2.0 А 2.1 21 Bore discontinued at 2.1m Refusal on shale 3 -3 -20 4 - 4

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U_x W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

LOGGED: TG

SURFACE LEVEL: 58.9 AHD Pendle Hill High School, Proposed Development EASTING: 6258759.1 NORTHING: 311482.6 DIP/AZIMUTH: 90°/--

BORE No: BH206 PROJECT No: 86977.01 DATE: 22-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Well Description Water Depth Log Sample 宧 of Depth Construction Results & Comments (m) Type Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, dark red 0.1 and brown, trace rootlets, w<PL, generally in a firm А 0.2 condition 0.2 FILL/ Silty CLAY: medium to high plasticity, red-brown and grey with ironstone and shale gravels, w<PL, generally in a firm to stiff condition 0.5 А 0.6 -82 1.0 -1 1 А 1.1 1.3 Silty CLAY: grey and red-brown mottled, very stiff, relict rock texture, residual 15 А 16 18 SHALE: grey and yellow-brown, with ironstone bands and hard clay seams, inferred low strength, highly weathered, dry - 2 2.0 -2 А 2.1 2.3 Bore discontinued at 2.3m Refusal on shale -22 3 -3 -22 4 - 4

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U_x W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

LOGGED: TG

SURFACE LEVEL: 58.4 AHD Pendle Hill High School, Proposed Development EASTING: 6258750.1 NORTHING: 311496.9 DIP/AZIMUTH: 90°/--

BORE No: BH207 PROJECT No: 86977.01 DATE: 22-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample 宧 of Depth Construction Results & Comments (m) Type Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, dark red 0.05 0.1 and brown, trace rootlets, w<PL, generally in a firm А \condition 0.2 FILL/ Silty CLAY: medium to high plasticity, red-brown and grey with ironstone and shale gravels, w<PL, generally in a firm to stiff condition 0.5 А 0.6 1.0 - 1 1 А 1.1 1.2 Silty CLAY: grey and red-brown mottled, very stiff, relict rock texture, residual 15 А 16 17 SHALE: grey and yellow-brown, with ironstone bands and hard clay seams, inferred low strength, highly weathered, dry - 2 2.0 -2 А 2.1 2.2 Bore discontinued at 2.2m Refusal on shale -92 3 -3 -12 -4 - 4

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U_x W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

LOGGED: TG

SURFACE LEVEL: 59.5 AHD Pendle Hill High School, Proposed Development EASTING: 6258743.7 NORTHING: 311454.3 DIP/AZIMUTH: 90°/--

BORE No: BH208 PROJECT No: 86977.01 DATE: 21-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Well Description Water Depth Log Sample 宧 Construction of Depth Type Results & Comments (m) Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, dark red 0.1 and brown, trace rootlets, w<PL, generally in a firm А condition 0.2 0.25 Silty CLAY: grey and red-brown mottled, very stiff, relict rock texture, residual 0.6 А 0.7 1.0 -1 1 А 1.1 15 А 16 1.6 SHALE: grey and yellow-brown, with ironstone bands and hard clay seams, inferred low strength, highly weathered, dry - 2 2.0 -2 А 2.1 2.5 А 2.6 2.9 А 3 3.0 Bore discontinued at 3.0m Target Depth Achieved -20 -4 - 4

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

LOGGED: TG

CASING: Nil

CLIENT: **PROJECT:** LOCATION:

SINSW c/o TSA Management

Cornock Avenue, Toongabbie

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U_x W Core drilling Disturbed sample Environmental sample CDF ₽

SURFACE LEVEL: 58.4 AHD Pendle Hill High School, Proposed Development EASTING: 6258767.7 NORTHING: 311496.6

BORE No: BH209 PROJECT No: 86977.01 DATE: 22-1-2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Well Description Water Depth Log 宧 Construction of Depth Sample Results & Comments (m) Type Details Strata FILL/TOPSOIL: Clayey SILT ML, low plasticity, brown, 0.1 trace rootlets, w<PL, generally in a firm condition А 0.2 0.2 FILL/Silty CLAY: medium to high plasticity, red-brown and grey with ironstone and shale gravel, tile and concrete fragments, generally in a firm to stiff condition 0.5 А 0.6 1.0 - 1 1 А 1.1 15 A 16 18 Silty CLAY: grey and red-brown mottled, very stiff, relict rock texture, residual - 2 2.0 -2 А 2.1 2.3 SHALE: grey and yellow-brown, with ironstone bands and - 9 hard clay seams, inferred low strength, highly weathered, dry. 2.5 А 2.6 2.6 Bore discontinued at 2.6m Refusal on shale 3 3 -12 -4 - 4

RIG: IHI 3.5 tonne excavator DRILLER: A&A TYPE OF BORING: 100mm Solid Flight Auger WATER OBSERVATIONS: No Free Groundwater Observed REMARKS: Location coordinates are in MGA94 Zone 56.

G P U W

₽

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

LOGGED: TG

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

CASING: Nil

Douglas Partners

Geotechnics | Environment | Groundwater

SINSW c/o TSA Management Cornock Avenue, Toongabbie

DIP/AZIMUTH: 90°/--

CLIENT:

PROJECT:

LOCATION:
Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	19 - 63	
Medium gravel	6.7 - 19	
Fine gravel	2.36 - 6.7	
Coarse sand	0.6 - 2.36	
Medium sand	0.21 - 0.6	
Fine sand	0.075 - 0.21	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In the grained solis (>35% II	In	oils (>35% fines)	ne grained soils
-------------------------------	----	-------------------	------------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils	(>65% coarse)
- with coarser fraction	

Term	Proportion of coarser fraction	Example
And	Specify	Sand (60%) and Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW of	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

са	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished	
ro	rough	
sl	slickensided	
sm	smooth	
vr	verv rouah	

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

oo	
A. A. A. A A. D. A. A	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

อบเมอเ

Gneiss

Appendix E

Laboratory Certificates of Analysis

eastwestonline.com.au 🕧

ANALYSIS REPORT SOIL

PROJECT NO: EW210283		Date of Issue:	03/02/2021
Customer:	ENVIROLAB SERVICES	Report No:	1
Address:	12 ASHLEY STREET CHATSWOOD	Date Received:	29/01/2021
	NSW 2067	Matrix:	Soil
Attention:	Aileen Hie	Location:	260350
Phone:	02 9910 6200	Sampler ID:	Client
Fax:	02 9910 6201	Date of Sampling:	21/01/2021
Email:	ahie@envirolabservices.com.au	Sample Condition:	Acceptable

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

Signed:

Lisa Nies

PROFICIENT LAB Visit www.aspac-australasia.com to view our certification details. East West is certified by the Australian-Asian Soil & Plant Analysis Council to perform various soil and plant tissue analysis. The tests reported herein have been performed in accordance with our terms of accreditation.

This report must not be reproduced except in full and EWEA takes no responsibility of the end use of the results within this report.

This analysis relates to the sample submitted and it is the client's responsibility to make certain the sample is representative of the matrix to be tested.

Samples will be discarded one month after the date of this report. Please advise if you wish to have your sample/s returned.

Document ID:REP-01Issue No:3Issued By:S. CameronDate of Issue:16/12/2019

results you can rely on

ANALYSIS REPORT

PROJECT NO: EW210283 Location: 260350

	CLIENT SAMPLE ID				260350-23	260350-26	260350-33	260350-44
			DE	PTH				
Test Parameter	Method Description	Method Reference	Units	LOR	210283-1	210283-2	210283-3	210283-4
Dispersibility (H2O)	Classification	AS 4419	Category	na	4	4	4	4
Dispersibility (CaCl2)	Classification	AS 4419	Category	na	2	2	2	2

ANALYSIS REPORT

PROJECT NO: EW210283 Location: 260350

	CLIENT SAMPLE ID					260350-55	260350-66	
	DEPTH							
Test Parameter	Method Description	Method Reference	Units	LOR	210283-5	210283-6	210283-7	
Dispersibility (H2O)	Classification	AS 4419	Category	na	4	4	4	
Dispersibility (CaCl2)	Classification	AS 4419	Category	na	2	2	2	

This Analysis Report shall not be reproduced except in full without the written approval of the laboratory.

Soils are air dried at 40° C and ground <2mm.

NB: LOR is the Lowest Obtainable Reading.

REP-01

S. Cameron

Document ID Issue No: Issued By:

DOCUMENT END

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 260350

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Lisa Teng
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86977.01</u>
Number of Samples	69 Soil
Date samples received	27/01/2021
Date completed instructions received	27/01/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 03/02/2021

 Date of Issue
 03/02/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda, Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Ken Nguyen, Reporting Supervisor Lucy Zhu, Asbestos Supervisor Manju Dewendrage, Chemist

Nick Sarlamis, Inorganics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		260350-2	260350-3	260350-5	260350-6	260350-7
Your Reference	UNITS	BH109N/0.5-1.0	BH109N/1.0-1.5	BH109E/0.05-0.5	BH109E/0.5-1.0	BH109E/1.0-1.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	81	71	98	98	89

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		260350-9	260350-10	260350-11	260350-13	260350-14
Your Reference	UNITS	BH109S/0.05-0.5	BH109S/0.5-1.0	BH109S/1.0-1.5	BH109W/0.05- 0.5	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	101	103	91	94	105

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		260350-15	260350-67	260350-68	260350-69
Your Reference	UNITS	BH109W/1.0-1.5	BD1/20210121	Trip Spike	Trip Blank
Date Sampled		21/01/2021	-	-	-
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	01/02/2021	02/02/2021	01/02/2021
TRH C6 - C9	mg/kg	<25	<25	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	[NA]	<25
Benzene	mg/kg	<0.2	<0.2	105%	<0.2
Toluene	mg/kg	<0.5	<0.5	84%	<0.5
Ethylbenzene	mg/kg	<1	<1	90%	<1
m+p-xylene	mg/kg	<2	<2	87%	<2
o-Xylene	mg/kg	<1	<1	89%	<1
naphthalene	mg/kg	<1	<1	[NA]	<1
Total +ve Xylenes	mg/kg	<3	<3	[NT]	<3
Surrogate aaa-Trifluorotoluene	%	93	79	94	93

svTRH (C10-C40) in Soil						
Our Reference		260350-2	260350-3	260350-5	260350-6	260350-7
Your Reference	UNITS	BH109N/0.5-1.0	BH109N/1.0-1.5	BH109E/0.05-0.5	BH109E/0.5-1.0	BH109E/1.0-1.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	93	106	94	107	93

svTRH (C10-C40) in Soil						
Our Reference		260350-9	260350-10	260350-11	260350-13	260350-14
Your Reference	UNITS	BH109S/0.05-0.5	BH109S/0.5-1.0	BH109S/1.0-1.5	BH109W/0.05- 0.5	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	103	93	105	107

svTRH (C10-C40) in Soil			
Our Reference		260350-15	260350-67
Your Reference	UNITS	BH109W/1.0-1.5	BD1/20210121
Date Sampled		21/01/2021	-
Type of sample		Soil	Soil
Date extracted	-	29/01/2021	29/01/2021
Date analysed	-	29/01/2021	29/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C16 -C34	mg/kg	<100	<100
TRH >C34 -C40	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	93	105

PAHs in Soil						
Our Reference		260350-2	260350-3	260350-5	260350-6	260350-7
Your Reference	UNITS	BH109N/0.5-1.0	BH109N/1.0-1.5	BH109E/0.05-0.5	BH109E/0.5-1.0	BH109E/1.0-1.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	90	97	97	95	96

PAHs in Soil						
Our Reference		260350-9	260350-10	260350-11	260350-13	260350-14
Your Reference	UNITS	BH109S/0.05-0.5	BH109S/0.5-1.0	BH109S/1.0-1.5	BH109W/0.05- 0.5	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	97	97	93	95

PAHs in Soil			
Our Reference		260350-15	260350-67
Your Reference	UNITS	BH109W/1.0-1.5	BD1/20210121
Date Sampled		21/01/2021	-
Type of sample		Soil	Soil
Date extracted	-	29/01/2021	29/01/2021
Date analysed	-	02/02/2021	02/02/2021
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	97

Organochlorine Pesticides in soil					
Our Reference		260350-2	260350-6	260350-10	260350-14
Your Reference	UNITS	BH109N/0.5-1.0	BH109E/0.5-1.0	BH109S/0.5-1.0	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	02/02/2021	02/02/2021	02/02/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	97	100	101

Organophosphorus Pesticides in Soil					
Our Reference		260350-2	260350-6	260350-10	260350-14
Your Reference	UNITS	BH109N/0.5-1.0	BH109E/0.5-1.0	BH109S/0.5-1.0	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	02/02/2021	02/02/2021	02/02/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	97	100	101

PCBs in Soil					
Our Reference		260350-2	260350-6	260350-10	260350-14
Your Reference	UNITS	BH109N/0.5-1.0	BH109E/0.5-1.0	BH109S/0.5-1.0	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	02/02/2021	02/02/2021	02/02/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	97	100	101

Acid Extractable metals in soil						
Our Reference		260350-2	260350-3	260350-5	260350-6	260350-7
Your Reference	UNITS	BH109N/0.5-1.0	BH109N/1.0-1.5	BH109E/0.05-0.5	BH109E/0.5-1.0	BH109E/1.0-1.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	02/02/2021	29/01/2021
Date analysed	-	31/01/2021	31/01/2021	31/01/2021	02/02/2021	31/01/2021
Arsenic	mg/kg	<4	6	6	9	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	7	6	8	4
Copper	mg/kg	5	8	8	16	6
Lead	mg/kg	5	14	11	13	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	2	3	2	<1
Zinc	mg/kg	7	39	26	23	12

Acid Extractable metals in soil						
Our Reference		260350-9	260350-10	260350-11	260350-13	260350-14
Your Reference	UNITS	BH109S/0.05-0.5	BH109S/0.5-1.0	BH109S/1.0-1.5	BH109W/0.05- 0.5	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	31/01/2021	31/01/2021	31/01/2021	31/01/2021	31/01/2021
Arsenic	mg/kg	4	7	4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	4	5	6	3
Copper	mg/kg	6	8	5	8	5
Lead	mg/kg	7	8	6	9	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	<1	1	2	<1
Zinc	mg/kg	13	12	19	19	9

Acid Extractable metals in soil			
Our Reference		260350-15	260350-67
Your Reference	UNITS	BH109W/1.0-1.5	BD1/20210121
Date Sampled		21/01/2021	-
Type of sample		Soil	Soil
Date prepared	-	29/01/2021	29/01/2021
Date analysed	-	31/01/2021	31/01/2021
Arsenic	mg/kg	<4	5
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	3	4
Copper	mg/kg	6	6
Lead	mg/kg	12	7
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	1	<1
Zinc	mg/kg	34	11

Misc Soil - Inorg									
Our Reference		260350-2	260350-6	260350-10	260350-14				
Your Reference	UNITS	BH109N/0.5-1.0	BH109E/0.5-1.0	BH109S/0.5-1.0	BH109W/0.5-1.0				
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021				
Type of sample		Soil	Soil	Soil	Soil				
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021				
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021				
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5				

Moisture						
Our Reference		260350-2	260350-3	260350-5	260350-6	260350-7
Your Reference	UNITS	BH109N/0.5-1.0	BH109N/1.0-1.5	BH109E/0.05-0.5	BH109E/0.5-1.0	BH109E/1.0-1.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Moisture	%	13	16	15	15	17

Moisture						
Our Reference		260350-9	260350-10	260350-11	260350-13	260350-14
Your Reference	UNITS	BH109S/0.05-0.5	BH109S/0.5-1.0	BH109S/1.0-1.5	BH109W/0.05- 0.5	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Moisture	%	16	15	19	21	16

Moisture			
Our Reference		260350-15	260350-67
Your Reference	UNITS	BH109W/1.0-1.5	BD1/20210121
Date Sampled		21/01/2021	-
Type of sample		Soil	Soil
Date prepared	-	29/01/2021	29/01/2021
Date analysed	-	01/02/2021	01/02/2021
Moisture	%	15	3.8

Asbestos ID - soils					
Our Reference		260350-2	260350-6	260350-10	260350-14
Your Reference	UNITS	BH109N/0.5-1.0	BH109E/0.5-1.0	BH109S/0.5-1.0	BH109W/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Sample mass tested	g	Approx. 40g	Approx. 50g	Approx. 50g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks			
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected			
Asbestos comments	-	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils NEPM						
Our Reference		260350-3	260350-4	260350-7	260350-8	260350-11
Your Reference	UNITS	BH109N/1.0-1.5	BH109N/0.05-1.0	BH109E/1.0-1.5	BH109E/0.05-1.0	BH109S/1.0-1.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	02/02/2021	02/02/2021	02/02/2021	02/02/2021	02/02/2021
Sample mass tested	g	1,043.49	1,099.19	969.32	1,042.02	940.08
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	Chrysotile	Chrysotile
ACM >7mm Estimation*	g	-	-	-	_	-
FA and AF Estimation*	g	-	-	-	0.0358	0.0036
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	0.0034	<0.001

Asbestos ID - soils NEPM				
Our Reference		260350-12	260350-15	260350-16
Your Reference	UNITS	BH109S/0.05-1.0	BH109W/1.0-1.5	BH109W/0.05- 1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil
Date analysed	-	02/02/2021	02/02/2021	02/02/2021
Sample mass tested	g	1,049.55	1,132.77	995.24
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	Chrysotile	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-
FA and AF Estimation*	g	-	0.0001	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

Misc Inorg - Soil						
Our Reference		260350-1	260350-2	260350-3	260350-5	260350-6
Your Reference	UNITS	BH109N/0.05-0.5	BH109N/0.5-1.0	BH109N/1.0-1.5	BH109E/0.05-0.5	BH109E/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.4	4.9	6.5	5.3	5.2
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	<10	[NA]	[NA]	<10
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	10	[NA]	[NA]	10
Misc Inorg - Soil						
Our Reference		260350-7	260350-9	260350-10	260350-11	260350-13
Your Reference	UNITS	BH109E/1.0-1.5	BH109S/0.05-0.5	BH109S/0.5-1.0	BH109S/1.0-1.5	BH109W/0.05- 0.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	4.8	5.4	4.9	5.5	5.6

Misc Inorg - Soil						
Our Reference		260350-14	260350-15	260350-17	260350-18	260350-19
Your Reference	UNITS	BH109W/0.5-1.0	BH109W/1.0-1.5	BH201/0.1	BH201/0.5	BH201/1.0
Date Sampled		21/01/2021	21/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.0	5.5	5.5	5.5	5.7
Chloride, Cl 1:5 soil:water	mg/kg	<10	[NA]		<10	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	20	[NA]		<10	[NA]

10

36

mg/kg

mg/kg

Misc Inorg - Soil						
Our Reference		260350-20	260350-21	260350-22	260350-23	260350-24
Your Reference	UNITS	BH201/1.5	BH202/0.1	BH202/0.5	BH202/1.0	BH202/1.5
Date Sampled		22/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.3	5.5	6.2	5.9	5.2
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	<10	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	10	[NA]
Dispersibility	-	[NA]	[NA]	[NA]	#	[NA]

Chloride, Cl 1:5 soil:water

Sulphate, SO4 1:5 soil:water

Misc Inorg - Soil						
Our Reference		260350-25	260350-26	260350-27	260350-28	260350-29
Your Reference	UNITS	BH202/2.0	BH202/2.5	BH203/0.1	BH203/0.5	BH203/1.0
Date Sampled		21/01/2021	21/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.1	5.3	5.4	5.2	5.0
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	<10	[NA]	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	110	[NA]	[NA]	[NA]
Dispersibility	-	[NA]	#	[NA]	[NA]	[NA]
Misc Inorg - Soil						
Our Reference		260350-30	260350-31	260350-32	260350-33	260350-34
Your Reference	UNITS	BH203/1.5	BH203/2.0	BH203/2.5	BH203/3.0	BH204/0.1
Date Sampled		22/01/2021	22/01/2021	22/01/2021	22/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.2	5.3	5.3	5.1	5.5
Chloride, Cl 1:5 soil:water	mg/kg	<10	[NA]	[NA]	<10	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	10	[NA]	[NA]	32	[NA]
Dispersibility	-	[NA]	[NA]	[NA]	#	[NA]
Misc Inorg - Soil						
Our Reference		260350-35	260350-36	260350-37	260350-38	260350-39
Your Reference	UNITS	BH204/0.5	BH204/1.0	BH204/1.5	BH204/2.0	BH205/0.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.5	4.7	4.7	4.9	4.2
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	20	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	43	[NA]

Misc Inorg - Soil						
Our Reference		260350-40	260350-41	260350-42	260350-43	260350-44
Your Reference	UNITS	BH205/0.5	BH205/1.0	BH205/1.5	BH205/2.0	BH206/0.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	4.5	5.1	4.5	4.8	5.3
Chloride, Cl 1:5 soil:water	mg/kg	10	[NA]	[NA]	[NA]	10
Sulphate, SO4 1:5 soil:water	mg/kg	30	[NA]	[NA]	[NA]	<10
Dispersibility	-		[NA]	[NA]	[NA]	#
Misc Inorg - Soil					·	
Our Reference		260350-45	260350-46	260350-47	260350-48	260350-49
Your Reference	UNITS	BH206/0.5	BH206/1.0	BH206/1.5	BH206/2.0	BH207/0.1
Date Sampled		22/01/2021	22/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.8	5.9	4.8	5.0	6.0
Chloride, Cl 1:5 soil:water	mg/kg		<10	[NA]	10	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg		<10	[NA]	59	[NA]
Dispersibility	-		#	[NA]	[NA]	[NA]
Misc Inorg - Soil	·		·		·	
Our Reference		260350-50	260350-51	260350-52	260350-53	260350-54
Your Reference	UNITS	BH207/0.5	BH207/1.0	BH207/1.5	BH207/2.0	BH208/0.1
Date Sampled		22/01/2021	22/01/2021	22/01/2021	22/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.8	4.8	4.5	4.7	5.7
Chloride, Cl 1:5 soil:water	mg/kg		[NA]	32	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	84	[NA]	[NA]

Misc Inorg - Soil						
Our Reference		260350-55	260350-56	260350-57	260350-58	260350-59
Your Reference	UNITS	BH208/0.6	BH208/1.0	BH208/1.5	BH208/2.0	BH208/2.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	6.6	5.2	5.3	5.3	5.4
Chloride, Cl 1:5 soil:water	mg/kg	<10	[NA]	[NA]	100	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	20	[NA]	[NA]	39	[NA]
Dispersibility	-	#	[NA]	[NA]	[NA]	[NA]
Misc Inorg - Soil	·			-	-	• •

Our Reference		260350-60	260350-61	260350-62	260350-63	260350-64
Your Reference	UNITS	BH208/3.0	BH209/0.1	BH209/0.5	BH209/1.0	BH209/1.5
Date Sampled		21/01/2021	22/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	5.5	5.5	5.4	5.3	5.1
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	<10	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	10	[NA]

Misc Inorg - Soli			
Our Reference		260350-65	260350-66
Your Reference	UNITS	BH209/2.0	BH209/2.5
Date Sampled		22/01/2021	22/01/2021
Type of sample		Soil	Soil
Date prepared	-	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units	4.8	5.2
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	<10
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	42
Dispersibility	-	[NA]	#

- -

Texture and Salinity*						
Our Reference		260350-1	260350-2	260350-3	260350-5	260350-6
Your Reference	UNITS	BH109N/0.05-0.5	BH109N/0.5-1.0	BH109N/1.0-1.5	BH109E/0.05-0.5	BH109E/0.5-1.0
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	57	33	43	43	37
Texture Value	-	9.0	7.0	9.0	9.0	7.0
Texture	-	CLAY LOAM	MEDIUM CLAY	CLAY LOAM	CLAY LOAM	MEDIUM CLAY
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Texture and Salinity*						
Our Reference		260350-7	260350-9	260350-10	260350-11	260350-13
Your Reference	UNITS	BH109E/1.0-1.5	BH109S/0.05-0.5	BH109S/0.5-1.0	BH109S/1.0-1.5	BH109W/0.05- 0.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	50	37	43	95	34
Texture Value	-	7.0	9.0	7.0	9.0	9.0
Texture	-	MEDIUM CLAY	CLAY LOAM	MEDIUM CLAY	CLAY LOAM	CLAY LOAM
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Texture and Salinity*						
Our Reference		260350-14	260350-15	260350-17	260350-18	260350-19
Your Reference	UNITS	BH109W/0.5-1.0	BH109W/1.0-1.5	BH201/0.1	BH201/0.5	BH201/1.0
Date Sampled		21/01/2021	21/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	μS/cm	34	35	33	29	27
Texture Value	-	7.0	9.0	7.0	7.0	8.0
Texture	-	MEDIUM CLAY	CLAY LOAM	MEDIUM CLAY	MEDIUM CLAY	LIGHT MEDIUM CLAY
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Transformer and Oralin that						
Texture and Salinity [*]						
Our Reference		260350-20	260350-21	260350-22	260350-23	260350-24
Your Reference	UNITS	BH201/1.5	BH202/0.1	BH202/0.5	BH202/1.0	BH202/1.5
Date Sampled		22/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	μS/cm	63	150	36	33	88
Texture Value	-	7.0	9.0	7.0	8.0	8.0
Texture	-	MEDIUM CLAY	CLAY LOAM	MEDIUM CLAY	LIGHT MEDIUM CLAY	LIGHT MEDIUM CLAY
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Texture and Salinity*						
Our Reference		260350-25	260350-26	260350-27	260350-28	260350-29
Your Reference	UNITS	BH202/2.0	BH202/2.5	BH203/0.1	BH203/0.5	BH203/1.0
Date Sampled		21/01/2021	21/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	100	85	64	27	35
Texture Value	-	7.0	7.0	9.0	7.0	7.0
Texture	-	MEDIUM CLAY	MEDIUM CLAY	CLAY LOAM	MEDIUM CLAY	MEDIUM CLAY
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Texture and Salinity*							
Our Reference		260350-30	260350-31	260350-32	260350-33	260350-34	
Your Reference	UNITS	BH203/1.5	BH203/2.0	BH203/2.5	BH203/3.0	BH204/0.1	
Date Sampled		22/01/2021	22/01/2021	22/01/2021	22/01/2021	21/01/2021	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021	
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021	
Electrical Conductivity 1:5 soil:water	µS/cm	29	33	31	50	28	
Texture Value	-	9.0	9.0	9.0	9.0	9.0	
Texture	-	CLAY LOAM					
ECe	dS/m	<2	<2	<2	<2	<2	
Class	-	NON SALINE					
Texture and Salinity*							
--	-------	------------	-------------	-------------	-------------	-------------	
Our Reference		260350-35	260350-36	260350-37	260350-38	260350-39	
Your Reference	UNITS	BH204/0.5	BH204/1.0	BH204/1.5	BH204/2.0	BH205/0.1	
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021	
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021	
Electrical Conductivity 1:5 soil:water	µS/cm	27	49	88	54	58	
Texture Value	-	9.0	7.0	7.0	7.0	7.0	
Texture	-	CLAY LOAM	MEDIUM CLAY	MEDIUM CLAY	MEDIUM CLAY	MEDIUM CLAY	
ECe	dS/m	<2	<2	<2	<2	<2	
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE	

Texture and Salinity*						
Our Reference		260350-40	260350-41	260350-42	260350-43	260350-44
Your Reference	UNITS	BH205/0.5	BH205/1.0	BH205/1.5	BH205/2.0	BH206/0.1
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	42	38	65	73	65
Texture Value	-	7.0	7.0	7.0	7.0	9.0
Texture	-	MEDIUM CLAY	MEDIUM CLAY	MEDIUM CLAY	MEDIUM CLAY	CLAY LOAM
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Texture and Salinity*						
Our Reference		260350-45	260350-46	260350-47	260350-48	260350-49
Your Reference	UNITS	BH206/0.5	BH206/1.0	BH206/1.5	BH206/2.0	BH207/0.1
Date Sampled		22/01/2021	22/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	μS/cm	60	27	79	61	94
Texture Value	-	9.0	9.0	7.0	7.0	7.0
Texture	-	CLAY LOAM	CLAY LOAM	MEDIUM CLAY	MEDIUM CLAY	MEDIUM CLAY
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Texture and Salinity*						
Our Reference		260350-50	260350-51	260350-52	260350-53	260350-54
Your Reference	UNITS	BH207/0.5	BH207/1.0	BH207/1.5	BH207/2.0	BH208/0.1
Date Sampled		22/01/2021	22/01/2021	22/01/2021	22/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	58	87	94	76	46
Texture Value	-	7.0	7.0	7.0	7.0	9.0
Texture	-	MEDIUM CLAY	MEDIUM CLAY	MEDIUM CLAY	MEDIUM CLAY	CLAY LOAM
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Texture and Salinity*						
Our Reference		260350-55	260350-56	260350-57	260350-58	260350-59
Your Reference	UNITS	BH208/0.6	BH208/1.0	BH208/1.5	BH208/2.0	BH208/2.5
Date Sampled		21/01/2021	21/01/2021	21/01/2021	21/01/2021	21/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	μS/cm	44	69	81	120	120
Texture Value	-	7.0	7.0	7.0	7.0	7.0
Texture	-	MEDIUM CLAY				
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE				

Texture and Salinity*						
Our Reference		260350-60	260350-61	260350-62	260350-63	260350-64
Your Reference	UNITS	BH208/3.0	BH209/0.1	BH209/0.5	BH209/1.0	BH209/1.5
Date Sampled		21/01/2021	22/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	μS/cm	98	49	43	32	59
Texture Value	-	9.0	9.0	9.0	9.0	7.0
Texture	-	CLAY LOAM	CLAY LOAM	CLAY LOAM	CLAY LOAM	MEDIUM CLAY
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE				

Texture and Salinity*			
Our Reference		260350-65	260350-66
Your Reference	UNITS	BH209/2.0	BH209/2.5
Date Sampled		22/01/2021	22/01/2021
Type of sample		Soil	Soil
Date prepared	-	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	77	57
Texture Value	-	7.0	7.0
Texture	-	MEDIUM CLAY	MEDIUM CLAY
ECe	dS/m	<2	<2
Class	-	NON SALINE	NON SALINE

ESP/CEC						
Our Reference		260350-23	260350-26	260350-33	260350-44	260350-46
Your Reference	UNITS	BH202/1.0	BH202/2.5	BH203/3.0	BH206/0.1	BH206/1.0
Date Sampled		21/01/2021	21/01/2021	22/01/2021	22/01/2021	22/01/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Date analysed	-	01/02/2021	01/02/2021	01/02/2021	01/02/2021	01/02/2021
Exchangeable Ca	meq/100g	7.9	1.1	4.9	7.2	8.4
Exchangeable K	meq/100g	0.3	0.4	0.6	1.3	0.3
Exchangeable Mg	meq/100g	2.1	2.9	3.6	3.8	2.7
Exchangeable Na	meq/100g	0.21	0.70	0.21	<0.1	0.23
Cation Exchange Capacity	meq/100g	10	5.1	9.4	12	12
ESP	%	2	14	2	<1	2

ESP/CEC			
Our Reference		260350-55	260350-66
Your Reference	UNITS	BH208/0.6	BH209/2.5
Date Sampled		21/01/2021	22/01/2021
Type of sample		Soil	Soil
Date prepared	-	01/02/2021	01/02/2021
Date analysed	-	01/02/2021	01/02/2021
Exchangeable Ca	meq/100g	9.4	1.0
Exchangeable K	meq/100g	0.2	0.4
Exchangeable Mg	meq/100g	5.3	3.8
Exchangeable Na	meq/100g	0.26	0.53
Cation Exchange Capacity	meq/100g	15	5.7
ESP	%	2	9

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Ext-037	Analysed by Sydney Environmental & Soil Laboratory
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-123	Determined using a "Texture by Feel" method.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
	1

Method ID	Methodology Summary
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260350-6
Date extracted	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			01/02/2021	2	01/02/2021	01/02/2021		01/02/2021	01/02/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	2	<25	<25	0	113	104
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	2	<25	<25	0	113	104
Benzene	mg/kg	0.2	Org-023	<0.2	2	<0.2	<0.2	0	103	96
Toluene	mg/kg	0.5	Org-023	<0.5	2	<0.5	<0.5	0	113	100
Ethylbenzene	mg/kg	1	Org-023	<1	2	<1	<1	0	124	115
m+p-xylene	mg/kg	2	Org-023	<2	2	<2	<2	0	113	104
o-Xylene	mg/kg	1	Org-023	<1	2	<1	<1	0	116	106
naphthalene	mg/kg	1	Org-023	<1	2	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	111	2	81	82	1	108	93

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	14	29/01/2021	29/01/2021		[NT]	[NT]
Date analysed	-			[NT]	14	01/02/2021	01/02/2021		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	14	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	14	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	14	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	14	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	14	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	14	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	14	<1	<1	0	[NT]	[NT]
naphthalene	mg/kg	1	Org-023	[NT]	14	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	14	105	89	16	[NT]	[NT]

QUALITY CONTROL: svTRH (C10-C40) in Soil Test Description Units PQL Method PQL Date extracted - .						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260350-6
Date extracted	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	2	<50	<50	0	97	93
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	2	<100	<100	0	96	91
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	2	<100	<100	0	108	112
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	2	<50	<50	0	97	93
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	2	<100	<100	0	96	91
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	2	<100	<100	0	108	112
Surrogate o-Terphenyl	%		Org-020	109	2	93	107	14	113	112

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	14	29/01/2021	29/01/2021		[NT]	[NT]
Date analysed	-			[NT]	14	29/01/2021	29/01/2021		[NT]	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	14	<50	<50	0	[NT]	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	14	<100	<100	0	[NT]	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	14	<100	<100	0	[NT]	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	14	<50	<50	0	[NT]	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	14	<100	<100	0	[NT]	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	14	<100	<100	0	[NT]	[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	14	107	106	1	[NT]	[NT]

QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260350-6
Date extracted	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			02/02/2021	2	01/02/2021	01/02/2021		02/02/2021	02/02/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	103	105
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	108	109
Fluorene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	114	109
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	115	111
Anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	116	111
Pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	114	113
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	139	135
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	2	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	2	<0.05	<0.05	0	108	110
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	93	2	90	90	0	86	92

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	14	29/01/2021	29/01/2021		[NT]	[NT]
Date analysed	-			[NT]	14	02/02/2021	02/02/2021		[NT]	[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	14	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	14	<0.05	<0.05	0	[NT]	[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	14	95	95	0	[NT]	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260350-6
Date extracted	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			02/02/2021	2	01/02/2021	01/02/2021		02/02/2021	02/02/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	117	111
НСВ	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	115	113
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	111	125
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	115	114
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	110	109
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	109	106
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	117	115
Endrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	114	95
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	108	106
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	114	116
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	98	2	103	101	2	93	97

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	14	29/01/2021	29/01/2021		[NT]	[NT]
Date analysed	-			[NT]	14	02/02/2021	02/02/2021		[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	14	101	98	3	[NT]	[NT]

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260350-6
Date extracted	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			02/02/2021	2	01/02/2021	01/02/2021		02/02/2021	02/02/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	98	92
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	111	114
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	95	97
Malathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	137	137
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	122	118
Parathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	98	76
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	125	129
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	98	2	103	101	2	93	97

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	14	29/01/2021	29/01/2021		[NT]	[NT]
Date analysed	-			[NT]	14	02/02/2021	02/02/2021		[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Malathion	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	14	101	98	3	[NT]	[NT]

QUALIT	Y CONTRC	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260350-6
Date extracted	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			02/02/2021	2	01/02/2021	01/02/2021		02/02/2021	02/02/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	100	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	98	2	103	101	2	93	97

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	14	29/01/2021	29/01/2021		[NT]	[NT]
Date analysed	-			[NT]	14	02/02/2021	02/02/2021		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	14	101	98	3	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	260350-6
Date prepared	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	02/02/2021
Date analysed	-			31/01/2021	2	31/01/2021	31/01/2021		31/01/2021	02/02/2021
Arsenic	mg/kg	4	Metals-020	<4	2	<4	<4	0	98	74
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	93	71
Chromium	mg/kg	1	Metals-020	<1	2	3	3	0	95	72
Copper	mg/kg	1	Metals-020	<1	2	5	5	0	96	74
Lead	mg/kg	1	Metals-020	<1	2	5	6	18	95	85
Mercury	mg/kg	0.1	Metals-021	<0.1	2	<0.1	<0.1	0	110	91
Nickel	mg/kg	1	Metals-020	<1	2	<1	<1	0	98	71
Zinc	mg/kg	1	Metals-020	<1	2	7	7	0	110	#

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	14	29/01/2021	29/01/2021		[NT]	
Date analysed	-			[NT]	14	31/01/2021	31/01/2021		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	14	<4	4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	14	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	14	3	4	29	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	14	5	6	18	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	14	9	7	25	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	14	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	14	<1	<1	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	14	9	10	11	[NT]	[NT]

QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	260350-6
Date prepared	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	2	<5	<5	0	99	99

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	260350-2
Date prepared	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			29/01/2021	1	29/01/2021	29/01/2021		29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	1	5.4	5.4	0	101	[NT]
Chloride, CI 1:5 soil:water	mg/kg	10	Inorg-081	<10	14	<10	<10	0	94	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	14	20	25	22	88	[NT]
Dispersibility	-	0	Ext-037	[NT]	66	#	[NT]		[NT]	[NT]

QUALITY	QUALITY CONTROL: Misc Inorg - Soil Description Units PQL Method E repared -					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260350-26
Date prepared	-			[NT]	14	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			[NT]	14	29/01/2021	29/01/2021		29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	14	5.0	5.0	0	98	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	52	32	33	3	[NT]	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	52	84	85	1	[NT]	[NT]

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260350-46
Date prepared	-			[NT]	25	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-			[NT]	25	29/01/2021	29/01/2021		29/01/2021	29/01/2021
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	25	5.1	5.1	0	101	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	66	<10	<10	0	[NT]	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	66	42	43	2	[NT]	[NT]

QUALIT	CONTROL	Misc Ino	org - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			[NT]	35	28/01/2021	28/01/2021		28/01/2021	[NT]
Date analysed	-			[NT]	35	29/01/2021	29/01/2021		29/01/2021	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	35	5.5	5.4	2	101	[NT]

QUALITY	TY CONTROL: Misc Inorg - Soil Units PQL Method					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	45	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	45	29/01/2021	29/01/2021		[NT]	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	45	5.8	5.8	0	[NT]	[NT]

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	52	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	52	29/01/2021	29/01/2021		[NT]	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	52	4.5	4.5	0	[NT]	[NT]

QUALITY	CONTROL	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	66	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	66	29/01/2021	29/01/2021		[NT]	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	66	5.2	5.2	0	[NT]	[NT]

QUALITY C	ONTROL: T	exture an	d Salinity*			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	[NT]
Date analysed	-			29/01/2021	1	29/01/2021	29/01/2021		29/01/2021	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	1	57	59	3	104	[NT]
Texture Value	-		INORG-123	[NT]	1	9.0	9.0	0	[NT]	[NT]

QUALITY C	ONTROL: T	exture an	d Salinity*			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	14	28/01/2021	28/01/2021		28/01/2021	[NT]
Date analysed	-			[NT]	14	29/01/2021	29/01/2021		29/01/2021	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	14	34	35	3	100	[NT]
Texture Value	-		INORG-123	[NT]	14	7.0	7.0	0	[NT]	[NT]

QUALITY C	ONTROL: T	exture an		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			[NT]	25	28/01/2021	28/01/2021		28/01/2021	
Date analysed	-			[NT]	25	29/01/2021	29/01/2021		29/01/2021	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	25	100	100	0	101	
Texture Value	-		INORG-123	[NT]	25	7.0	7.0	0	[NT]	

QUALITY C	ONTROL: T	exture an		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			[NT]	35	28/01/2021	28/01/2021		28/01/2021	[NT]
Date analysed	-			[NT]	35	29/01/2021	29/01/2021		29/01/2021	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	[NT]	35	27	28	4	102	[NT]
Texture Value	-		INORG-123	[NT]	35	9.0	9.0	0	[NT]	[NT]

QUALITY C	ONTROL: T	exture an		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	45	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	45	29/01/2021	29/01/2021		[NT]	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	45	60	58	3	[NT]	[NT]
Texture Value	-		INORG-123	[NT]	45	9.0	9.0	0	[NT]	[NT]

QUALITY C	ONTROL: T	exture an		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	52	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	52	29/01/2021	29/01/2021		[NT]	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	52	94	99	5	[NT]	[NT]
Texture Value	-		INORG-123	[NT]	52	7.0	7.0	0	[NT]	[NT]

QUALITY C	ONTROL: T	exture an		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	66	28/01/2021	28/01/2021		[NT]	[NT]
Date analysed	-			[NT]	66	29/01/2021	29/01/2021		[NT]	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	66	57	56	2	[NT]	[NT]
Texture Value	-		INORG-123	[NT]	66	7.0	7.0	0	[NT]	[NT]

QUAL	ITY CONTR	OL: ESP/	Du	plicate		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			01/02/2021	55	01/02/2021	01/02/2021		01/02/2021	
Date analysed	-			01/02/2021	55	01/02/2021	01/02/2021		01/02/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	55	9.4	8.4	11	111	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	55	0.2	0.2	0	122	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	55	5.3	4.9	8	112	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	55	0.26	0.24	8	126	
ESP	%	1	Metals-020	[NT]	55	2	2	0	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 260350-8; Chrysotile and Crocidolite asbestos identified in 0.0421g of fibrous matted material

Sample 260350-11; Chrysotile asbestos identified in 0.0239g of fibre cement material <7mm

Sample 260350-15; Chrysotile asbestos identified in 0.0006g of fibre cement material <7mm

Samples were out of the recommended holding time for this analysis pH in soil.

Dispersibility was analysed by East West Geo Ag Enviro. Repor No. EW210283 # view attached report

8 metals in soil - # Low spike recovery was obtained for this sample. The sample was re-digested and re-spiked and the low recovery was confirmed. This is due to matrix interferences. However, an acceptable recovery was obtained for the LCS.

CHAIN OF CUSTODY DESPATCH SHEET

	las 1 Enviror	Partn	PFS dwater		۲ : :	2		· . · · · ·			CHAI	NOF	CUST	ODY DESPATCH SHEET
Project No:	86977	' .01			Suburb	: <u> </u>	Toonga	bbie		То:	Env	rolab Se	rvices	
Project Name:	Pendl	e Hill High S	School Dev	velopment	Order N	lumber		\			12 A	shley St	reet, Chat	tswood
Project Manage	r:Lisa T	eng			Sample	er:	Tom Gr	aham		Attn:	Aile	en Hie		
Emails:	Lisa	.Teng@dou	glaspartne	rs.com.au	<u>Tom.</u>	<u>Graham@</u>	douglast	partners.c	om.au	Phone:	991	0 6200		- Envirolah Sonviko
Date Required:	Same	day 🗆	24 hours	□ 48 h	ours 🛛	72 hou		Standar	<u>d</u> 🛯	Email:	ahie	<u>@envir</u>	olab.com	1.au Environa Service
Prior Storage:	🗆 Esk	y 🕱 Frid	ge ≌⁄Sl	nelved	Do samp	oles contai	n 'potentia	I' HBM?	Yes 🗆		(If YES, th	en handle,	transport ar	nd store in accordance wohatswood wsw 200 Ph: (02) 9910 620
	•	ي . م	Sample	Container					Analytes		•			Job No: 260350
Sample ID	Lab ID	Date Sample	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3	Asbestos 500mL	ВТЕХ	Texture / Salinity	·: H	Chloride	Sulphate	Sodicity / Dispersibilit v	Date Received: 27/1/1/ Notes Preserved ion 1425 Received By: 30 Temp: CoolAmbient Cooling: Ice//Cepack
BH109N/0.05-0.5	1	21/01/21	S	G+P	•		上 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		X	X	•	4		Security intact/Broken/None
BH109N/0.5-1.0	2	21/01/21	S	G+P	Х		l l		X	X	X	. X		
BH109N/1.0-1.5	3	21/01/21	S	G+P	••;	x ·	X	<u>.</u>	x	X			;	Use Absieve Sound for Sco.1
BH109N/0.05-1.0	4	21/01/21	S	P			X	· ·		· · ·				
BH109E/0.05-0.5	5	21/01/21	S	G+P		X			X	X		·		
BH109E/0.5-1.0	6	21/01/21	s	G+P	X	· · ·		.* .	X	X	X	X	· · ·	
BH109E/1.0-1.5	7	21/01/21	S	G+P		X	X		X	X *			· · ·	Use Absinc Sample for Scanh
BH109E/0.05-1.0	8	21/01/21	s	Р			X							· · · · · · · · · · · · · · · · · · ·
BH109S/0.05-0.5	9	21/01/21	S	G+P		X			x	X				
BH109S/0.5-1.0	10	21/01/21	S	G+P	x				x	x	·x	X		
BH109S/1.0-1.5	11	21/01/21	S	G+P		<u>x</u> .	X		X	x	· .	· .	· · ·	Use Abson Semple for Scond
BH109S/0.05-1.0	12	21/01/21	S	Р			x		·	:		ļ		· · · · · · · · · · · · · · · · · · ·
BH109W/0.05-0.5	13	21/01/21	S	G+P		X	. ~		X	_X_				
BH109W/0.5-1.0	14	21/01/21	S	G+P	· <u>X</u>	· ·	· · ·		x	<u>x</u>	X	<u>x</u>		
BH109W/1.0-1.5	15	21/01/21	S	G+P		··· X ···	X		X	<u>x</u>				Vie Absice Samph for Jank
PQL (S) mg/kg	. `			<u> </u>	<u> </u>	;	<u> </u>	<u> </u>		<u> </u>	<u> </u>		UC PQLs	req d for all water analytes
PQL = practical	quant	itation limit	t. If none	given, defau ere	lit to Labo	oratory Me	ethod Det	ection Lir		Lab R	eport/Re	ference	No: 260	350
Total number o	f samp	les in cont	ainer:	Reli	inquished	d by:	TG	Transp	orted to l	aborator	y by:			Bonded Courier
Send Results to	b: [ouglas Par	tners Pty L	td Add	Iress	<u> </u>						Phone	e:	Fax:
Signed:	11	2		Received	by: Jac	n Don	JAF.	1 0	ভ্র ৪	fo	Date &	Time: 🤈	7/1/2	1425
FPM - ENVID/Form C	OC 02					\mathbf{J}	Pa	ge 1 of 5						7.4°C Rev4/October201

CHAIN OF CUSTODY DESPATCH SHEET

.

Project No:	86977	.01	-		Suburb: Toongabbie To					To:	Env	rirolab Se	rvices			
Project Name:	Pendl	e Hill High S	School Dev	/elopment	Order N	lumber					12/	Ashley St	reet, Chats	wood		
Project Manage	r :Lisa T	eng			Sample	er:	Tom Gr	aham		Attn:	Aile	en Hie		·		
Emails:	Lisa.	Teng@dou	iglaspartne	ers.com.au	<u></u>	Graham@	0douglasr	partners.c	om.au	Phone	991	0 6200				
Date Required:	Same	day □	24 hours	□ 48 ho	burs 🛛	72 hou	urs 🛛	Standar	d 6 4	Email:	<u>ahi</u>	e@envir	olab.com.	<u>au</u>		
Prior Storage:	🗆 Esk	y 🗗 Frid	ge 🖻 S	nelved	Do samp	oles conta	in 'potentia	I' HBM?	Yes 🗆	No &	(If YES, th	nen handle,	transport and	store in accordance with FPM HAZID)		
		Date	Sample Type	Container Typé				· .	Analytes		T					
Sample ID	Lab ID	Sampling I	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3	Asbestos 500mL	ВТЕХ	Texture / Salinity	Hd	Chloride	Sulphate	Sodicity / Dispersibilit v	Notes/preservation		
BH109W/0.05-1.0	16	21/01/21	S	P			X				· · ·					
BH201/0.1	17	22/01/21	S	Р					X	X	1					
BH201/0.5	18	22/01/21	S	Р		· ·			X	X	X	x				
BH201/1.0	19	22/01/21	S	P.					x	• X		· :				
BH201/1.5	ZÒ	22/01/21	S	P ·					· X	x						
BH202/0.1	21	21/01/21	S	Р	-				x	X	• • •					
BH202/0.5	22	21/01/21	S	Р					x				· · ·			
BH202/1.0	23	21/01/21	S	Р					X	X	X	X	x			
BH202/1.5	24	21/01/21	S	P					x	x						
BH202/2.0	25	21/01/21	S	Р					x	X						
BH202/2.5	26	21/01/21	S	Р					X	x	x	X	X			
BH203/0.1	27	22/01/21	S	P					x	X	ļ					
BH203/0.5	28	22/01/21	S	Р				,	x	X		ļ				
BH203/1.0	29	22/01/21	S	P			· · ·		<u>,</u> X	x			<u> </u>	· · · · · ·		
BH203/1.5	30	22/01/21	S	Р					X	x	x	X *		· · · · · · · · · · · · · · · · · · ·		
PQL (S) mg/kg													CC PQLs r	eq'd for all water analytes 🛛		
PQL = practica	quanti	tation limit	. If none	given, defau ere:	It to Labo	ratory Me	ethod Det	ection Lin	nit	Lab R	eport/Re	ference	No: 2	: 260350		
Total number of	f samn	les in cont	ainer:	Reli	nguishea	d by:	TG	Transpo	orted to la	aborator	y by:		В	londed Courier		
Send Results to	o:D	ouglas Par	tners Pty L	td Add	ress							Phone		Fax:		
Signed:	Zo	A.		Received I	ру: 🏹	7521	lay	JAH	Els	5+0	Date &	Time: 🧃	7/1/21	1425		
FPM - ENVID/Form C	OC 02						J Pa	ge 2 of 5					7	Rev4/October201		

1. N. -

.

. . .

CHAIN OF CUSTODY DESPATCH SHEET

:

. '

Project No:	86977	.01			Suburb		Toonga	bbie		To: Envirolab Services				
Project Name:	Pendle	e Hill High S	School Dev	velopment	Order N	lumber					12 A	shley Str	eet, Chats	wood
Project Manage	r :Lisa T	eng	`.		Sample	r:	Tom Gr	aham		Attn:	Ailee	en Hie		
Emails:	<u>Lisa.</u>	Teng@dou	glaspartne	rs.com.au	<u></u>	Graham@	douglasp	artners.c	om.au	Phone:	9910	6200		
Date Required:	Same	day 🛛	24 hours	□ 48 hc	ours 🛛	72 hou	rs 🛛	Standard		Email:	ahie	@envirc	plab.com.	au
Prior Storage:	🗆 Esk	y 🖉 Fridg	ge 🖉 Sł	nelved	Do samp	les contai	n 'potentia	I' HBM?	Yes 🗆	No 🍇 ((If YES, the	en handle, t	ransport and	store in accordance with FPM HAZID)
	• •	Date	Sample Type	Container Type			· · ·		Analytes	·				
Sample ID	Lab ID	Sampling [S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3	Asbestos 500mL.	втех	Texture / Salinity	Hd	Chloride	Sulphate	Sodicity / Dispersibili v	Notes/preservation
BH203/2.0	31	22/01/21	S	Р					X	x				
BH203/2.5	32	22/01/21	S	Р					X -	X				
BH203/3.0	33	22/01/21	S	Р					X	X	<u> </u>	X	<u> </u>	·
BH204/0.1	34	21/01/21	S	P			·		<u> </u>	X			· · · ·	
BH204/0.5	35	21/01/21	S	P					<u> </u>	X				· · · ·
BH204/1.0	36	21/01/21	S	P					X	X				
BH204/1.5	37	21/01/21	S	<u>Р</u>					X	X				
BH204/2.0	58	21/01/21	S	<u>Р</u>					<u> </u>	X	X	X		
BH205/0.1	39	21/01/21	S	Р			<u> </u>						, , ,	
BH205/0.5	40	21/01/21	S	P							X	<u>X</u>		
BH205/1_0	41	21/01/21	S	P		· · ·			· X		,			
BH205/1.5		21/01/21	<u> </u>	P.		· · · ·		·	<u>×</u>					
BH205/2.0	435	21/01/21	S	· P					<u> </u>	X				· · · · · · · · · · · · · · · · · · ·
BH206/0.1	44	22/01/21	S	P					<u> </u>		X	<u> </u>	<u> </u>	
BH206/0.5	43	22/01/21	<u>S</u>	P			·		<u> </u>	X				eg'd for all water analytes
PQL (S) mg/kg	auanti	fation limit	l lf none	l given, defau	t to Labo	I ratorv Me	thod Dete	L	1 nit	<u> </u>				1275
Motals to Analy	se 8H	A unless s	pecified h	ere:						Lab Re	port/Rel	rerence N	NO: 280	
Total number o	f samp	les in conta	ainer:	Reli	nquished	by:	TG	Transpo	orted to l	aboratory	by:		E	Bonded Courier
Send Results to	o: D	ouglas Parl	tners Pty L	td Add	ress						.	Phone	1-1-1-1-	Fax:
Signed:	forte			Received b	oy: Sca	n lan	3000	<u> </u>	718 SH	2	Date & 1	ime:	LAIN	1765
	-					\cup								Baud/Oatabar201

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86977	.01			Suburb	:	Toonga	bbie		To: Envirolab Services				
Project Name:	Pendle	e Hill High S	School Dev	elopment	Order N	lumber					12 A	shley Str	eet, Chat	swood
Project Manage	r:Lisa T	eng			Sample	er:	Tom Gr	aham		Attn:	Ailee	en Hie		
Emails:	Lisa.	Teng@dou	glaspartne	rs.com.au	<u>Tom.</u>	<u>Graham@</u>	douglasp	artners.c	<u>om.au</u>	Phone:	9910	0 6200		
Date Required:	Same	day 🛛	24 hours	□ 48 ho	ours 🛛	72 hou	rs 🛛	Standard	d ∭as	Email:	<u>ahie</u>	@enviro	plab.com	.au
Prior Storage:	D Esk	y <u></u> S⊯Frid	ge 🞜 Sl	nelved	Do samp	oles contai	n 'potentia	I'HBM?	Yes 🛛	No 🗜	(If YES, the	en handle, t	transport an	d store in accordance with FPM HAZID)
		Date	Sample Type	Container Type					Analytes					
Sample ID	Lab ID	Sampling	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3	Asbestos 500mL	втех	Texture / Salinity	Ha	Chloride	Sulphate	Sodicity / Dispersibili v	Notes/preservation
BH206/1.0	46	22/01/21	S	P					X	X	X	<u>X</u>	X	
BH206/1.5	47	22/01/21	S	Р					x	X				
BH206/2.0	48	22/01/21	S	Р				-	X	X	X	Х		
BH207/0.1	49	22/01/21	S	Р					X	X				
BH207/0.5	50	22/01/21	S	P					X	X				······································
BH207/1.0	51	22/01/21	S	P ·					x	X				
BH207/1.5	SZ	22/01/21	s	P	· · · ·				x	X	· X	^{т.} Х		·.
BH207/2.0	53	22/01/21	S	Р					x	X				
BH208/0.1	54	21/01/21	s	<u> </u>		· ·	·	· · · ·	x	X				
BH208/0.6	55	21/01/21	S	Р				,	<u> </u>	X	X	X	X	
BH208/1.0	56	21/01/21	S	P .					X	X				
BH208/1.5	57	21/01/21	<u>S</u>	P					<u> </u>	X				· · · · · · · · · · · · · · · · · · ·
BH208/2.0	88	21/01/21	S	Р					X	X	Χ	X		
BH208/2.5	59	21/01/21	S	P	·				X	X				
BH208/3.0	60	21/01/21	S	P			·		<u> </u>	X				
PQL (S) mg/kg			<u> </u>					<u> </u>	<u> </u>	<u> </u>		ANZEU	CPULS	req d for all water analytes \Box
PQL = practica	quanti	tation limit	. If none	given, defau	It to Labo	ratory Me	thod Dete	ection Lim		Lab Re	eport/Ref	ference N	lo: フ	A0756A
Metals to Analy	se: 8HN	<u>I unless s</u>	pecified h	ere:				Transe	wind to 1	horston	-			Bonded Courier
I otal number o	t samp	es in conta	ainer:	Kell	nquisneo	<u>i by:</u>	10	ranspo		aboratory	uy:	Phone	[Fax:
Sena Kesuits to		ougias Pari	iners Pty L	Received b	1000 W: TA	<u> </u>	AL.		a stor		Date & T	ime: 7	A17.	1425
Signeu.	- Josephine			ILGOGIAGU L	<u>. 76</u>	the second				<u> </u>			14 0 0	

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86977.01 Suburb: Toongabbie						bbie		To: Envirolab Services							
Project Name:	Pendle	e Hill High S	School Dev	/elopment	Örder N	lumber	•			12 Ashley Street, Chatswood						
Project Manage	r:Lisa T	eng			Sample	er:	Tom Gr	aham		Attn: Aileen Hie						
Emails:	Lisa.	isa.Teng@douglaspartners.com.au Tom.Graham@douglaspartners.com.au P							Phone:	Phone: 9910 6200						
Date Required:	Same	day 🗆	24 hours	□ 48 hc	ours 🛛	72 hou	rs 🗆	Standard	Б	Email: <u>ahie@envirolab.com.au</u>						
Prior Storage:	🗆 Esk	y 足 Frid	ge k≊ Sl	nelved	Do samp	oles contai	n 'potentia	I' HBM?	Yes 🛛	No 🌶	(If YES, th	en handle,	transport an	d store in accordance with FPM HAZID)		
		Date	Sample Type	Container Type	Analytes									· .		
Sample ID	Lab ID	Sampling I	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3	Asbestos 500mL	ВТЕХ	Texture / Salinity	Hơ	Chloride	Sulphate	Sodicity / Dispersibilit v	Notes/preservation		
BH209/0.1	61	22/01/21	S	Р					X _	X						
BH209/0.5	62	22/01/21	S	Р					X	X		·	· ·			
BH209/1.0	63	22/01/21	S	P					Х	X	x	X		· · · · · · · · · · · · · · · · · · ·		
BH209/1.5	64	22/01/21	S	Р					X	x						
BH209/2.0	65	22/01/21	S	Р				· .	X	×X						
BH209/2.5	66	22/01/21	S	Р					X	· X	X	X	X			
BD1/20210121	67		S	G		X		·						· · · · · · · · · · · · · · · · · · ·		
Trip Spike	68		S	G			-	X								
Trip Blank	69		S	G		· ·		. <u>X</u>								
					_											
						-						i i				
					• •											
÷			. /			,										
	-															
PQL (S) mg/kg							<u> </u>				· · · · · ·	ANZEC	C PQLs	req'd for all water analytes		
PQL = practica	l quanti	tation limit	. If none	given, defaul	t to Labo	ratory Me	thod Dete	ection Lim	it	Lab R	eport/Ref	ference l	No: 26	0350		
Metals to Analy	/se: 8HM	VI unless s	pecified h	ere: Relii	nguisher	l by:	TG	Transpo	rted to la	aboratory	/ bv:		E	Bonded Courier		
Send Results t	<u>o:</u> D	oudlas Par	tners Ptv L	td Add	ress	~	<u> </u>					Phone	: , ,	Fax:		
Signed:	Zill			Received b	y:	Sasan	dan	SAA	EG	Sta	Date & 1	Time: 2	7/1/21	1425		
	Signed: The Received by. Use by ANT OS STU Date & Time. Dry 1/51 195															

• • •

Page 5 of 5

Rev4/October2016

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Lisa Teng

Sample Login Details	
Your reference	86977.01
Envirolab Reference	260350
Date Sample Received	27/01/2021
Date Instructions Received	27/01/2021
Date Results Expected to be Reported	03/02/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	69 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	7.4
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in so	Organophosphorus Pesticides i Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Asbestos ID - soils NEPM	Misc Inorg - Soil	Texture and Salinity*	ESP/CEC	
BH109N/0.05-0.5											✓	✓		
BH109N/0.5-1.0	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		
BH109N/1.0-1.5	✓	✓	✓				✓			✓	✓	✓		
BH109N/0.05-1.0										✓				
BH109E/0.05-0.5	\checkmark	\checkmark	\checkmark				\checkmark				\checkmark	\checkmark		
BH109E/0.5-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		✓	✓		
BH109E/1.0-1.5	\checkmark	\checkmark	\checkmark				\checkmark			\checkmark	\checkmark	\checkmark		
BH109E/0.05-1.0										✓				
BH109S/0.05-0.5	\checkmark	\checkmark	\checkmark				✓				\checkmark	\checkmark		
BH109S/0.5-1.0	\checkmark	\checkmark	✓	✓	\checkmark	✓	✓	\checkmark	\checkmark		\checkmark	\checkmark		
BH109S/1.0-1.5	\checkmark	\checkmark	\checkmark				\checkmark			✓	\checkmark	\checkmark		
BH109S/0.05-1.0										✓				
BH109W/0.05-0.5	\checkmark	\checkmark	\checkmark				\checkmark				\checkmark	\checkmark		
BH109W/0.5-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		
BH109W/1.0-1.5	\checkmark	\checkmark	\checkmark				✓			✓	\checkmark	\checkmark		
BH109W/0.05-1.0										\checkmark				
BH201/0.1											\checkmark	\checkmark		
BH201/0.5											✓	✓		
BH201/1.0											\checkmark	\checkmark		
BH201/1.5											\checkmark	\checkmark		
BH202/0.1											✓	✓		
BH202/0.5											\checkmark	\checkmark		
BH202/1.0											\checkmark	\checkmark	✓	
BH202/1.5											\checkmark	\checkmark		
BH202/2.0											\checkmark	\checkmark		
BH202/2.5											\checkmark	\checkmark	\checkmark	
BH203/0.1											\checkmark	\checkmark		
BH203/0.5											✓	✓		
BH203/1.0											\checkmark	\checkmark		
BH203/1.5											\checkmark	\checkmark		
BH203/2.0											✓	✓		
BH203/2.5											\checkmark	\checkmark		

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

BH209/1.5

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in so i	Organophosphorus Pesticides ir Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Asbestos ID - soils NEPM	Misc Inorg - Soil	Texture and Salinity*	ESP/CEC	
BH203/3.0											✓	✓	✓	
BH204/0.1											✓	✓		
BH204/0.5											✓	✓		
BH204/1.0											✓	✓		
BH204/1.5											\checkmark	✓		
BH204/2.0											✓	\checkmark		
BH205/0.1											\checkmark	✓		
BH205/0.5											✓	✓		
BH205/1.0											✓	\checkmark		
BH205/1.5											\checkmark	\checkmark		
BH205/2.0											\checkmark	\checkmark		
BH206/0.1											\checkmark	\checkmark	\checkmark	
BH206/0.5											\checkmark	\checkmark		
BH206/1.0											\checkmark	\checkmark	\checkmark	
BH206/1.5											\checkmark	✓		
BH206/2.0											\checkmark	✓		
BH207/0.1											\checkmark	✓		
BH207/0.5											\checkmark	✓		
BH207/1.0											\checkmark	✓		
BH207/1.5											\checkmark	✓		
BH207/2.0											✓	✓		
BH208/0.1											✓	✓		
BH208/0.6											\checkmark	✓	✓	
BH208/1.0											\checkmark	✓		
BH208/1.5											✓	✓		
BH208/2.0											✓	✓		
BH208/2.5											✓	✓		
BH208/3.0											✓	✓		
BH209/0.1											✓	✓		
BH209/0.5											\checkmark	\checkmark		
BH209/1.0											\checkmark	\checkmark		

 \checkmark

 \checkmark

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Asbestos ID - soils NEPM	Misc Inorg - Soil	Texture and Salinity*	ESP/CEC
BH209/2.0											\checkmark	\checkmark	
BH209/2.5											\checkmark	\checkmark	\checkmark
BD1/20210121	\checkmark	\checkmark	\checkmark				\checkmark						
Trip Spike	\checkmark												
Trip Blank	\checkmark												

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.