

DEWATERING MANAGEMENT PLAN (DMP)

Kingscliff High School

33 Oxford Street, Kingscliff NSW 2487

SSD-8744305

For: Richard Crooks Constructions By: ENV Solutions Date: 02/12/2021

ENV Services Pty Ltd

ABN 98 649 278 977 PO Box 248, Ballina NSW 2478 T: +61 428 910 445 E: admin@envsolutions.com.au

Document Control:

Filename:	20211201 Dewatering Management Plan KHS 216186		
Job No:	ENV216186		
Client:	Richard Crooks Constructions		
File/Pathname:	https://envsolutions2.sharepoint.com/sites/Synergy/Shared Documents/SynergyProjects/ENV216186/03 Documentation/e. Reports/20211201 Dewatering Management Plan KHS 216186.docx		
Revision No:	Author: Date: Sign		Signed:
0	Robert Mark Mitchell	15/11/2021	82
1	Robert Mark Mitchell	01/12/2021	
2	Robert Mark Mitchell	02/12/2021	2
	Reviewed By:		
1	Stephen Bourne	02/12/2021	B
2	Robert Mark Mitchell	02/12/2021	<u>_</u>

Scope of Engagement and Limitations:

This report has been prepared by ENV Services PTY LTD (ENV) ABN 98 649 278 977 at the request of Richard Crooks Constructions for the development of a suitable Dewatering Management Plan. No other parties may rely on the contents of this report for any purposes except those stated.

This report has been prepared based on the information provided to us and from other information obtained because of enquiries made by us. ENV accepts no responsibility for any loss or damage suffered howsoever arising to any person or corporation who may use or rely on this document for a purpose other than that described above.

No part of this report may be reproduced, stored or transmitted in any form without the prior consent of ENV. ENV declares that it does not have, nor expects to have, a beneficial interest in the subject project.

To avoid this advice being used inappropriately, it is recommended that you consult with ENV before conveying the information to another who may not fully understand the objectives of the report. This report is meant only for the subject site/project and should not be applied to any other.

Table of Contents

1	Intro	duction1	
	1.1	Background1	
	1.2	Proposed Development	
	1.3	Stakeholder Identification	
	1.4	Previous Environmental & Geotechnical Investigations 2	
	1.5	Relevant Standards, Guidelines & Literature 2	
	1.6	Dewatering Management Plan Objectives 2	
2	Site	Characteristics	
	2.1	Site Description	
	2.2	Surrounding Environment 4	
	2.3	Topography & Drainage4	
	2.4	Geology & Soils	
	2.5	Acid Sulfate Soils5	
	2.6	Saturated Hydraulic Conductivity5	
	2.7	Groundwater	
	2.7.1	Groundwater Well Drilling & Construction6	
	2.7.2	Groundwater Sampling	
	2.7.3	Standing Water Level (SWL)7	
	2.7.4	Groundwater Quality7	
	2.8	Receiving Environment8	
	2.8.1	Receiving Environment Sampling8	
	2.8.2	Receiving Environment Water Quality8	
	2.8.3	Receiving Environment Ecosystem Classification8	
3	Wate	er Quality Objectives (WQO)9	
4	Dew	atering Management Plan 10	
	4.1	Dewatering Process 10	
	4.2	Deep Well Dewatering 10	
	4.2.1	Proposed Methodology10	
	4.2.2	Deep Well Draw-down Estimates (Per Lift Shaft)	
	4.2.2	Steady-State Estimates (Per Lift Shaft)11	
	4.2.3	Total Extraction Volumes11	
	4.2.4	Radius of Cone Depression	
	4.3	Groundwater Treatment Process 11	

	4.4	.4 Coagulant Assisted Tilt Separation (Solids Removal)	
	4.5	pH Correction & Metals Removal	12
	4.6	Aeration	12
5	Vali	dation & Monitoring	13
	5.1	Analytical Field Sampling Frequency	13
	5.1.	1 Analytical Sampling Methodology	13
	5.1.	2 Field Monitoring	13
	5.1.	3 Telemetric Date Collection	14
6	Acti	on & Analysis	15
	6.1	pH Correction/ Metals Precipitation	15
	6.2	Dissolved Oxygen (DO) – Physiochemical Only	15
	6.3	Turbidity (NTU) & Total Suspended Solids (TSS)	16
7	Rep	orting & Record Keeping	17
8	Atta	achments	18
9	Attachment 1		19
10	.0 Attachment 2		20
11	1 Attachment 3 2		21
12	2 Attachment 4 22		22
13	Attachment 5		23
14	Attachment 6		24

List of Tables

Table 1: Stakeholder Identification	1
Table 2: Surrounding Land Use	4
Table 3: Subsurface Condition Summary	5
Table 4: Permeability (ksat)	5
Table 5: Groundwater Metals Concentrations (all values expressed as μ g/L)	7
Table 6: Water Quality Objectives (WQO's)	9
Table 7: Total Extraction Estimates1	.1

1 Introduction

1.1 Background

ENV Services Pty Ltd (ENV) has been engaged by Richie O'Gorman on behalf of Richard Crookes Constructions (Richard Crookes) to prepare a Dewatering Management Plan (DMP) for the Kingscliff High School State Significant Development (SSDA) (Application Number: SSD-8744305).

Hereon referred to as 'the site', the Kingscliff High School is located at 33 Oxford Street Kingscliff NSW 2478 (Lot 57 DP 803814). Reference to the site can be found in Figure 1, Attachment 1.

It works to:

- Satisfy the final SSDA Condition (B36).
- Successfully identify, determine, and describe best practice dewatering & dewatering water treatment methodologies required to successfully excavate two (2) lift over run excavations.

1.2 **Proposed Development**

Following high level review of site-specific architectural drawings, historic reports and site markups provided Richard Crookes - it is understood that the proposed development includes raising & rebuilding of several existing structures as well as the refurbishment of existing buildings (Building O, Building A, Building H, Building C and Building G).

As part of these refurbishments, it is ENVs understanding that both Building C (Senior School & Library) and Building O (Performing Arts Building) required the installation of lifts where lift overruns are expected to extend beyond the natural standing water level (SWL).

At the time of publication, each lift shaft excavation is expected to measure approximately sixteen (16) square meters. To meet constructability and safety requirements, it is anticipated each excavation would need to be dewatered to approximately two (2) meters below ground level (mbgl) where extracted waters will need to be treated prior to discharge into the receiving environment. It is anticipated each excavation will be dewatered for a period of one (1) week.

1.3 Stakeholder Identification

Table 1 outlines immediate direct (internal) and indirect (external) stakeholders with an interest or concern in construction works associated with the proposed woks outlined in section 1.2.

Stakeholder	Role or Position	Internal/ External
Richard Crooks Constructions	Client	Internal
ENV Services	Consultant	Internal
Tweed Shire Council	Local Authority	External
School Infrastructure NSW	State Authority	External

Table 1: Stakeholder Identification

1.4 **Previous Environmental & Geotechnical Investigations**

As part of the DMP preparation process ENV conducted an initial desktop review. In addition to stakeholder consultation, the following documentation was reviewed to ensure DMP management structure(s) addressed engineering, environmental, development and other constraints:

 Douglas Partners (July 2021). Report on Detailed Site Investigation for Contamination Far North Coast Schools Project (Document No. R.001.Rev2), Kingscliff High School, 33 Oxford St, Kingscliff NSW.

1.5 **Relevant Standards, Guidelines & Literature**

This DMP has been developed referencing the following Standards & Guidelines:

- Australian and New Zealand Guidelines for Fresh and Marine Water Quality: The Guidelines, Paper No. 4, Volume 1 (Chapters 1 – 7), Australian and New Zealand Environment and Conservation Council (ANZECC) & Agricultural and Resource Management Council of Australia and New Zealand (ARMCANZ), 2000;
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality: The Guidelines, Paper No. 4, Volume 2 (Chapter 8), Australian and New Zealand Environment and Conservation Council (ANZECC) & Agricultural and Resource Management Council of Australia and New Zealand (ARMCANZ), 2000;
- Dewatering in the Tweed, A Guideline for the Management of Dewatering Operations, Version 1.0, (October, 2020);
- Tchobanoglous, G. et al, 2003, Wastewater Engineering Treatment and Reuse: Metcalf & Eddy, 4th edn, McGraw-Hill, New York; and,
- Cachman, M. & Preene, M. 2013, Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd Edition, CRC Press, New York.

1.6 Dewatering Management Plan Objectives

This DMP has been prepared to satisfy with SSDS (8744305) Condition B36 where the following have been addressed:

- Considers Council's Dewatering in the Tweed Guideline available at <u>https://www.tweed.nsw.gov.au/Documents/Planning/TSC12355_Dewatering_in_the_T_weed_Guideline.pdf;</u>
- Meets the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) available at www.waterquality.gov.au/anzguidelines;
- Includes site plans which indicate the extent of the excavation area and estimated zone
 of influence of the dewatering activity relative to any adjoining buildings together with
 an assessment of any impacts likely to occur to any adjoining buildings as a result of the
 dewatering activities;

- The location to be indicated on the site plan of the area that will be utilised for the positioning of any treatment tank or sedimentation pond on the site including any reserve area to be used for such purpose in the event of the need for additional treatment facilities to be incorporated on the site;
- Details of the proposed method of mechanical aeration to be used in the event that it is necessary to aerate the groundwater to achieve an acceptable Dissolved Oxygen level prior to the offsite discharge of groundwater and where this will be incorporated on the site;
- The provision of written advice from the operator of any on site groundwater treatment system stating that the system to be used will be able to treat the groundwater to the required treatment level prior to discharge. Note. Particular attention is to be given to achieving the required detention times prior to discharge of the groundwater. Advice that the system is simply capable of achieving the necessary treatment will not be acceptable; and
- Considers the Detailed Site Investigation for Contamination for Kingscliff High School, 33 Oxford St, Kingscliff prepared by Douglas Partners dated July 2021 (Project No. 97611.00, Document No. R.001.Revision 2).

2 Site Characteristics

2.1 **Site Description**

The site is located at 33 Oxford Street, Kingscliff, NSW 2487, and is referred to by the Tweed Shire Council as Lot 57 DP 803814 and has an approximate area of 8.498 ha. A figure of the site location is shown in Figure 1, Attachment 1.

The site is approximately rectangular in shape and contains buildings, pavements, asphalt, grassed areas and a bushland area. The north-western and centre-north sections of the site contained asphaltic-concrete surfaced car parks. The site is located south of the Oxford Street cul-de-sac and is bound by Cudgen Creek to the south. The school buildings and proposed development area are located in the northern portion of the site, with the remainder (southern) areas of the site comprising a sports field and bushland.

2.2 Surrounding Environment

The Councils Land Environment Plan (LEP) (2014) presents the site as located in an area zone R2 – Low Density Residential area. Surrounding land use is described in Table 2.

Direction	Environment
North	Low Density Residential Area
East	Bushland - open space (Deferred Matter)
South	Cudgen Creek
West	NSW TAFE

Table 2: Surrounding Land Use

2.3 Topography & Drainage

The site is located towards the south-western toe of a hillside, and slopes downwards to the south towards Cudgen Creek. On-site elevations range from approximately 10 m to 2 m relative to Australian Height Datum (AHD).

The Detailed Site Investigation (Douglas Partners July 2021) and topology mapping indicate that the major surface water receptor of surface water flows and excess groundwater will be the Cudgen Creek, located approximately 270 m south-east of the proposed development area.

2.4 Geology & Soils

The site is located within a geological unit characterised by undifferentiated alluvial deposits of sand, silt and clay. Table 3 presents a summary of the encountered subsurface profile.

Table 3: Subsurface Condition Summary

Material Description	Depth (m)	
	From	То
FILL: fill is encountered with an average depth of approximately 0.4 m. The fill was generally comprised of sand, gravelly sand, silty sand or clayey sand.	0.05 m	0.9 m
ALLUVIAL: natural sandy and natural clay soil was encountered beneath the fill, underlain by clayey/silty sand.	0.4 m	2 m
POSSIBLE RESIDUAL SOIL: likely to be Clayey/silty sand	> 2 m	-

2.5 Acid Sulfate Soils

Referencing Council Local Environmental Plan (LEP) Acid Sulfate Soils Planning Maps, the land has been identified as having Class 1, Class 2, Class 3, and Class 5 ASS. A more detailed review of the building envelope outlines most of the envelope fall within Class 3 and Class 5 ASS maps.

As part of the Douglas Partners Detailed Site Investigation (DSI), Potential Acid Sulfate Soils (PASS) were identified from approximately 0.75 mbgl. Prescribed liming rates varied across the site (2.1 kg/ tonne to 58.0 kg/tonne). However, all soils excavated below 0.75 mbgl will require liming prior to validation and legal disposal.

Table 6 of the Douglas Partners DSI outlines all water will need to be treated and meet a pH of 6.5 - 8.5 prior to discharge (where this should be measured daily). Furthermore, this DMP recommend minimising drawdown depth and duration to the lowest possible extent to mitigate potential PASS oxidation.

2.6 Saturated Hydraulic Conductivity

Hydraulic conductivity (ksat) is a quantitative measure of a saturated soils ability to transmit water when subject to a hydraulic gradient. A key factor (input) in determining estimate extraction volumes during both the draw-down dewatering phase and groundwater maintenance phase (steady-state dewatering).

Utilising data obtained from the sites underlain geology (see section 2.4) in-ground ksat values are described in Table 4.

Geology	Permeability (m /s) - Upper	Permeability (m /s) - Lower
Silty Sands	<u>1 x 10⁻⁴</u>	1 x 10 ⁻⁶
Clayey Sands	1 x 10 ⁻⁵	<u>1 x 10⁻⁸</u>

Table 4: Permeability (ksat)

Permeability figures have been cross referenced using values recommended by Engineers Australia (2006) and Cachman & Preene's: Practical Guidelines Towards Lowering Groundwater in Construction (2013).

Due to the limitations associated with the homogenous nature of inground conditions, and other assumptions regarding inground geology, changes in permeability (ksat) are highly volatile. Therefore, natural variations in the permeability between each different sub-surface material are likely to occur due to the variations in silt or clay content, and variations in grain size of the sand as well as the positioning and interrelation of the secondary porosity features such as, joints / fractures or defects.

Any changes in underlain geology may result in changes in saturated hydraulic conductivity and therefore groundwater extraction flow rate. On this basis, calculations (discussed in following sections) have been used as an approximation for both the draw-down dewatering phase and groundwater maintenance phase (steady-state dewatering)

2.7 Groundwater

2.7.1 Groundwater Well Drilling & Construction

Two (2) boreholes (MW3 and MW4) were drilled on 1st of October 2021 to depths of 2.4 m and 3.0 m, respectively, at the locations shown on the Sampling Location Plan (Figure 2, Attachment 1). A trailer mounted drill rig and solid flight augers were used at each location.

At each of the borehole locations, groundwater wells were installed once the target depth, or auger refusal, had been reached. The wells were constructed by placing 50 mm diameter slotted PN18 PVC casing and solid casing into the borehole; and installing a gravel pack, with bentonite seals to the ground surface. Drilling logs describing the soil profiles encountered and construction details for the wells are provided in Attachment 2.

The soils at each location were logged in general accordance with the Unified Soil Classification System (USCS), with reference to any odours or other field indicators of potential contamination (See Attachment 2).

After well construction, each newly installed well was developed using a steel bailer and surging techniques, to ensure that as many fines were removed from the gravel pack surrounding the screened interval as possible.

2.7.2 Groundwater Sampling

To aid in deriving suitable Water Quality Objectives (WQOs), as recommended by the Australian & New Zealand Guidelines for Fresh & Marine Water Quality (ANZG 2018), on the 1st of October 2021, the following activities were completed at each of the groundwater monitoring well:

- Depth to groundwater and total well depth was measured using an interface probe (IP), relative to the top of the PVC casing.
- Physiochemical samples were tested using a Horiba U-52 multi meter probe.
- Samples for laboratory analysis were collected from each of the wells. The analytical suite including pH, Electrical Conductivity (us/cm), Total Suspended Solids (TSS), Total Recoverable Hydrocarbons (TRH), BETX, Polycyclic Aromatic Hydrocarbons (PAH) Metals

(As, Cd, Cr, Cu, Pb, Hg, Ni and Zn). A copy of the laboratory Chain of Custody (COC) and Results are presented as Attachment 3.

2.7.3 Standing Water Level (SWL)

Once installed, groundwater monitoring wells (MW) were dipped using a surface interface probe where groundwater was measured at 0.627 mbgl (MW3) and 0.432 mbgl (MW4) respectively.

Furthermore, given the sites proximity to the Cudgen Creek and the Pacific Ocean, fluctuations in SWL are anticipated. It is also safe to assume that fluctuations in SWL may also occur following periods of high rainfall (or in the wetter months of the year).

2.7.4 Groundwater Quality

In summary, physiochemical analysis show groundwater to be slightly acidic (MW3 pH = 6.40, MW4 pH = 6.40). The Electrical Conductivity (EC) value of 190 μ S/cm in both MW3 and MW4 are indicative freshwater environment (i.e., low in salinity). It is worth noting that groundwater samples were extremely turbid at the time of sampling (MW3 TSS = 5,000, MW4 TSS = 7,300). As a result, it is likely this may have had an impact on total metals concentrations outlined below.

In examining toxicants of potential concern, groundwaters quality appeared to be hydrocarbon free where TRH, BETX and PAH were all below Limit of Reporting (LOR).

Table 5 provided as summary of metals concentrations from MW3 and MW4. In summary, Copper (Total), Lead (Total) and Zinc (Total) were shown to exceed both Marine and Freshwater Default Guideline Values (DGV) for an 80th percentile level of protection. Furthermore, Chromium (Total) was shown exceed Marine DGVs for a 80th percentile level of protection.

Analuta	N04/2 N04/4		80% Level of Protection		
Analyte	101003	101004	Marine	Freshwater	
Arsenic (Total)	8	4	-	140	
Cadmium (Total)	0.4	0.4	36	0.8	
Chromium (Total)	170	20	85	40	
Copper (Total)	44	38	8	2.5	
Lead (Total)	16	100	12	9.4	
Mercury (Total)	< 0.05	0.62	1.4	5.4	
Nickel (Total)	9	11	560	17	
Zinc (Total)	74	230	21	31	

Table 5: Groundwater Metals Concentrations (all values expressed as µg/L).

2.8 Receiving Environment

The receiving environment can generally be described as a as a 2,500 square meter dam located approximately 35 meters south of the existing KHS buildings (Figure 3, Attachment 1). Onsite inspections of the system point to the dam acting as a discharge point for the KHS school's stormwater system and is therefore man made. This then appears to grade west through a series of ponds and then discharge into the Cudgen Creek and then Pacific Ocean.

2.8.1 Receiving Environment Sampling

To aid in deriving suitable Water Quality Objectives (WQOs), as recommended by the Australian & New Zealand Guidelines for Fresh & Marine Water Quality (ANZG 2018), on the 1st of October 2021, receiving environment pphysiochemical samples were tested using a Horiba U-52 multi meter probe where results where field logs are presented as Attachment 2.

In addition, a laboratory analysis was collected and analysed for pH, Electrical Conductivity (us/cm), Total Suspended Solids (TSS), Total Recoverable Hydrocarbons (TRH), BETX, Polycyclic Aromatic Hydrocarbons (PAH) Metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn). A copy of the laboratory Chain of Custody (COC) and Results are presented as Attachment 3.

2.8.2 Receiving Environment Water Quality

Receiving environment waters can generally be described as slightly acidic (pH = 6.3). The Electrical Conductivity (EC) value of 110 μ S/cm is indicative of a freshwater environment (i.e., low in salinity). Wates were also clear at the time of sampling (TSS = 10 mg/L).

In examining toxicants of potential concern, groundwaters quality appeared to be hydrocarbon free where TRH, BETX and PAH were all below Limit of Reporting (LOR). Furthermore, all metals with the exclusion of Zinc (9 μ g/L) were below LOR.

2.8.3 Receiving Environment Ecosystem Classification

In assessing the system, it is practical to assume that physiochemical variables such as Dissolved Oxygen (DO), pH and oxidative state of nutrients and metals would vary would fluctuate based on rainfall and thermal stratification impacts.

As a result, for the purpose of deriving a suitable WQOs, receiving waters could be generally described as being a lowland river that has been significantly degraded by human activity and has lower ecological value than slightly or moderately disturbed waters (i.e., 80th percentile - highly disturbed ecosystem).

3 Water Quality Objectives (WQO)

Based on the above, prior to and during discharge, all extracted groundwater will need to meet WQOs specified in Table 6.

Furthermore, the following guidelines & standards have been considered:

- Australian & New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018): Default Guideline Values (DGV's) for physiochemical (PC) stressors and toxicants.
- Australian and New Zealand Environment and Conservation Council (ANZECC) & Agricultural and Resource Management Council of Australia and New Zealand (ARMCANZ), 2000. Particularly PC stressors outlined in Volume 1, Table 3.3.2 3.3.3.
- Dewatering in the Tweed: A Guideline for the Management of Dewatering Operations (October 2020).

Table 6: Water Quality Objectives (WQO's)

Analyte	Units	Water Quality Objective (WQO)
рН¹	рН	6.5 – 8.0
Total Suspended Solids (TSS) ¹	mg/L	< 50
Turbidity ^{1/2}	NTU	< 20
Dissolved Oxygen (% Saturation) ^{1/2}	% Saturation	90 - 110
Chromium (Dissolved) ^{2/3}	μg/L	40
Copper (Dissolved) ^{2/3}	μg/L	2.5
Lead (Dissolved) ^{2/3}	μg/L	9.4
Zinc (Dissolved) ^{2/3}	μg/L	31

Table notes:

- 1. Derived from ANZECC/ ARMCANZ (2000) Estuaries (Table 3.3.2)
- 2. Derived from Dewatering in the Tweed A Guideline for the Management of Dewatering Operations.
- 3. Derived from ANZG (2018) Freshwater 80th Percentile (DGV)

4 Dewatering Management Plan

4.1 **Dewatering Process**

Outlined in earlier sections of this DMP, the SWL has been measured at approximately 0.627 mbgl (MW3) and 0.432 mbgl (MW4) where groundwater in each excavation will need to be extracted (draw-down dewatering) & maintained (steady-state dewatering) at approximately two (2) mbgl for approximately one (1) week.

To manage groundwater, deep well dewatering techniques are likely to be implemented initially where well point methodologies should be considered (only if required). All extracted groundwater will need to be treated prior to discharge offsite (into the receiving environment) and will need to meet criteria specified in Table 6.

4.2 **Deep Well Dewatering**

4.2.1 Proposed Methodology

Generally sited just outside the are of proposed excavation, as a rule of thumb, deep wells are installed 1.5 - 2 times the depth of the primary excavation (i.e., 3 - 4 mbgl). Conventional methods include auguring or drilling a well using a 20-tonne excavator and installing a liner. Liners generally consist of plastic or steel pipe, of which a section is slotted or perforated to form a well screen to allow water to enter; other sections consist of unperforated pipe (the well casing). The space between the wall of the liner and the well (annulus) is then backfilled using filter media (suitable drainage gravel) – known as a filter pack. Well diameters vary and are dependent on the contractor however conventional methods include a 600 mm well with a 450 mm liner (and 150 mm annulus).

Once installed, high-head submersible pumps (on float operation) will transfer collected water through a HDPE header (or equivalent) to the inlet of the water treatment plant for the dewatering duration.

4.2.2 Deep Well Draw-down Estimates (Per Lift Shaft).

Draw-down refers to the initial static body of water to be removed via deep well dewatering.

Where:

•	Length of Excavation (m) =	4
•	Width of Excavation (m) =	4
•	Drawdown Depth (m) =	2
•	Current SWL depth (mbgl) =	0.5
•	Voids Ratio (n) =	0.3

Initial deep well drawdown estimates are expected to be approximately 7.2 m³ or 7.2 KL.

4.2.2.1 Steady-State Estimates (Per Lift Shaft).

Assuming hydraulic conductivities specified in Table 4, flow rates into the excavation are estimated to be less than 1 l/s. Over a period of one (1) week, extraction volumes are estimated to be less than 432 m³ (432 kL)

These number have been estimated Utalising Sichardt's equation where empirical methods are used to establish cone of depression and relative pumping rates. Outputs are presented in Attachment 4.

4.2.3 Total Extraction Volumes

Working to a one (1) week program per lift shaft, combining draw-down and steady-state estimates – estimate extraction volumes are expected to be less than <u>878.4 m³</u>. See Table 7 below.

	Building C Lift Shaft – Upper Estimate	Building O Lift Shaft – Upper Estimate
Draw-Down (kL)	7.2	7.2
Steady – State (kL)	432.0	432.0
Total (kL)	439.2	439.2

Table 7: Total Extraction Estimates

As stated in earlier sections of this report, estimates assume a homogenous in-ground condition in the sand, however changes in the subsurface can change conditions (particularly in the fractured siltstone). As a result, permeability reductions are likely, which mean a likely reduce total extraction volume (unless a confined aquifer is found within the fractured rock).

4.2.4 Radius of Cone Depression

Otherwise referred to as the zone of influence, the cone of depression is a theoretical concept used to visualise how a well is affecting the surrounding aquifer. When pumping starts, water storage will be released by the aquifer (dependant on permeability). As time passes the zone of influence will continue to increase, but at a diminishing rate until either an aquifer boundary is reached, or an equilibrium point is reached.

Referencing permeability values presented in Table 4, Sichardt's equation notes the Dewatering Radius of Influence (R_0) is expected to be up to 45 meters (over 71 hours). Detailed outputs are presented in Attachment 4.

4.3 **Groundwater Treatment Process**

Discussed in earlier sections of this DMP, extracted groundwater will require treatment prior to release into the receiving environment. Treated groundwater will need to meet WQO's presented in Table 6.

To achieve this, a Dewatering Water Treatment Plant (WTP) will need to be established onsite & commissioned by suitably qualified engineer or scientist. At a minimum ENV would recommend processes that include:

- Solid's removal capability.
- pH correction control/ aeration capability

A process flow diagram (PFD) of such a process is presented in Attachment 5. Furthermore, it is noted that additional treatment units or processes may be required.

As a contingency, all dewatering water treatment plant should be sized to suit a minimum 10 litres per second. A map of equipment placement is presented in Figure 4, Attachment 1.

However, should flow rates exceed estimates (i.ee, greater than 10 l/s) or fail to meet WQO's specified in Table 6, additional plant may be required. Details of each step are presented in greater detail below.

4.4 Coagulant Assisted Tilt Separation (Solids Removal)

Assisted utilising an appropriately selected flocculant, coagulant and/or polymer, the tilt separation process primarily works to removed suspended solids prior to discharge. Although sediment loads should be managed upfront (i.e., socking, or backfilling spears), the system should be suitably sized to handle flow rates specified in the earlier sections of this report.

As recommended by the NSW Blue Book - flocculant, coagulant and/or polymer dose rates should be determined & managed by an appropriately qualified person (i.e., chemical engineer/ industrial chemist or equivalent). A material safety data sheet (MSDS) for a typical aluminium based coagulant is presented in Attachment 6.

4.5 **pH Correction & Metals Removal**

An automated pH dosing system is recommended where operational setpoints should be refined as part of the commissioning process to ensure the likelihood of pH over/ under shoot risk is mitigated.

pH correction will be required to raise baseline groundwater pH to meet WQO's specified in Table 6 and will aid in metals precipitation.

Dose rates should be determined by an appropriately qualified person. A material safety data sheet (MSDS) for a typical pH correction chemical (Caustic Soda) is available for viewing in Attachment 6.

4.6 Aeration

Should dissolved oxygen be measured below WQO's specified in Table 6, a mechanical aeration process should be incorporated into the process at either the front or back end. Here, closed loop blower (or compressor) and vessel system should be established and monitored to ensure DO objectives are achieved.

5 Validation & Monitoring

The purpose of the validation and monitoring process is to provide a framework for dewatering contractors to collect, interpret, act and report on the performance of the dewatering process. Ultimately to ensure treatment measures are satisfactory and meet WQOs outlined in Table 6. the DMP promotes a combination of collection techniques including analytical field sampling and telemetric data collection (i.e., real time).

5.1 Analytical Field Sampling Frequency

Prior to discharge, a sample will need to be collected from the outlet of the WTP and validated (utilising NATA certified laboratory) against WQO's presented in Table 6.

Once discharge has commenced, an additional sample will be collected and validated every seven (7) days (or as required under the guidance of a suitably qualified person) for the duration of dewatering works onsite as part of the continual discharge monitoring program. Standard turnaround-time (TAT) for sample analysis should be a maximum three (3) days for all sample analytes.

5.1.1 Analytical Sampling Methodology

At the frequency outlined above, laboratory samples will be collected from the discharge point. The samples will:

- Represent a waste or element of the environment from which it is taken;
- Not be contaminated during collection, where analyte concentrations will not change between the time of collection and analysis.
- Be collected by an appropriately qualified person.
- Include sampling utilising correct sampling methodologies.
- Include representative sample(s); and,
- Be labelled, preserved, stored, and transported appropriately for analysis.

Samples will be analysed by a National Association of Testing Authority (NATA) laboratory and will be inclusive of analytes outlined in Table 6.

5.1.2 Field Monitoring

To ensure management of the treatment processes, twice weekly field monitoring will be included as part of the ongoing monitoring process. Monitoring will cover aspects of all treatment steps, these include but are not limited to:

- Visual inspection of treatment process.
- pH assessment.
- Turbidity (NTU) assessment; and,
- Flow (m/s OR m³/ hour) assessment. Flow measurements are taken from a calibrated flow meter included in the dewatering water treatment plant.

Observations will be recorded and stored onsite where a 'service report' will be provided and presented to the principal contractor outlining physiochemical changes across the process, high level plant function/ performance summary and flow (rate & totalised volume).

5.1.3 Telemetric Date Collection

In addition to service monitoring, data will be collected using an online PLC system (such as HOBO Link $^{\text{m}}$). As part of this system, physiochemical and physical parameters such as; pH, turbidity and flow rate will be measured in real time where analysis will be provided to a dewatering treatment expert.

Should physiochemical or physical parameters fall 'out of spec', the dewatering subcontractor will be notified via SMS or an alternative method (i.e., Email) where action will be required as outlined in the following section.

6 Action & Analysis

The following section aims to provide dewatering water treatment operators with the ability to effectively assess treatment performance following receipt of monitoring data and make accurate decisions to ensure risk treatment processes are upheld. Analysis and action processes are detailed in the sections below.

6.1 **pH Correction/ Metals Precipitation**

Daily Check:

• Telemetric OR physiochemical check out of specification.

Action:

- Check and re calibrate pH probe.
- Check chemical (base) dosing pump to ensure its functionality.
- Check chemical drum to ensure chemical volume is sufficient.

IF pH probe still out of specified range:

- Replace pH probe with critical spare.
- Notify relevant stakeholders of change.
- Dewatering Manager to note in daily dewatering management plan report.

Analytical Check:

• Analytical pH results outside of specified WQO's.

Action:

- Shut down or put into recycle.
- Re-calibrate pH probes.
- Check proportional bands (or equivalent pH control process).
- Implement changes and monitor.
- Notify relevant stakeholders (internal & external).
- Dewatering Manager to note in daily dewatering management plan report.
- Re-sample and validated once pH corrections have occurred.
- Re assess risk and treatment methodology (if pH challenges persist).
- Additional treatment units or methodologies may need to be employed.

6.2 **Dissolved Oxygen (DO) – Physiochemical Only**

Daily Check:

• Dissolved Oxygen (DO) physiochemical check outside of specified limit.

Action:

- Check Dissolved Oxygen probe on Horiba U-52 meter (or equivalent).
- Re measure DO in fresh sample collected from discharge of treatment train (post Airand Post media Polishing Unit).
- Assess result.

IF DO still out of specified range:

- Review DO treatment methodology.
- Implement DO treatment methodology change.
- Dewatering Manager to note in daily dewatering management plan report.
- Re evaluated the following day, and if required.
- Re assess risk and treatment methodology.
- Implement aeration solution and validate methodology.

6.3 **Turbidity (NTU) & Total Suspended Solids (TSS)**

Daily Check & Analytical Check:

- Turbidity (NTU) physiochemical check outside of specified limits.
- Turbidity (NTU) analytical check out of specification.
- Turbidity (NTU) telemetric result out of specification.

Action:

- Check and Turbidity probe (PLC Unit and Horiba U-52 meter).
- Re measure Turbidity in fresh sample collected from discharge of treatment train.
- Assess result.
- Check chemical dosing pump(s) to ensure its functionality.
- Check chemical drum to ensure chemical volume is sufficient.
- Check sediment level in treatment tank.

IF NTU still out of specified range;

- Review NTU treatment methodology.
- Conduct assisted flocculation checks (i.e., Jar Test) to re define and optimize dose rates.
- Implement NTU treatment methodology change.
- Dewatering Manager to note in daily dewatering management plan report.
- Additional treatment units or methodologies may need to be employed.

7 Reporting & Record Keeping

dewatering report will be supplied, summarising the results of monitoring within two weeks of cessation of discharges.

During the dewatering process, a daily report will need to be completed by the onsite Dewatering Management. The report will note any exceedance in discharge criteria, as well as any other comments relating to the dewatering process.

Any complaints shall be noted in the site logbook and corrective action taken (where appropriate and practicable) to prevent recurrence. Complaints and complaints management are the responsibility of the principal contractor where their policy will be adopted as best practice.

8 Attachments

Attachment Reference	Attachment Title								
	Figure 1: Site location								
Attachment 1	Figure 2: ENV Monitoring Well Locations								
	Figure 3. Discharge Location								
	Figure 4: DMP Water Treatment Location								
Attachment 2	ENV Drill Logs & Field Logs								
Attachment 3	ENV Water Quality Results								
Attachment 4	Dewatering Calculations								
Attachment 5	Process Flow Diagram								
Attachment 6	MSDS								

9 Attachment 1

Figure 1 – Site Location Plan Kingscliff High School 33 Oxford Street, Kingscliff, NSW 2487

Client: Richard Crookes Constructions Project: Dewatering Management Plan (DMP) Job No: 216186

Figure 2 – Sampling Location Kingscliff High School 33 Oxford Street, Kingscliff, NSW 2487

Client: Richard Crookes Constructions Project: Dewatering Management Plan (DMP) Job No: 216186

Receiving Environment (Dam)

Discharge Location

Figure 3 – Receiving Environment & Discharge Location Kingscliff High School

33 Oxford Street, Kingscliff, NSW 2487

Client: Richard Crookes Constructions

Project: Dewatering Management Plan (DMP) Job No: 216186

0

Figure 3 – Water Treatment Plant Approximate Location

Kingscliff High School 33 Oxford Street, Kingscliff, NSW 2487

Client: Richard Crookes Constructions

Project: Dewatering Management Plan (DMP) Job No: 216186

10 Attachment 2

GROUNDWATER LOG MW3

PROJECT NUMBER 216187			ER 216187	DRILLING DATE	1/10/2021	RDINATES						
PROJECT NAME Kingscliff High School		TOTAL DEPTH	2.5	COO	COORD SYS							
CLIENT Richard Crookes		DIAMETER 50 n	nm	COM								
2487			Fastary Slotted	SURI	FACE ELEVATION 5.703 MAHD							
		n		SCREEN UPVC	Factory Slotted	WEL						
СОМ	MENTS					LOGG	ED BY JS					
						CHEC	KED BT					
]					
	5											
<u> </u>	Γο	e	Material Descri	otion	Well Diag	ıram						
Ę.	phic	stur										
Dep	Gra	Moi										
		D	TOPSOIL: Brown									
-		14/	SAND: Crov									
		vv	SAND. Gley									
- 0.2												
F												
0.4	· · · ·											
-	•••••											
	••••											
- 0.6	· · .		¥									
L												
-												
- 0.8	•••											
F	• • •											
	· · · .											
╞	• •											
-12	• • •											
-	· . ·											
L	· · -											
- 1.4												
	· · ·											
-	$\cdot \cdot \cdot$											
- 1.6	· . ·											
F	•											
- 10	· · ·				8000080008000 80800808008000							
F 1.8					860008800080800 10000 30000 3000 3000 10000 300000 3000 3							
F	· · ·				50028000800080008000080							
2	· . · ·											
\vdash					2000 2000 2000 2000 -	N 11						
ļ.					$\begin{array}{c} c c c c c c c c c c c c c c c c c c $	Joliapse						
- 2.2	· · ·											
Ĺ	$\begin{vmatrix} \cdot & \cdot \\ \cdot & \cdot \end{vmatrix}$				000 30000 3000 3000 3000 3000 3000 300							
-					492049520490 860008600080 85920495209800							
- 2.4					2000 8000 8000 8000 8000 8000 8000 8000							
—	· · .				60000000000000000000000000000000000000		4					
+			Iermination Depth at: 2.5 m									
2.6												
\vdash												
28												
- 2.0												
F												

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 05 Oct 2021

GROUNDWATER LOG MW4

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 05 Oct 2021

Client:			alah dagan yang yang barang ang yang yang barang Y			Job Nº:					
Project:					Well Nº:	MUR					
Location:					C	Depth (m):	616				
WELL DEVELOP	MENT	WELL FINISH:	Gatic Co	over 🗆 Monum	nent 🗆 PVC Pip	e 4-	39m AHD				
anter a Carlande a Alexandra a Carlandar	7	Stage 1	Stage 2			Stage 1	Stage 2				
Method:		1		SWL - Before:	(m)						
Date:	. Sugar			Time - Before:	(hrs)		******				
Undertaken By	: 0.0557		************************************	SWL - After:	(m)						
Water Volume	Removed: (L)		******	Time - After:	(hrs)						
Comments:			(4)	10 a 1			0				
WELL PURGING	DETAILS				and the second	indoge and the second secon					
Method:				SWL - Before:	(mBGL)	0.6	27				
Date:		**********		Time - Before:	(hrs)	11:4	5				
Undertaken By		*********		SWL - After:	(m)	DR	Y				
Well Atmos. (P	ID): (ppm)			Time - After:	(hrs)	11:4	8				
Total Volume F	Removed: (L)	.16			•••••••••••••••••••••••••••••••••••••••						
PURGING MEA	SUREMENTS	laanta aa mada ah			Comments of						
Time (hrs)	Volume Removed (L)	DTW (m)	Temp. (°C)	рН	EC (mS/cm)	Eh (mV)	DO (ppm)				
		21.54	21.54	6.1	0.226	74	2.0				

	*	DAM	12								
			20.9	6.0	0.13	130	7.8				
Stabilisation R	ange:	- 0.1 m	+/- 3 °C	+/- 0.05	+/- 10mV	+/- 10%	÷ +/- 0.2				
Comments:		lenner og som en so I									
WELL SAMPLIN	IG DETAILS				· 2,						
Method:				SWL - Before:	(m)	0.6	27				
Date:				Time - Before:	' (hrs)		21				
Undertaken By	/:	**************************************	******	Water Tempera	ature (°C)						
pH:	(pH Units)			EC:	(mS/cm)						
Eh:	(mV)	*		DO:	(ppm)						
Colour / Odou	r / Comments:	•			G.						
Casing Diamet	er (mm)			Analysis Requir	red:						
Depth to LNAP	rL (mm)			TRH / BTEXN / PAH / 8 Metals							
LNAPL Thickne	ss (mm)			MNA							
Primary Sampl	e ID			Nutrients							
QC Sample ID				PFAS							
Hydrocarbon S	heen Observed?	Yes /	No	Other:							
Were Samples	Filtered?	Yes /	No								

DAM

Well N°:	MWY			
pth (m):	2251			
pth (m):	1 101			
	20236			
5.1	03 m AHD			
Stage 1	Stage 2			
0.432				
11:00	0			
DR	У			
11:00	2			
Eh (mV) OR P	DO (ppm)			
31	3.38			
47	3.71			
+/- 10%	+/- 0.2			
0.4	15			
11:0	05			

	7			

	Stage 1 0. 4 11:0 0R 11:0 Co. 6 11:0 0R P 31 47 +/- 10%			

11 Attachment 3

CHAIN OF CUSTODY FORM - Client										 	ENVIROLAB GROUP National phone number 1300 424 344 <u>Sydney Lab</u> - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 © 02 9910 6200 🖂 sydney@envirolab.com.au								
								<u>F</u>	Perth Lab - MPL Laboratories										
Contact Person: Si	nead Hastle		· ·		216186 - Kingseliff High School								0) 08 9317 2505 ⊠ lab@mpl.com.au						
Project Mar: Stephe	en Bourne				PO No.:								Melbourne Lab - Envirolab Services						
Sampler: Joshua Si	tainlay & Ben Peteirse				Enviro	Envirolab Quote No. :								25 Research Drive, Croydon South, VIC 3136					
Address: 313 River	St. Ballina, NSW 2478			· · · · · · · · · · · · · · · · · · ·	Date re	sults requ	ired:						فاحاما	Office	Envire	lah Can	(loop		
					Or cho	Or choose: standard TAT						7	Adeialde Office,- Envirolab Services 7a The Parade, Norwood, SA 5067						
Phone:	1300 861 325	Mob:	0491 065 72	5	Additio	onal report	forma	at: esdat	,				Brisban	e Office	- Envirol	lab Serv	vices		
Email:	· · · · · · ·				Lab Co	mments:						- 6	20a, 10-20 Depot St, Banyo, QLD 4014 ① 07 3266 9532 (⊠ brisbane@envirolab.com.au						
												E L	<u>Darwin Office -</u> Envirolab Services Unit 7, 17 Willes Rd, Berrimah, NT 0820						
	stephen.bourne@envsolu	tions.com.a	au	· · · · · · · · · · · · · · · · · · ·	<u> </u>	·· · · ·													
	· · · · · · · · · · · · · · · · · · ·	Sample	information		+				T	Tests Re	quired						Comments		
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Combo 3				-								Provide as much Information about the sample as you can		
(MW3		1/10/2021		· x									2000	,	07	Act by		
2	MW4		1/10/2021	vials x 2, Amber x 1, small amber x2, metals (unfiltered	$\frac{1}{1}$								Chatswood NS.						
3	DAM	1	1/10/2021	· · · · · · · · · · · · · · · · · · ·	×		.						10	h No.	P	h: (02)	9950 (
													_ <u>~</u> ~				27-983		
											1		Da	ite Rece	ived:	-	Horzon		
													Tin	ne Rece	ived:		ans -		
													Re	ceived E	多	[f	\mathcal{O}		
		T													Andre	R.			
													Sec	Urily: L=	ricepar				
															- COCIC	RENTR	•		
													-		-				
				Nú!															
	Please tick the box if observed	settled sedi	ment presen	t in water samples is to be included in the extraction a	and/or an	alysis					_ 1			- 1		<u>ا</u>	······································		
Relinguished by (C	ompany):	ENV Solutio	ons	Received by (Company):	-									Lab Use	Only				
Print Name:	.1	oshua Stainl	av	Print Name: PA	On Job number 2701					9812	213 Cooling Ice / Cooling								
Date & Time:		5/10/2021							Security seal: Intact / Broken / None										
Signature:		Fairlay		Signature:	> .					AT Rea - S	AME da	/ / 1 / 2 / 3 / 4 / STD							
ogname.																			

~

1

Ming To

Subject:

FW: job number 216186 and 216187

Ref: 279813-A. n'standard Dre: 25/10/2021 MI.

279813-A

From: Josh Stainlay <<u>josh.stainlay@envsolutions.com.au</u>> Sent: Monday, 18 October 2021 3:16 PM

To: SydneyMailbox <<u>Sydney@envirolab.com.au</u>>

Cc: Stephen Bourne <<u>stephen.bourne@envsolutions.com.au</u>>; Ben Pieterse <<u>ben@envsolutions.com.au</u>> **Subject:** job number 216186 and 216187

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hey Sally/Greta,

I sent in water samples the week before last from these 2 job numbers and forgot to add to the COC that samples would need to be run for TSS, EC and pH. There should be 4 samples (3 on 216186 and 1 on 216187). Would you be able to do that for me? thankyou $\{1, -3\}$

Regards

Josh Stainlay

Environmental Scientist | **ENV Solutions** 313 River St Ballina | T: 1300 861 325 PO Box 248 Ballina NSW 2478 | M: 0402 300 324 josh.stainlay@envsolutions.com.au | www.envsolutions.com.au

ENVIRONMENTAL | ASBESTOS | REMEDIATION | RESOURCE RECOVERY

LinkedIn | Facebook | Instagram

The Bundjalung are the traditional owners of the land on which I live and work. I respectfully acknowledge their unique cultural and spiritual relationship to the land, waters and seas and their significant contribution to our society.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 279813

Client Details	
Client	ENV Solutions Pty Ltd
Attention	Stephen Bourne
Address	313 River St, Ballina, NSW, 2478

Sample Details	
Your Reference	216186 - Kingscliff High School
Number of Samples	3 Water
Date samples received	07/10/2021
Date completed instructions received	07/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details								
Date results requested by	14/10/2021							
Date of Issue	14/10/2021							
NATA Accreditation Number 2901. This d	NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 1	7025 - Testing. Tests not covered by NATA are denoted with *							

<u>Results Approved By</u> Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor

Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 279813 Revision No: R00

Page | 1 of 13

vTRH(C6-C10)/BTEXN in Water				
Our Reference		279813-1	279813-2	279813-3
Your Reference	UNITS	MW3	MW4	DAM
Date Sampled		1/10/2021	1/10/2021	1/10/2021
Type of sample		Water	Water	Water
Date extracted	-	11/10/2021	11/10/2021	11/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021
TRH C ₆ - C ₉	μg/L	<10	<10	<10
TRH C6 - C10	µg/L	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10
Benzene	µg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2
o-xylene	μg/L	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	108	110	109
Surrogate toluene-d8	%	95	96	96
Surrogate 4-BFB	%	87	87	87

svTRH (C10-C40) in Water				
Our Reference		279813-1	279813-2	279813-3
Your Reference	UNITS	MW3	MW4	DAM
Date Sampled		1/10/2021	1/10/2021	1/10/2021
Type of sample		Water	Water	Water
Date extracted	-	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	09/10/2021	09/10/2021	09/10/2021
TRH C ₁₀ - C ₁₄	µg/L	<100	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<200	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<200	<100	<100
Total +ve TRH (C10-C36)	µg/L	<100	<50	<50
TRH >C10 - C16	µg/L	<100	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<100	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<200	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<200	<100	<100
Total +ve TRH (>C10-C40)	µg/L	<100	<50	<50
Surrogate o-Terphenyl	%	#	72	64

PAHs in Water				
Our Reference		279813-1	279813-2	279813-3
Your Reference	UNITS	MW3	MW4	DAM
Date Sampled		1/10/2021	1/10/2021	1/10/2021
Type of sample		Water	Water	Water
Date extracted	-	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021
Naphthalene	μg/L	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1
Fluorene	µg/L	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1
Anthracene	µg/L	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1
Pyrene	µg/L	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1
Chrysene	µg/L	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5
Total +ve PAH's	µg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	71	89	81

HM in water - total				
Our Reference		279813-1	279813-2	279813-3
Your Reference	UNITS	MW3	MW4	DAM
Date Sampled		1/10/2021	1/10/2021	1/10/2021
Type of sample		Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021
Arsenic-Total	µg/L	8	4	<1
Cadmium-Total	µg/L	0.4	0.4	<0.1
Chromium-Total	µg/L	170	20	<1
Copper-Total	µg/L	44	38	<1
Lead-Total	µg/L	16	100	<1
Mercury-Total	µg/L	<0.05	0.62	<0.05
Nickel-Total	µg/L	9	11	<1
Zinc-Total	µg/L	74	230	9

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			11/10/2021	[NT]		[NT]	[NT]	11/10/2021	
Date analysed	-			12/10/2021	[NT]		[NT]	[NT]	12/10/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	98	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	98	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	92	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	95	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	102	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	106	[NT]		[NT]	[NT]	107	
Surrogate toluene-d8	%		Org-023	94	[NT]		[NT]	[NT]	97	
Surrogate 4-BFB	%		Org-023	85	[NT]		[NT]	[NT]	96	

QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			08/10/2021	[NT]			[NT]	08/10/2021		
Date analysed	-			09/10/2021	[NT]			[NT]	09/10/2021		
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]			[NT]	102		
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]			[NT]	103		
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]			[NT]	93		
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]			[NT]	102		
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]			[NT]	103		
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]			[NT]	93		
Surrogate o-Terphenyl	%		Org-020	80	[NT]	[NT]	[NT]	[NT]	71	[NT]	

QUALITY CONTROL: PAHs in Water						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			08/10/2021	[NT]		[NT]	[NT]	08/10/2021	
Date analysed	-			08/10/2021	[NT]		[NT]	[NT]	08/10/2021	
Naphthalene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	94	
Acenaphthylene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	78	
Fluorene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	88	
Phenanthrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	112	
Anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	78	
Pyrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	91	
Benzo(a)anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	68	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-022/025	<2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	75	
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	96	[NT]	[NT]	[NT]	[NT]	88	[NT]

QUALITY CONTROL: HM in water - total						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	279813-2
Date prepared	-			08/10/2021	1	08/10/2021	08/10/2021		08/10/2021	08/10/2021
Date analysed	-			08/10/2021	1	08/10/2021	08/10/2021		08/10/2021	08/10/2021
Arsenic-Total	µg/L	1	Metals-022	<1	1	8	7	13	100	#
Cadmium-Total	µg/L	0.1	Metals-022	<0.1	1	0.4	0.3	29	97	102
Chromium-Total	µg/L	1	Metals-022	<1	1	170	150	12	99	119
Copper-Total	µg/L	1	Metals-022	<1	1	44	40	10	98	#
Lead-Total	µg/L	1	Metals-022	<1	1	16	14	13	96	#
Mercury-Total	µg/L	0.05	Metals-021	<0.05	1	<0.05	[NT]		100	[NT]
Nickel-Total	µg/L	1	Metals-022	<1	1	9	8	12	97	111
Zinc-Total	µg/L	1	Metals-022	<1	1	74	69	7	99	##

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRH Water(C10-C40) NEPM -

Percent recovery for the surrogate/matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample #1.

The PQL has been raised due to interferences from analytes (other than those being tested) in sample #1.

8 HM in water - total

- # Low spike recovery was obtained for this sample. The sample was re-digested and re-spiked and the low recovery was confirmed. This is due to matrix interferences. However, an acceptable recovery was obtained for the LCS.

- ## Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 279813-A

Client Details	
Client	ENV Solutions Pty Ltd
Attention	Joshua Stainlay
Address	313 River St, Ballina, NSW, 2478

Sample Details	
Your Reference	216186 - Kingscliff High School
Number of Samples	additional analysis
Date samples received	07/10/2021
Date completed instructions received	18/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	25/10/2021	
Date of Issue	21/10/2021	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 279813-A Revision No: R00

Miscellaneous Inorganics				
Our Reference		279813-A-1	279813-A-2	279813-A-3
Your Reference	UNITS	MW3	MW4	DAM
Date Sampled		1/10/2021	1/10/2021	1/10/2021
Type of sample		Water	Water	Water
Date prepared	-	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021
рН	pH Units	6.4	6.4	6.3
Electrical Conductivity	µS/cm	190	190	110
Total Suspended Solids	mg/L	5,000	7,300	10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			20/10/2021	2	20/10/2021	20/10/2021		20/10/2021	[NT]
Date analysed	-			20/10/2021	2	20/10/2021	20/10/2021		20/10/2021	[NT]
рН	pH Units		Inorg-001	[NT]	2	6.4	[NT]		100	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	2	190	[NT]		103	[NT]
Total Suspended Solids	mg/L	5	Inorg-019	<5	2	7300	7400	1	96	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

12 Attachment 4

Qmax Estimate

Input		
Length of excavation (metres):	4	m
Width of excavation (metres):	4	m
Required groundwater drawdown (metres):	1.5	m
Saturated thickness of the unconfined	5	m
aquifer ^(A) (metres): Hydraulic conductivity	0.0001	
of the aquifer (K) (metres per second):		m/sec
	Calculate	

Results

Effective radius of pumping well , R _e (metres):	2m
Radius of influence of	
dewatering, R _o	
(metres):	45m
(i.e. radius of the cone	
of depression)	
Total pumping rate	11/500
(litres per second):	1/ Sec
Time taken to establish	
the cone of depression	71hrs
(hours):	

Calculation methods

Dewatering of a rectangular excavation with dimensions **a** metres wide and **b** metres long can be approximated as pumping from a large-diameter bore with an equivalent radius of \mathbf{r}_{e} metres, where:

Figure E1 Equation No 1

The radius of influence of this large-diameter bore (i.e radius of the cone of depression of the watertable) can be approximated using Sichardt's equation:

$$R_o=3000(H-h)\sqrt{K}$$

$$R_o = 3000 \times s \times s$$

Figure E2 Equation No 2

Where: $R_0 = radius of influence of an equivalent pumping bore (m)$

s = maximum groundwater draw down (m)

K = hydraulic conductivity of aquifer matrix (units of m/s)

$$H^2 - h^2 = \frac{nq}{\pi k} \left(\ln R_o - \ln r_e \right)$$

Figure E3 Equation No 3

- Where: H = saturated thickness of the aquifer undisturbed by pumping (m)
 - h = saturated thickness of the aquifer at maximum drawdown (m)
 - k = hydraulic conductivity of aquifer matrix (units of m/s)
 - R_o = radius of influence of an equivalent pumping bore (m)
 - re = effective radius of an equivalent pumping bore (m)
 - q = pumping rate of individual dewatering well points (m³/s)
 - n = number of well points used to dewater the excavation

13 Attachment 5

DESCRIPTION	DATE	DRAWN	DESIGN	СНЕСК	APP.	Client: Project:
SUED FOR INFORMATION	16/06/16	JKF	JKF	RM	RM	Solutions Dewatering System
						ENV Solutions Pty Ltd Overview
						PO BOX 248
						Ballina NSW 2478
						admin@envsolutions.com.au

14 Attachment 6

SAFETY DATA SHEET

HYDRO 790

Infosafe No.: MTHO9 ISSUED Date : 29/08/2016 ISSUED by: Hydro-Chem Pty Ltd

1. IDENTIFICATION

GHS Product Identifier HYDRO 790

Product Code 790

Product Type pH CONTROL AGENT

Company Name Hydro-Chem Pty Ltd

Address 23B Industrial Drive Braeside VIC 3195 AUSTRALIA

Telephone/Fax Number Tel: (03) 9553 1011

Emergency phone number 1300 558 788

Emergency Contact Name Tony Ventura

Recommended use of the chemical and restrictions on use Normally use at the rate of 10 - 100 ml HYDRO 790 per 1000 Litres of water.

Consult your HydroChem technical representative for specific recommendation.

Other Names

Name	Product Code
Sodium Hydroxide Solution 50%	
Sodium Hydroxide Liquid 50%	
Caustic Soda Solution	
Lye Solution	

Additional Information

Product Description : An alkaline solution used for pH adjustment of waste water recirculating systems.

2. HAZARD IDENTIFICATION

GHS classification of the substance/mixture

Classified as Hazardous according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) including Work, Health and Safety Regulations, Australia.

Classified as Dangerous Goods according to the Australian Code for the Transport of Dangerous Goods by Road and Rail. (7th edition)

Corrosive to Metals: Category 1 Eye Damage/Irritation: Category 1

Skin Corrosion/Irritation: Category 1B

Signal Word (s) DANGER

Hazard Statement (s) H290 May be corrosive to metals. H314 Causes severe skin burns and eye damage.

Pictogram (s)

Precautionary statement – Prevention

P234 Keep only in original container.
P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P264 Wash contaminated skin thoroughly after handling.
P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement – Response

P301+P330+P331 IF SWALLOWED: rinse mouth. Do NOT induce vomiting.

P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P310 Immediately call a POISON CENTER or doctor/physician.

P363 Wash contaminated clothing before reuse.

P390 Absorb spillage to prevent material damage.

Precautionary statement – Storage

P405 Store locked up.

P406 Store in corrosive resistant/ container with a resistant inner liner.

Precautionary statement – Disposal

P501 Dispose of contents/container to / in accordance with local regulations.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Information on Composition

All ingredients in this product are listed on the Australian Inventory of Chemical Substances (AICS).

Ingredients

Name	CAS	Proportion
Sodium hydroxide	1310-73-2	10-60 %

4. FIRST-AID MEASURES

Inhalation

Remove source of contamination or move victim to fresh air. Restore breathing and administer oxygen if required. Keep victim warm, quiet and in a reclining position. Seek medical advice immediately.

Ingestion

Never give anything by mouth if victim is rapidly losing consciousness, or is unconscious or convulsing. Rinse mouth thoroughly with water. Do not induce vomiting. If victim can swallow, have him/her drink 240 to 300 ml of water to dilute material in stomach. If vomiting occurs naturally, have victim lean forward to reduce risk of aspiration. Repeat administration of water. Seek medical attention immediately.

Skin

As quickly as possible, flush contaminated area with lukewarm, gently running water for at least 30 minutes, by the clock. Under running water, remove contaminated clothing. If irritation persists, repeat flushing. Seek medical attention immediately.

Eye contact

Immediately flush the contaminated eye(s) with lukewarm, gently flowing water for 30 minutes, by the clock, holding the eyelids(s) open. Take care not to rinse contaminated water into the non-affected eye. If irritation persists, repeat flushing. Seek medical attention immediately.

First Aid Facilities

Safety showers and eye wash facilities should be made available wherever this product is in regular use.

Advice to Doctor

Treat symptomatically as for strong alkalis.

5. FIRE-FIGHTING MEASURES

Fire Fighting Measures

Fire-fighters must wear full protective clothing including self contained breathing apparatus. Remove from the vicinity containers not involved in the fire.must wear full protective clothing including self contained breathing apparatus. Remove from the vicinity containers not involved in the fire.

Suitable Extinguishing Media

Extinguishing Media : Use extinguishing media suitable to surrounding fire conditions.

Specific Hazards Arising From The Chemical

FIRE HAZARD COMMENTS: Sodium hydroxide and its solutions will not burn or support combustion.

However, reaction of sodium hydroxide with a number of commonly encountered materials can generate sufficient heat to ignite nearby combustible material.

Hazchem Code

2R

6. ACCIDENTAL RELEASE MEASURES

Emergency Procedures

Evacuate unprotected personnel from danger area. Wear appropriate protective clothing. Slippery when spilt. Avoid accidents, clean up immediately. Contain using sand and earth - prevent runoff into drains and waterways. Use absorbent (soil or sand, sawdust, inert material, vermiculite). Collect and seal in properly labelled drums for disposal. Neutralise remaining product with dilute acid, adjusting pH to 6-10. Wash area down with excess water.

7. HANDLING AND STORAGE

Handling and storage

Store away from incompatible materials such as aluminium, zinc, tin, magnesium and alloys of these metals. Also incompatible with acids, chlorinated compounds, bromine compounds and nitrated hydrocarbons. Post warning signs when appropriate. Keep storage areas secure and segregated from populated work areas. Take necessary maintenance precautions to avoid leaks.

Additional information on precautions for use

Leather is attacked by caustic. Always use good occupational work practices.

Other Information

Exothermic reaction on dilution with water. Extremely slippery when wet.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Occupational exposure limit values

TLV, 2.0 mg/m3 -Ceiling Value

As published by the National Health & Medical Research Council.

Ceiling Value - Is the concentration that should not be exceeded even instantaneously.

TLV is the time weighted average concentration of the work atmosphere over a normal 8-hour work day and a 40-hour work week. Nearly all workers may be repeatedly exposed to this level, day after day, without adverse effect.

These TLVs are issued as guidelines for good practice. All atmospheric contamination should be kept to as low a level as is practically possible.

These TLVs should not be used as fine lines between safe and dangerous concentrations.

Appropriate Engineering Controls

Maintain concentration below recommended exposure limit.

ENGINEERING CONTROLS Engineer control methods to reduce hazardous exposures are preferred. General methods include mechanical ventilation, (dilution and general exhaust), process or personnel enclosure, control of process conditions and process modification (e.g. substitution of a less hazardous material). Administrative controls and personal protective equipment may be also required. Use a corrosion-resistant ventilation system separate from other exhaust ventilation systems. Exhaust directly to the outside. Use local exhaust ventilation, and process enclosure if necessary, to control airborne spray/mists. Supply sufficient air to make up for air removed by exhaust systems.

Personal Protective Equipment

RESPIRATORY PROTECTION If engineering controls and work practices are not effective in controlling exposure to this material, then wear suitable personal protective equipment including approved respiratory protection.

Have appropriate equipment available for use in emergencies such as spills or fire. If respiratory protection is required, institute a complete respiratory protection program including selection, fit testing, training, maintenance and inspection.

RESPIRATORY PROTECT. GUIDELINES - RECOMMENDATIONS FOR SODIUM HYDROXIDE

CONCENTRATIONS IN AIR: UP TO 50 mg/m3: Powered air-purifying respirator with dust and mist filter(s); or SAR operated in a continuous flow mode.

UP TO 100 mg/m3: Full-facepiece SCBA; or full-facepiece SAR; or full-facepiece respirator with high-efficiency particulate filter(s). UP TO 250 mg/m3: Positive pressure, full-facepiece SAR. EMERGENCY OR PLANNED

ENTRY IN UNKNOWN CONCENTRATION OR IDLH CONDITIONS: Positive pressure, full-facepiece SCBA; or positive pressure, full-facepiece SAR with an auxiliary positive pressure SCBA. ESCAPE: Full-facepiece respirator with high-efficiency particulate filter(s); or escape-type SCBA.

NOTE: Substance causes eye irritation or damage; eye protection needed.

ABBREVIATIONS: SAR = supplied-air respirator; SCBA = self-contained breathing apparatus. IDLH = Immediately Dangerous to Life or Health. NOTE:

In these recommendations the IDLH concentration is defined as the maximum concentration which would not cause any escape impairing symptoms or irreversible health effects to a person exposed for 30 minutes if the respirator failed.

EYE/FACE PROTECTION Splash proof chemical safety goggles. A face shield may also be necessary.

SKIN PROTECTION Impervious gloves, coveralls, boots and/or other resistant protective clothing. Have a safety shower/eye-wash fountain readily available in the immediate work area.

RESIST. FOR PROTECTIVE CLOTHING SODIUM HYDROXIDE: GOOD: Chlorinated polyethylene (CPE), natural rubber, neoprene, nitrile/ polyvinyl chloride

(PVC), nitrile, polyethylene (PE), PVC, polyurethane, styrene-butadiene rubber (SBR), Viton/chlorobutyl rubber, Silvershield, SBR/ neoprene, FAIR/POOR: Butyl rubber SODIUM HYDROXIDE SOLUTIONS, LESS THAN 30%: GOOD:PE, neoprene/natural rubber SODIUM HYDROXIDE SOLUTIONS, 30-70%: VERY GOOD: Natural rubber, neoprene, nitrile/PVC, nitrile, PVC, Viton, Saranex GOOD: Butyl rubber, CPE, Viton/neoprene, butyl rubber/neoprene, Teflon, natural rubber/neoprene/nitrile-butadiene rubber, SBR, neoprene/natural rubber, neoprene/PVC FAIR/POOR: Polyvinyl alcohol, nonwoven PE NOTE: Resistance of specific materials can vary from product to product. Evaluate resistance under conditions of use and maintain clothing carefully.

PERSONAL PROTECTION COMMENTS Remove contaminated clothing promptly. Keep contaminated clothing in closed containers. Discard or launder before reusing. Inform laundry personnel of contaminant's hazards.

Hygiene Measures

Launder contaminated clothing before re-use.

Wash hands before eating, drinking, smoking and using the toilet.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form

Liquid

Appearance

Water, clear white to slightly coloured strongly alkaline liquid. Hygroscopic. Miscible with water. Exothermic reaction on dilution with water.

Odour Mild

Boiling Point 140°C (approx)

Solubility in Water Soluble

Specific Gravity 1.48 - 1.52 @ 20ºC

pH > 13

Vapour Pressure Not Allocated

Flash Point Not applicable.

Flammability

Non flammable. May react with aluminium, tin, zinc to produce flammable hydrogen gas (possible explosion hazard).

Flammable Limits - Lower Not Allocated

Other Information Solubility in water - Soluble. Freezing point - 12°c (approx)

10. STABILITY AND REACTIVITY

Chemical Stability

Stable.

Hazardous Decomposition Products None known.

Possibility of hazardous reactions

The substance is a strong base and reacts violently with acids. Attacks aluminium, zinc and tin forming combustible gas (hydrogen). Reacts with ammonium salts generating ammonia gas. Reacts with organohalogen compounds to form spontaneously combustible compounds. Reacts explosively with nitro and chloro organic compounds. Absorbs water and carbon dioxide from the air. Exothermic reaction on dilution with water.

Hazardous Polymerization

Does not occur.

11. TOXICOLOGICAL INFORMATION

Toxicology Information KNOWN TOXICOLOGICAL DATA: Hydro 790: Oral (rat) LDLO = 500 mg/kg.

Intraperitoneal (mouse) LD50 = 40 mg/kg. Oral (rabbit) LDLO = 500 mg/kg [10% solution].

Ingestion

Can kill if swallowed.

There are no reported cases of industrial workers ingesting sodium hydroxide or its solutions. Should ingestion occur, severe pain; burning of the mouth, throat and oesophagus; vomiting; diarrhoea; collapse and possible death may result.

Inhalation

Effects of inhaling sodium hydroxide mists have not been clearly established. Most references indicate that irritation of the nose, throat and lungs would occur due to the corrosive nature of sodium hydroxide.

However, there are no actual reports of industrial workers exposed to sodium hydroxide experiencing these symptoms.

Skin

Extremely corrosive. Capable of causing severe burns with deep ulceration.

Can penetrate to deeper layers of skin. Corrosion will continue until removed. Severity depends on concentration and duration of exposure.

Burns are not immediately painful; onset of pain may be minutes to hours.

Eye

Extremely corrosive. Can penetrate deeply causing irritation or severe burns depending on the concentration and duration of exposure. In severe cases, ulceration and permanent blindness may occur.

Chronic Effects

HEALTH EFFECTS There have been no documented effects due to long-term exposure to sodium hydroxide.

CARCINOGENICITY Sodium hydroxide has been implicated as a cause of cancer of the oesophagus in individuals who have ingested it. The cancer may develop 12 to 42 years after the ingestion incident. Similar cancers have been observed at the sites of severe thermal burns. These cancers may be due to tissue destruction and scar formation rather than the sodium hydroxide itself. Not classed as a carcinogen by Worksafe Aust.

TERATOGENICITY AND EMBRYOTOXICITY Insufficient information.

TOXICOLOGICAL SYNERGISTIC MATERIALS Insufficient information.

MUTAGENICITY Insufficient information.

POTENTIAL FOR ACCUMULATION None.

12. ECOLOGICAL INFORMATION

Environmental Protection

Harmful to aquatic life. TLm 96: 100-10 ppm. Avoid contaminating waterways.

13. DISPOSAL CONSIDERATIONS

Waste Disposal

Refer to State Land Waste Management Authority or a licensed disposal contractor for disposal. Empty containers must be decontaminated, rinse with water before landfill disposal.

14. TRANSPORT INFORMATION

U.N. Number 1824 UN proper shipping name SODIUM HYDROXIDE SOLUTION

Transport hazard class(es) 8 Packing Group

П

Hazchem Code

2R

Storage and Transport

UN No. 1824 (II)

Keep containers closed at all times. Store away from acids. Do not use aluminium or galvanized containers or use die-cast zinc or aluminium bungs.

Steel bungs should be used. Containers made of nickel alloys are preferred.

Steel containers are acceptable if temperatures are not elevated. Storage tanks should be above ground and surrounded is capable of holding the entire contents. Limit quantity of material in storage. Restrict access to storage area. Post warning signs where appropriate. Keep storage areas separate from populated work areas. Inspect periodically for deficiencies such as damage or leaks. Class 8 Corrosives shall not be loaded in the same vehicle with:

- Class 1 Explosives
- Class 4.3 Dangerous when wet substances
- Class 5.1 Oxidizing agents
- Class 5.2 Organic peroxides
- Class 6 * when a cyanide
- Class 7 Radioactive materials
- Class 8 * when an acid.
- Foodstuffs or foodstuff empties.

Observe the requirements of the Australian Code for the transport of dangerous goods by road and rail.

IERG Number

37

15. REGULATORY INFORMATION

Poisons Schedule

S6

Packaging & Labelling

Labelling requirements of the Standard for Uniform Scheduling of Drugs and Poisons do not apply to a poison that is packed and sold solely for industrial, laboratory or manufacturing purposes; however is labelled in accordance with the National Occupational Health and Safety Commission's 'National Code of Practice for the Labelling of Workplace Substances'. Pack Sizes : 15 L, 200 L or 1000 L.

16. OTHER INFORMATION

Contact Person/Point

Normal Working Hours - Ph: (03) 9553 1011 Fax: (03) 9553 1387 Ask for the Facilities Manager, Sales Manager or Services Manager. After Hours - Ph : 1300 558 788

Further information/advice is available to those persons responsible for the design of safe work practices on their written request to HydroChem.

This SDS summarises to the best of our knowledge at the date of issue, the health and safety hazard information of the selected substance and how to safely handle the selected substance in the workplace. Each user should read this SDS and consider the information in the context of how the product will be handled and used in the workplace, including in conjunction with other products.

Hydro-Chem Pty Ltd responsibility for the material as sold is subject to the terms and conditions of sale, a copy of which is available upon request.

If clarification or further information is required, the user should contact Hydro-Chem Pty Ltd using the contact details provided.

Empirical Formula & Structural Formula

H-Na-O in water

Other Information

ABBREVIATIONS: ACGIH - American Conference of Government Industrial Hygienists OSHA - Occupational Safety and Health Information TLV - Threshold Limit Value NOHSC - National Occupational Health & Safety Committee

END OF SDS

© Copyright Chemical Safety International Pty Ltd

Copyright in the source code of the HTML, PDF, XML, XFO and any other electronic files rendered by an Infosafe system for Infosafe SDS displayed is the intellectual property of Chemical Safety International Pty Ltd.

Copyright in the layout, presentation and appearance of each Infosafe SDS displayed is the intellectual property of Chemical Safety International Pty Ltd.

The compilation of SDS's displayed is the intellectual property of Chemical Safety International Pty Ltd.

Copying of any SDS displayed is permitted for personal use only and otherwise is not permitted. In particular the SDS's displayed cannot be copied for the purpose of sale or licence or for inclusion as part of a collection of SDS without the express written consent of Chemical Safety International Pty Ltd.

CHEMPROD NOMINEES PTY. LTD. A.B.N. 32 982 143 022 / A.C.N 005 032 744 T/A

"THE ALUM PEOPLE"

Liquid Aluminium Chlorohydrate

Issued: 19 January 2017

Version: 3 Page 1 of 9

SAFETY DATA SHEET

1. IDENTIFICATION OF THE MATERIAL AND SUPPLIER

Product Name:	LIQUID ALUMINIUM CHLOROHYDRATE
Other Names:	Aluminium Chloride Hydroxide, Aluminium Chlorohydrate, Aluminium Hydroxychloride, Aluminium Chlorohydroxide.
Manufacturers Product Code:	MegaPac 23 [™] .
Recommended use of the chemical and restrictions on use:	Flocculent for the treatment of municipal water supplies, waste water and industrial effluents; removal of phosphate in sewage treatment; paper manufacture; chemical manufacture.
Supplier: ABN: Street Address: Telephone Number: Facsimile:	Omega Chemicals 32 982 143 022 / A.C.N 005 032 744 T/A 55 FITZGERALD ROAD, LAVERTON NORTH VIC 3026 +61 3 8368 8000 +61 3 8368 8020
Emergency Telephone:	1300 131 001 (24 Hours) Poisons Information Centre Australia: 131 126
2. HAZARD IDENTIFICATION	
Hazard Classification:	Not classified as Dangerous Goods by the criteria of the Australian Dangerous Goods Code (ADG Code) for transport by Road and Rail; NON-DANGEROUS GOODS. Classified as hazardous according to Safe Work Australia; HAZARDOUS SUBSTANCE.
GHS Classification:	No available data
Signal Word (s):	No available data
Hazard Statement(s):	H320 Causes eye irritation
Precautionary Statement(s):	H316 Causes mild skin irritation
Prevention Statement(s):	P102 Keep out of reach of children
	 P103 Read Label before use P104 Read Safety Data Sheet before use P234 Keep only in original container P264 Wash hand thoroughly after handling. P280 Wear protective gloves/protective clothing/eye protection/face protection

OMEGA CHEMICALS

Safety Data Sheet

Liquid Aluminium Chlorohydrate	Issued: 19 January 2017	Version: 3	Page 2 of 9
Response Statement(s):	P305+P351+P338 IF IN EYES: Rinse cauti several minutes. Remove contact lenses Continue rinsing. P337+P313 If eye irritation persists: Get P302+P352 IF ON SKIN: Wash with plent P362 Take off contaminated clothing an P332+P313 If skin irritation occurs: Get P301+P330+P331 IF SWALLOWED: Rinse vomiting. P313 Get medical advice/attention P304+P340 IF INHALED: Remove victim in a position comfortable for breathing. P262 Do not get in eyes, skin or on cloth	ously with wa if present ar medical advi y of soap and d wash befor medical advic mouth. Do r to fresh air an	ater for nd easy to do. ce/attention. d water. re use. re/attention. not induce nd keep at rest
Storage Statement(s):	P405 Store locked up. P406 Store in corrosive resistant/compa P403+P235 Store in well-ventilated plac	itible contain e. Keep cool.	er.
Disposal Statement(s):	Dispose of contents/container according regulations.	g to jurisdictio	onal
Poison Schedule (SUSMP):	None Allocated		

3. COMPOSITION/INFORMATION ON INGREDIENTS

Ingredients:	CAS Number	Proportion:	Hazard Codes
Aluminium Chlorohydrate	12042-91-0	50%	H320, H316
Water	7732-18-5	Balance to 100%	

4. FIRST - AID MEASURES

For advice, contact Poisons Information Centre on 131 126 or a Doctor.

- Ingestion:Immediately rinse mouth with water. Give plenty of water to drink. DO NOT
induce vomiting. If vomiting occurs give further water. Never give anything by
mouth if victim is rapidly losing consciousness. Seek immediate medical
attention.
- Eyes:Immediately irrigate with copious quantities of water for at least 15 minutes.Eyelids to be held open. Remove clothing if contaminated and wash skin. Seekmedical assistance.
- Skin:Remove all contaminated clothing without delay. Wash skin gently and
thoroughly with copious amounts of water. If irritation occurs, seek medical
attention.

LIQUID ALUM – GRANULATED ALUM – SULPHURIC ACID – CAUSTIC SODA – FERRIC SULPHATE

OMEGA CHEMICALS

Safety Data Sheet

Liquid Aluminium Ch	nlorohydrate	Issued: 19 January 2017 Version: 3 Page 3 of 9		
Inhalation:	Remove the s becoming a ca clothing. Allow Keep at rest u	source of contamination or move the victim to fresh air; avoid asualty. Remove contaminated clothing and loosen remaining w patient to assume most comfortable position and keep warm. until fully recovered. Seek medical attention.		
Advice to Doctor:	Treat sympton	matically.		
		Additional Information		
Aggravated medica caused by exposure	ll conditions e:	No information available on medical conditions which are aggravated by exposure to this product. Repeated skin exposure may lead to dermatitis. Repeated ingestion of this product may cause phosphate deficiency which can weaken bones.		
5. FIRE FIGHTING N	MEASURES			
Extinguishing Medi	a:	In case of fire, use an appropriate extinguishing media (water fog or if unavailable fine water spray, foam, carbon dioxide, dry chemical powder) that is the most suitable for surrounding fire conditions. Keep containers cool with water spray. If safe to do so, remove containers from path of fire. Suppress (knock-down) gases, vapours and mists with a water spray jet.		
Hazchem Code: Specific Hazards ari substance or mixtu	ising from the re:	N/A.		
Hazards fror	n Combustion:	Product is non-flammable and stable under normal conditions of use and storage. Under fire conditions this product may emit toxic and/or irritating vapours and gases including hydrogen chloride gas.		
Flammability Conditions:		Product is a non-flammable liquid.		
Special Protective F and Equipment for	Precautions Fire Fighters:	Fire fighters should wear a self-contained breathing apparatus and full protective clothing along with protective equipment. Prevent fire extinguishing water from contaminating surface water or the ground water system.		
6. ACCIDENTAL RELEASE MEASURES				
Emergency Procedures/Protective Equipment/Personal Precautions:		e Evacuate all unnecessary personnel. Work upwind. Increase ventilation. Use water spray to disperse vapours. Personnel involved in the clean-up should wear full protective clothing; self-contained breathing apparatus may be needed for prolonged periods of exposure. Avoid walking through spilled product as it may be slippery. Cover drains. Collect, bind and pump off spills.		

LIQUID ALUM – GRANULATED ALUM – SULPHURIC ACID – CAUSTIC SODA – FERRIC SULPHATE
Safety Data Sheet

Liquid Aluminium Chlorohydrate	Issued: 19 January 2017	Version: 3	Page 4 of 9
Environmental Precautions:	Do not allow product to enter drain soil. If contamination of drains has emergency services.	ns, sewers, w occurred, ad	raterways or vise the local
Methods and Materials for Containment and Clean Up:	Contain spilled product using abso run off into drains, sewers waterw in properly labelled drums ready fo Dilute remaining product with wat with lime. For large spills notify loc	rbent (soil or ays or soil. Co or appropriat er, then care cal emergence	sand). Prevent bllect and seal e disposal. fully neutralize y services.

7. HANDLING AND STORAGE

Precautions for Safe Handling:	Irritant liquid. Ensure an eye bath and safety shower are available and ready for use. Use only in a well-ventilated area. Prevent the build-up of mists in the work atmosphere. Avoid inhalation of mists, and skin or eye contact. Wear appropriate protective equipment to prevent inhalation, skin and eye contact when mixing and using. Ensure a high level of personal hygiene is maintained when using this product, that is, always wash hands before eating, drinking, smoking or using the toilet. Keep containers sealed when not in use.
Container Type:	Packaging must comply with requirements of Hazardous Substances (Packaging) Regulations 2001. Store in original packaging as approved by manufacturer. Store and transport in corrosion resistant containers such as stainless steel, rubber lined steel, PVC, fibreglass or polyethylene.
Conditions for Safe Storage, including any Incompatibles:	Store in a cool, dry, well-ventilated area out of direct sunlight. Do not store with incompatible products such as chlorite, hypochlorite, sulphite, oxidizing agents and cyanides; Avoid contact with unalloyed steels, galvanized or aluminium surfaces. Do not store with any foodstuffs.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters:

National Exposure Standards:	Aluminium Chlorohydrate: No specific exposure standard. Aluminium soluble salts (as Aluminium): AU OEL: 2 mg/m ³ .
Biological Limit Values:	No data available
Appropriate Engineering: Controls:	Select suitable materials for the construction of storage tanks, containers, pipe valves and fittings. Ensure adequate ventilation. Natural ventilation should be adequate under normal use conditions. Keep containers closed when not in use in a well-ventilated area.

Safety Data Sheet

Liquid Aluminium Chlorohydrate		Issued: 19 January 2017 Version: 3 Page 5 of 9
Individual Protection Measures, such as Personal Protective Equipment (PPE):	Respirator:	If engineering controls are not effective in controlling airborne exposure then an approved respirator with a replaceable mist filter should be used.
	Eyes:	Chemical splash goggles or safety glasses with side shields and a full-face shield as appropriate should be used.
	Hands:	Wear elbow-length gloves of impervious material, PVC or rubber should be suitable.
	Clothing:	Protective overalls, splash apron and rubber boots.

After using this product always wash hands before smoking, eating, drinking or using the toilet. Wash contaminated clothing and other protective equipment before storage or re-use.

. PHYSICAL AND CHEMICAL PROPERTIES		
Core I	nformation	
Appearance:	Colourless to slightly cloudy liquid.	
Formula:	Al₂(OH)₅Cl.	
Odour:	Odourless.	
pH:	2.5 – 3.5.	
Vapour Pressure:	No data available.	
Vapour Density:	No data available.	
Boiling Point:	>100°C.	
Freezing Point:	ca5°C.	
Solubility (in Water):	Miscible.	
Specific Gravity:	1.33 – 1.34 (at 20°C).	
Flash Point:	N/A.	
Flammability Limits (as Percent Volume in Air):	Lower Explosive Limit N/A. Upper Explosive Limit N/A.	
Ignition Temperature:	No data available.	

Safety Data Sheet

Liquid Aluminium Chlorohydrate	Issued: 19 January 2017 Version: 3 Page 6 of 9		
Additional Information			
Specific Heat Value:	No data available.		
Particle Size:	No data available.		
Volatile Organic Compounds Content (VOC):	No data available.		
Viscosity:	No data available.		
Percent Volatile:	No data available.		
Octanol/Water Partition Coefficient:	No data available.		
Saturated Vapour Concentration:	No data available.		
Additional Characteristics:	Insoluble in alcohol.		
Flame Propagation/Burning Rate of Solid Materials:	No data available.		
Properties that may Initiate or Contribute to the Intensity of a Fire:	No data available.		
Potential for Dust Explosion:	N/A.		
Reactions that Release Flammable Gases or Vapours:	Thermal decomposition will produce hydrogen chloride gas.		
Fast or Intensely Burning Characteristics:	No data available.		
Non-Flammables that Could Contribute Unusual Hazards to a Fire:	No data available.		
Release of Invisible Flammable Vapours and Gases:	No data available.		
Decomposition Temperature:	No data available.		
Evaporation Rate:	No data available.		
10. STABILITY AND REACTIVITY			

Reactivity:Chemical Stability:Stable under normal conditions of storage and handling.
This product can hydrolyse and form a precipitate of aluminium
hydroxide in very dilute aqueous solutions. The solubility is
dependent on the pH.

LIQUID ALUM – GRANULATED ALUM – SULPHURIC ACID – CAUSTIC SODA – FERRIC SULPHATE

Safety Data Sheet

Liquid Aluminium Chlorohydrate		Issued: 19 January 2017	Version: 3	Page 7 of 9	
Possibility of h Reactions:	nazardous	lous Strong aqueous solutions of the product will readily react with sodium hydroxide and other alkali to form a thick slippery paste or gel. When involved in a fire, the product will undergo thermal decomposition to produce hydrogen chloride gas.			
Conditions to a	Avoid:	Heat-sensitive, avoid exposure to extreme heat and high temperatures. Avoid sources of ignition.			
Incompatible I	Materials:	Avoid contact with unalloyed steels, galvanized or aluminium surfaces. Do not expose to chlorite, hypochlorite, sulphite, sodium hydroxide, alkalis, oxidizing agents and cyanides. Keep away from all foodstuffs.			
Hazardous Dee Products:	ecomposition Hydrogen chloride gas.				
11. TOXICOLOGICAL INFORMATION					
Toxicity Data					
LD50:			13000 mg/kg (rat,	oral).	
		Acute	(short term)		
Ingestion:	May be harmful if swallowed. May cause abdominal pain, nausea, vomiting, bleeding stomach, incoordination, muscle spasm and kidney damage.				
Eye:	Can cause moderate to severe irritation and inflammation to the eyes.				
Skin:	Can cause irritation and stinging to open cuts and wounds.				

Inhalation: This product has a very low vapour pressure at ambient temperature and therefore cannot normally be inhaled. Inhalation of mists from the product can cause sore throat, coughing and irritation of nose. High concentration of mists may cause congestion and restriction of airways.

Chronic (long term)

- Skin: Repeated or prolonged exposure may cause dermatitis.
- Ingestion: Repeated ingestion of this product may cause phosphate deficiency which can weaken bones.

12. ECOLOGICAL INFORMATION

Ecotoxicity: No data available.

Persistence and Degradability: No data available.

LIQUID ALUM – GRANULATED ALUM – SULPHURIC ACID – CAUSTIC SODA – FERRIC SULPHATE

Safety Data Sheet

Liquid Aluminium Chlorohydra	te Issued: 19 January 2017 Version: 3 Page 8 of 9			
Mobility:	No data available.			
Additional Information				
Environmental Fate (Exposure): No data available.				
Bio accumulative Potential:	No data available.			
Other Adverse Effects:	Discharge into the environment must be avoided. Avoid contaminating waterways, drains and sewers. This product is an inorganic compound. A metal hydroxide precipitate is formed during hydrolyses in the pH range 5 to 7; due to this reaction the pH of the water decreases. If phosphates are present then metal phosphate complexes may form.			
13. DISPOSAL CONSIDERATION	S			
Disposal Methods:	Dispose of in accordance with all local, state and federal regulations. Refer to appropriate State Waste Disposal Authority. Observe local regulations. After dilution and careful neutralisation, approved liquid waste land fill site may be suitable.			
Special Precautions for Landfill or Incineration:	No data available.			
14. TRANSPORT INFORMATION	N			
UN Number:	None allocated.			
UN Proper Shipping Name:	Aluminium Chloride Hydroxide.			
Dangerous Goods Class:	None allocated.			
Subsidiary Risk:	None allocated.			
Packaging Group:	None allocated.			
Special Precautions for User:	: Irritant.			
Hazchem Code:	N/A.			
APPROVED FOR AIR CARGO by IATA.				
15. REGULATORY INFORMATIC	DN			
Poisons Schedule:				
EPG:	N/A			
AICS Name:	Aluminium Chloride Hydroxide.			
Additional information:	No data available.			
LIQUID ALUM – GRANULAT	ED ALUM – SULPHURIC ACID – CAUSTIC SODA – FERRIC SULPHATE			

Safety Data Sheet

Liquid Aluminium Chlorohydrate		te Issued: 19 January 2017 Version: 3 Page 9 of 9		
16. OTHER INFO	RMATION			
		Revision Details		
Reason for Revi	sion:			
Version 1	5 year	review. Updated to a new format. Additional information added.		
Version 2	Alignn	nent to GHS requirements.		
Version 3	Version 3 Reclassified as Hazardous.			
Literature References				
Chemical Rubbe	Chemical Rubber Company: Handbook of Chemistry and Physics, 85 th Edition.			
Safe Work Australia:		Hazardous Chemicals Information System (HCIS) Exposure Standards and GHS Classifications Data-Base, 25 June 2016.		
National TransportACommission:a		Australian Code for the Transport of Dangerous Goods by Road and Rail, Volume 7.		
		Abbreviations		
CAS Number:	Chemical Ab	stract Service Registry Number.		
GHS	Globally Harmonized System of Classification and Labelling of Chemicals.			
EPG:	Emergency Procedure Guide.			
LD50:	Lethal Dose 50%: The lowest concentration at which approximately 50% of test animals will die when given the specified dose by mouth.			
ADG Code:	Australian Code for the Transport of Dangerous Goods by Road and Rail, Volume 7.			
AICS Name:	Australian Inventory of Chemical Substances Name.			
OEL:	Occupationa	l Exposure Level.		
N/A:	Not Applicable.			

Disclaimer

This Safety Data Sheet is offered solely for information, consideration and investigation to determine the suitability of various health and safety precautions as may be required under the user's specific conditions and processes. All such conditions and processes are beyond the control of Omega Chemicals.

The information contained herein is based on data available to Omega Chemicals from both our own technical sources and recognised published references and is believed to be both accurate and reliable. Omega Chemicals however provides no warranties, either expressed or implied, and assumes no responsibility for the accuracy or completeness of this information.

Omega Chemicals reserves the right to revise this Safety Data Sheet as information becomes available. The user has the responsibility, by making contact with this company or otherwise to make certain the Safety Data Sheet is the latest issue.

© Copyright 2016 Omega Chemicals

DOCUMENT END