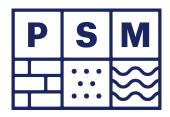
Upgrades to Chatswood Public School and Chatswood High School

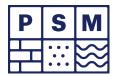
Appendix 12 - Geotech, Environmental & Hazmat Investigation

SSD 9483 Prepared by PSM and JBS&G For School Infrastructure NSW, Department of Education


Artists impression of upgrades to Chatswood Public School

# Upgrades to Chatswood Public School and Chatswood High School

Results of Geotechnical, Environmental and Hazmat Investigation


PSM3730-006R Rev3

18 February 2020



# **Table of Contents**

| 1                                                                                            | Introduction |                                               |       |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|--------------|-----------------------------------------------|-------|--|--|--|--|--|
| 2                                                                                            | Bac          | kground                                       | 4     |  |  |  |  |  |
| 3                                                                                            | Geo          | technical Investigation                       | 4<br> |  |  |  |  |  |
|                                                                                              | 3.1          | Fieldwork                                     | 5     |  |  |  |  |  |
|                                                                                              | 3.2          | Geotechnical Laboratory Testing               | 5     |  |  |  |  |  |
|                                                                                              |              | 3.2.1 California Bearing Ratio (CBR)          | 5     |  |  |  |  |  |
|                                                                                              |              | 3.2.2 Atterberg Limits                        | 6     |  |  |  |  |  |
|                                                                                              | 3.3          | Analytical Laboratory Testing                 | 7     |  |  |  |  |  |
|                                                                                              |              | 3.3.1 Soil Chemistry                          | 10    |  |  |  |  |  |
| 4                                                                                            | Site         | Conditions                                    | 10    |  |  |  |  |  |
|                                                                                              | 4.1          | Geological Setting                            | 10    |  |  |  |  |  |
|                                                                                              | 4.2          | Surface Conditions                            | 10    |  |  |  |  |  |
| 2  <br>3  <br>4  <br>5  <br>4  <br>4  <br>4  <br>4  <br>4  <br>4  <br>4  <br>4  <br>4  <br>4 | 4.3          | Subsurface Conditions                         | 12    |  |  |  |  |  |
|                                                                                              | 4.4          | Groundwater                                   | 15    |  |  |  |  |  |
| 5                                                                                            | Disc         | cussion                                       | 15    |  |  |  |  |  |
|                                                                                              | 5.1          | Excavation Conditions                         | 15    |  |  |  |  |  |
|                                                                                              | 5.2          | Earthworks and Disposal of Excavated Material | 15    |  |  |  |  |  |
|                                                                                              | 5.3          | Site Classification                           | 16    |  |  |  |  |  |
|                                                                                              | 5.4          | Permanent and Temporary Batters               | 16    |  |  |  |  |  |
|                                                                                              | 5.5          | Retaining Walls                               | 17    |  |  |  |  |  |
|                                                                                              | 5.6          | Foundations                                   | 19    |  |  |  |  |  |
|                                                                                              |              | 5.6.1 Shallow Footings                        | 19    |  |  |  |  |  |
|                                                                                              |              | 5.6.2 Piles                                   | 19    |  |  |  |  |  |
|                                                                                              | 5.7          | Pavements                                     | 20    |  |  |  |  |  |
| 6                                                                                            | Sali         | nity and Aggressivity Assessment              | 20    |  |  |  |  |  |
|                                                                                              | 6.1          | Salinity                                      | 20    |  |  |  |  |  |
|                                                                                              | 6.2          | Corrosivity / Aggressivity                    | 21    |  |  |  |  |  |
|                                                                                              | 6.3          | Sodicity                                      | 21    |  |  |  |  |  |
| 7                                                                                            | Env          | ironmental and Contamination Investigation    | 21    |  |  |  |  |  |
| 8                                                                                            | Haz          | ardous Materials Assessment                   | 22    |  |  |  |  |  |
|                                                                                              |              |                                               |       |  |  |  |  |  |



# **List of Tables**

| Table 1 – CBR Test Results                                                                     | 6  |
|------------------------------------------------------------------------------------------------|----|
| Table 2 – Summary of Atterberg Limits                                                          | 7  |
| Table 3 – Summary of Laboratory Analytical Testing Results                                     | 9  |
| Table 4 – Summary of inferred subsurface conditions encountered in the boreholes               | 12 |
| Table 5 – Approximate depth to the top of inferred geotechnical units encountered in boreholes | 14 |
| Table 6 – Batter Slope Angles                                                                  | 17 |
| Table 7 – Engineering Parameters of Inferred Geotechnical Units                                | 19 |
| Table 8 – Salinity Classification                                                              | 20 |

# **List of Appendices**

Appendix A Geotechnical Engineering Borehole Logs

- Appendix B Point Load Test Results
- Appendix C CBR testing results
- Appendix D Atterberg Limit Test Results
- Appendix E Environmental testing results
- Appendix F JBS&G Environmental Assessment Report
- Appendix G JBS&G Hazardous Material Assessment Report



# 1 Introduction

This report presents the results of the geotechnical and contamination investigation undertaken by Pells Sullivan Meynink (PSM) at Chatswood High School and Chatswood Public School. The work has been undertaken in accordance with the Services Agreement (No.181204) dated 5 December 2018.

# 2 Background

To assist in the geotechnical investigation, we were provided with and reviewed the following documents:

- RFQ Services Brief (Ref. RFQ201809-131, dated 30/10/2018)
- Information documents including:
  - Concept Design Report Option 3 (Ref. 3814 CD1001-1003 RevC dated 18.05.25, DC1009 RevA dated 12.06.18, CD10014-10015 RevF CD10018 RevD and CD10019RevC dated 13.07.18)
  - Douglas Partners Preliminary Geotechnical Report (Ref.86260.00.R.001.Rev1, dated 12/03/2018)
  - Site investigation area (Ref. App. A site investigation Area.pdf)
  - Report on preliminary Site (Contamination) Investigation with Limited Sampling (Ref. 86260.01.R.001.Rev0.PSI, dated 16/04/2018)
  - AutoCAD plan drawings of both sites containing survey elevations (Ref. 11915Adetail 1, 17485detail 1)
  - A mark-up with proposed borehole locations by Wood and Grieve (Ref. 17485detail 1)
  - An Endorsed Revised Precinct Masterplan Prepared by Architectus.

We understand that the current proposed development includes:

- Upgrades to Chatswood Public School including the provision of:
  - 53 x homebases (comprising 25 existing and 28 new spaces)
  - 4 x special program classrooms (music, language etc)
  - 3 x special support unit classrooms
  - Increased quality active play spaces
  - Retaining Heritage buildings A and B
  - New hall
  - New car parking facilities, and
  - Associated site works and landscaping.
- Upgrades to Chatswood High School including the provision of:
  - 123 Classrooms (comprising 21 existing and 102 new spaces)
  - New administration and staff facilities
  - New hall, and
  - Associated site works and landscaping.

The project would involve primarily the following:

- Construction of three new buildings on the Pacific Highway site (Building P1, P2 and G) and three buildings on the Centennial Avenue site (Building Q, S and T)
- On grade carparks, landscaping and various sports fields and playgrounds.

# 3 Geotechnical Investigation

PSM have completed a geotechnical investigation for both sites. An environmental and hazardous material assessment has also been completed for both sites and are reported separately.



# 3.1 Fieldwork

The fieldwork for the geotechnical investigation at the Centenial Avenue site was undertaken on:

- 23 to 25 of January 2019
- 15 to 16 of April 2019

The fieldwork for the geotechnical invesitgaion at the Pacific Highway site was undertaken on:

- 16 to 17 of February 2019
- 10 to 12 of October 2019.

All work was conducted under the full-time supervision of a PSM geotechnical engineer, who undertook the following tasks:

- Directing the investigation locations
- Directing the reinstatement of concrete and asphalt surfaces where required
- Preparing engineering logs of the material encountered
- Collection of disturbed samples for laboratory testing
- Point load testing of recovered core samples.

Prior to testing, on-site service location "scans" were undertaken by a licenced service locator in the presence of a PSM geotechnical engineer to asses if the test locations were free from buried utilities.

Seventeen (17) boreholes (BH01 to BH17) were drilled at the Centinial Avenue site on 23 to 25 of January and six (6) boreholes (BH18 to BH23) were drilled at the Pacific Highway site using a tracked geotechnical drill rig. A further five (5) boreholes (BH24 to BH28) were drilled at the Centennial Avenue site on 15 and 16 of April. A further eleven (11) boreholes were drilled at the Pacific Highway site on 10 to 12 October 2019.

The investigation locations were recorded with a hand-held GPS unit with a horizontal accuracy of approximately +/- 5 m. Figure 1A and 2 presents the test locations. Figure 1B presents a long section through the proposed buildings along the northern boundary of the Centennial Avenue site.

Boreholes were drilled to depths of bewteen 2.6 m and 9.0 m with augering through soils and low strength rock to refusal using a tungsten carbide bit (TC-bit) or a maximum of 8 m depth. Rock coring was undertaken for selected boreholes (BH06, BH07, BH18, BH19, BH26, BH28, BH33 and BH36). The geotechnical borehole logs together with explanation sheets are presented in Appendix A. The logs for augered only boreholes are presented in a tabulated form while cored boreholes are presented as geotechnical logs with core photos. Point load strength index testing was performed on the recovered core at approximately one metre intervals with results tabulated in Appendix B.

At the completion of the fieldwork, the boreholes were backilled with excavated spoil and lightly tamped with a shovel. Where the boreholes were drilled on hardstand surfaces, the surface was reinstated with cold-mix asphalt. Figures 3 and 4 present selected photos of the fieldwork.

# 3.2 Geotechnical Laboratory Testing

#### 3.2.1 California Bearing Ratio (CBR)

Five (5) bulk soil samples from the Centennial Avenue site and seven (7) bulk soil samples from the Pacific Highway site were recovered for California Bearing Ratio (CBR) testing at an accredited geotechnical laboratory.

The following sample preparation was undertaken for the CBR testing:

- Compact to 98% standard MDD, at optimum moisture content (OMC);
- Four (4) day soaked sample; and
- 4.5 kg surcharge.

Table 1 presents a summary of the CBR test results. The test result sheets are included in Appendix C.



#### Table 1 – CBR Test Results

| Sample ID<br>(depth)            | Material Description      | erial Description Soaked CBR (%) OMC (%) |      | Standard<br>Maximum Dry<br>Density (t/m3) | Swell (%) |  |  |  |  |  |
|---------------------------------|---------------------------|------------------------------------------|------|-------------------------------------------|-----------|--|--|--|--|--|
| CENTENNIAL AVENUE SITE          |                           |                                          |      |                                           |           |  |  |  |  |  |
| BH02<br>(0.1 - 0.5 m)           | SILTY CLAY                | 9.0*                                     | 13.4 | 1.83                                      | 0.5       |  |  |  |  |  |
| Centre of Site<br>(0.1 – 0.3 m) | SILTY CLAY                | 4.5*                                     | 15.6 | 1.73                                      | 1.0       |  |  |  |  |  |
| BH05<br>(0.1 - 0.3 m)           | SILTY CLAY                | 6.0**                                    | 17.5 | 1.65                                      | 0.5       |  |  |  |  |  |
| BH07<br>(0.1 - 0.3 m)           | SILTY CLAY                | 7.0**                                    | 18.0 | 1.59                                      | 0.0       |  |  |  |  |  |
| BH10<br>(0.1 - 0.3 m)           | CLAY                      | 5.0**                                    | 19.4 | 2.05                                      | 0.5       |  |  |  |  |  |
| PACIFIC HIGHWA                  | AY SITE                   |                                          |      |                                           |           |  |  |  |  |  |
| BH18<br>(0.1 - 1.5 m)           | SILTY CLAY                | 2.5*                                     | 12.9 | 1.74                                      | 3.0       |  |  |  |  |  |
| BH19<br>(0.1 - 1.5 m)           | SILTY CLAY                | 2.0*                                     | 12.9 | 1.79                                      | 1.5       |  |  |  |  |  |
| BH21<br>(0.1 - 1.5 m)           | CLAY                      | 4.0*                                     | 20.0 | 1.69                                      | 1.5       |  |  |  |  |  |
| BH29<br>(0.095 - 1.0 m)         | CLAY                      | 1.5*                                     | 16.5 | 1.76                                      | 3.0       |  |  |  |  |  |
| BH30<br>(0.02 - 1.0 m)          | CLAY with Sand and Gravel | 2.0*                                     | 16.3 | 1.73                                      | 1.5       |  |  |  |  |  |
| BH37<br>(0.5 - 1.5 m)           | CLAY with some<br>Gravel  | 2.0*                                     | 23.4 | 1.52                                      | 0.5       |  |  |  |  |  |
| BH39<br>(0.5 - 1.5 m)           | SANDY GRAVELLY<br>CLAY    | 4.0**                                    | 21.8 | 1.62                                      | 0.5       |  |  |  |  |  |

Note: \* Indicates Soaked CBR value at 2.5mm penetration

\*\* Indicates Soaked CBR value at 5.0mm penetration

#### 3.2.2 Atterberg Limits

Ten (10) soil samples from the Centennial Avenue site and five (5) from the Pacific Highway site were recovered for Atterberg limit tests. Table 2 presents a summary of the test results. The results all plot above the A-line on Cassagrande's plasticity chart (Figure 5), ranging from low to high plasticity (i.e., CL to CH), with majority of the samples indicating medium to high plasticity. The test result sheets are included in Appendix D.



#### Table 2 – Summary of Atterberg Limits

| Sample ID             |                                      | Atterberg Limits                   |    |                      |  |  |  |  |
|-----------------------|--------------------------------------|------------------------------------|----|----------------------|--|--|--|--|
| (depth)               | Sample Description                   | Liquid Limit (%) Plastic Limit (%) |    | Plasticity Index (%) |  |  |  |  |
| CENTENNIAL AV         | ENUE SITE                            |                                    |    |                      |  |  |  |  |
| BH02<br>(1.5 m)       | Brown Silty Clay                     | 35                                 | 19 | 16                   |  |  |  |  |
| BH04<br>(1.0 m)       | Grey Brown Sandy<br>Gravelly Clay    | 31                                 | 17 | 14                   |  |  |  |  |
| BH05<br>(1.0 m)       | Light Brown Gravelly<br>Clay (Shale) | 44                                 | 21 | 23                   |  |  |  |  |
| BH07<br>(1.7 m)       | Light Brown Silty Clay               | 37                                 | 19 | 18                   |  |  |  |  |
| BH08<br>(1.5 m)       | Brown Silty Clay                     | 56                                 | 26 | 30                   |  |  |  |  |
| BH09<br>(1.0 m)       | Brown Silty Clay                     | 55                                 | 23 | 32                   |  |  |  |  |
| BH11<br>(0.2 - 0.5 m) | Grey Brown Silty Clay.               | 52                                 | 22 | 30                   |  |  |  |  |
| BH12<br>(1.0 m)       | Grey Brown Gravelly<br>Clay (Shale)  | 41                                 | 20 | 21                   |  |  |  |  |
| BH14<br>(2.1 m)       | Grey Gravelly Silty Clay             | 33                                 | 19 | 14                   |  |  |  |  |
| BH16<br>(1.0 m)       | Orange Brown Silty Clay              | 48                                 | 22 | 26                   |  |  |  |  |
| PACIFIC HIGHWA        | NY SITE                              |                                    |    |                      |  |  |  |  |
| BH18<br>(1.5 m)       | Brown Clay                           | 46                                 | 20 | 26                   |  |  |  |  |
| BH19<br>(0.5 m)       | Brown Clay                           | 42                                 | 20 | 22                   |  |  |  |  |
| BH20<br>(0.5 m)       | Brown Clay                           |                                    | 20 | 21                   |  |  |  |  |
| BH22<br>(0.5 - 1.0 m) | Grey Brown Clay                      |                                    | 21 | 22                   |  |  |  |  |
| BH23<br>(0.5 - 1.0 m) | Brown Clay                           | 66                                 | 23 | 43                   |  |  |  |  |

# 3.3 Analytical Laboratory Testing

Ten (10) and five (5) disturbed soil samples were retrieved at the Centennial Avenue and Pacific Highway sites, respectively, by a PSM Geotechnical Engineer for testing in an analytical laboratory. The disturbed soil samples were sent to a NATA accredited analytical laboratory and the following tests were undertaken:



- Cation Exchange Capacity (CEC) of calcium, magnesium, potassium and sodium
- Exchange sodium percentage
- Salinity (EC 1:5, one part soil to five parts water)
- Soil pH
- Chlorides
- Sulphates
- Moisture content.

Table 3 presents a summary of the results. The laboratory result sheets are presented in Appendix E.



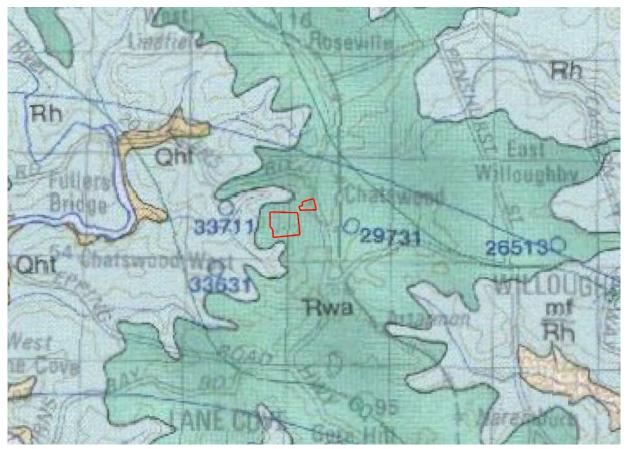
# Table 3 – Summary of Laboratory Analytical Testing Results

| Sample ID         | рН      | Electrical<br>Conductivity | Moisture<br>Content | Chloride By<br>Discrete | Soluble<br>Sulfate by<br>icpaes | Exchange<br>[meq/100g | able Cation | IS  |     |      | ESP [%] |
|-------------------|---------|----------------------------|---------------------|-------------------------|---------------------------------|-----------------------|-------------|-----|-----|------|---------|
|                   | ľ       | [µS/cm]                    | [%]                 | Analyser<br>[mg/kg]     | [mg/kg]                         | Са                    | Mg          | к   | Na  | CEC  |         |
| CENTENNIAL AVEN   | UE SITE |                            |                     |                         |                                 |                       |             |     | •   |      |         |
| BH01 – 2.0m       | 4.8     | 92                         | 7.2                 | 70                      | 70                              | 1.3                   | 1.2         | 0.3 | 0.4 | 3.2  | 11.4    |
| BH03 - 2.0m       | 7.8     | 180                        | 11.6                | 10                      | 200                             | 12.8                  | 1.9         | 0.3 | 0.5 | 15.5 | 3.2     |
| BH05 - 0.2m       | 4.7     | 75                         | 16.7                | 40                      | 100                             | 1.9                   | 0.8         | 0.2 | 0.2 | 3.5  | 7.9     |
| BH07 - 2.5m       | 5.1     | 48                         | 7.3                 | 10                      | 60                              | 1.0                   | 1.0         | 0.3 | 0.2 | 2.5  | 6.8     |
| BH08 - 2.5m       | 5.8     | 19                         | 6.0                 | <10                     | 20                              | <0.1                  | 0.9         | 0.3 | 0.2 | 1.5  | 14.8    |
| BH09 - 0.5m       | 6.7     | 208                        | 23.6                | 20                      | 340                             | 9.8                   | 2.2         | 0.3 | 0.3 | 12.5 | 2.3     |
| BH11 - 6.0m       | 6.0     | 51                         | 32.6                | 40                      | 70                              | <0.1                  | 1.8         | 0.4 | 0.8 | 3.1  | 26.4    |
| BH12 - 0.3 – 0.4m | 4.9     | 83                         | 13.5                | 60                      | 110                             | 2.5                   | 1.8         | 0.3 | 0.4 | 5.0  | 7.9     |
| BH14 - 0.1 – 1.0m | 4.9     | 119                        | 24.5                | 110                     | 100                             | 1.3                   | 1.1         | 1.0 | 0.3 | 3.8  | 9.3     |
| BH16 - 2.5m       | 4.9     | 106                        | 5.8                 | 90                      | 100                             | <0.1                  | 0.6         | 0.2 | 0.6 | 1.5  | 41.8    |
| PACIFIC HIGHWAY   | SITE    |                            |                     |                         | ·                               |                       | ·           |     |     |      | ·       |
| BH18 – 1.0m       | 5.3     | 90                         | 18.3                | 20                      | 140                             | 15                    | 1.4         | 0.6 | 0.5 | 17.4 | 2.6     |
| BH19 – 2.6m       | 5.6     | 17                         | 9.2                 | 10                      | 20                              | <0.1                  | 1.3         | 0.3 | 0.9 | 2.6  | 33.7    |
| BH20 – 7.0m       | 6.3     | 25                         | 7.4                 | <10                     | 20                              | 4.4                   | 4.5         | 0.2 | 0.7 | 9.8  | 6.9     |
| BH21 – 0.5m       | 5.5     | 47                         | 17.0                | 20                      | 70                              | 0.8                   | 3.1         | 0.6 | 1.2 | 5.7  | 21.6    |
| BH22 – 1.5m       | 5.0     | 58                         | 10.1                | <10                     | 50                              | 1.6                   | 2.1         | 0.5 | 0.3 | 4.4  | 6.4     |



#### 3.3.1 Soil Chemistry

The laboratory test results summarised in Table 3 indicates de following:


- pH of the soil samples analysed range from 4.7 to 7.8, with an average of 5.6
- The 1:5 soil to water extraction and subsequent electrical conductivity (EC<sub>1:5</sub>) of the soil samples analysed range from 17 μS/cm to 208 μS/cm
- Concentrations of chlorides in samples analysed ranged from <10 mg/kg to 110 mg/kg
- Concentrations of soluble sulfate in samples analysed ranged from 20 mg/kg to 340 mg/kg
- Cation Exchange Capacity (CEC) in samples analysed ranged from 1.5 meq/100g to 17.4 meq/100g
- Exchange Sodium Percentage (ESP) in samples analysed ranged from 2.3% to 41.8%.

# 4 Site Conditions

# 4.1 Geological Setting

The 1:100,000 Sydney Geological Map indicates that both sites are underlain by Ashfield Shale of the Wianamatta group (Rwa) which consist of black to dark-grey shale and laminate.

Inset 1 presents the geological map of the site.



Inset 1: Sydney geological map indicating approximate site location

# 4.2 Surface Conditions

Both sites comprise a number of existing school buildings and facilities with concrete pathways, sealed bitumen surfaces and some grassed and landscaped areas. Some demountable buildings also occupy both sites.

The Centennial Avenue site is approximately 6.5 ha in area, and it is bound by Dardanelles Road and De Villiers Avenue to the west, Eddy Road to the south, Centennial Avenue to the north and residential buildings to the east.



This site has a gentle fall from the northern boundary towards the southwest corner and a steep fall from the Centennial Avenue to the Bush Campus along the eastern boundary.

At the time of the Centennial Avenue fieldwork, the surfaces were dry with minimal foot traffic on site. The majority of the boreholes were drilled through topsoil on the surface with the exception of seven boreholes drilled through concrete/asphalt driveway.

The Pacific Highway site is approximately 1.2 ha in area and is bound by Jenkins Street to the west, Centennial Avenue to the south, Pacific Highway to the east and residential and commercial buildings to the north. This site has a gentle fall from the eastern boundary towards the west. A gentle drop to the northwest corner is addressed with terracing and sports courts on separate levels.

On 16 and 17 February during the Pacific Highway fieldwork, the surfaces were dry with considerable foot traffic on site. PSM coordinated with members of the public using the school facilities to minise risk exposure. The majority of the boreholes were drilled through asphalt-paved areas with the exception of one borehole drilled through astroturf.

On 10 to 12 October during the Pacific Highway fieldwork, the surfaces were dry to moist due to rain events occuring during the fieldwork. The boreholes were drilled on asphalt-paved surfaces and through astroturf on the sports courts.

Inset 2 presents an aerial photo of both sites.



Inset 2: Aerial photograph of site (source: Nearmap, 27 December 2018)

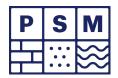


# 4.3 Subsurface Conditions

The subsurface conditions encountered within the boreholes are summarised in Table 4 and Table 5. The Ashfield Shale bedrock unit has been classified using the system developed by Pells et al (1998).

| Table 4 – Summary of inferred subsurface conditions encountered in the boreholes |
|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------|

| Inferred Unit          | Inferred top of unit depth below ground surface (m) | Description                                                                                                                                                                                                     |
|------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CENTENNIAL AVENUE SITE |                                                     |                                                                                                                                                                                                                 |
| Concrete/Asphalt       | 0.0                                                 | 100 to 150 mm thick.                                                                                                                                                                                            |
| Topsoil                | 0.0                                                 | Silty CLAY; dark brown, non-plastic to low<br>plasticity, trace of gravel up to 5 mm, sub-<br>angular to angular, soft to stiff consistency,<br>dry. Roots, rootlets, bark and grasses<br>observed throughout.  |
| Fill                   | 0.0 to 0.2                                          | CLAY; grey, orange/red, pale and dark<br>brown, generally low to medium plasticity,<br>with silt, trace of gravel up to 20 mm, sub-<br>angular to angular, stiff to hard consistency,<br>dry.                   |
| Residual Soil          | 1.0 to 6.0                                          | CLAY; grey, red, orange and brown,<br>generally medium to high plasticity, very stiff<br>to hard consistency, mostly dry.                                                                                       |
|                        | 1.2 to 7.2                                          | LAMINITE (Class IV/V); dark grey and grey<br>with orange banding, fine grained<br>sandstone, rock fabric faint with developed<br>bedding. Extremely to highly weathered.<br>Extremely low to very low strength. |
|                        | 5.8 to 8.6                                          | LAMINITE (Class III); black with occasional<br>orange banding, fine grained sandstone,<br>rock fabric visible with developed bedding.<br>Moderately to slightly weathered. Low to<br>high strength.             |
| Bedrock                | 3.4 to 9.4                                          | SILTSTONE (Class IV/V); dark grey and<br>brown with orange banding, rock fabric faint<br>with poorly developed to developed<br>bedding, extremely to slightly weathered,<br>very low to low strength.           |
|                        | 7.2 to 8.6                                          | SILTSTONE (Class III); dark grey and grey,<br>bedding fabric visible with well developed<br>bedding, slightly weathered, low to medium<br>strength.                                                             |
|                        | 9.5 to 11.5                                         | Interbedded SILTSONE and SANDSTONE<br>(Class III); fine to medium grained, thinly<br>developed bedding, slightly weathered to<br>fresh, medium to high strength.                                                |
| PACIFIC HIGHWAY SITE   |                                                     |                                                                                                                                                                                                                 |
| Asphalt/Astroturf      | 0.0                                                 | 10 to 200 mm thick                                                                                                                                                                                              |




| Inferred Unit | Inferred top of unit depth below ground surface (m) | Description                                                                                                                                                                                                                                                                  |
|---------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fill          | 0.01 to 0.2                                         | Silty CLAY; dark grey, orange, brown and<br>pale brown, low to medium plasticity, trace<br>of gravel up to 30 mm, sub-angular, dry and<br>very stiff to hard consistency.                                                                                                    |
| Residual Soil | 0.1 to 1.6                                          | CLAY; high plasticity, orange, yellow and<br>red-brown, moist and stiff to very stiff<br>consistency, some roots and weathered<br>shale fragments observed as residual soil<br>grades to bedrock.                                                                            |
|               | 1.0 to 2.5                                          | SILTSTONE (Class IV/V); dark grey, pale<br>grey with orange banding, thin fine-grained<br>sandstone laminations observed, rock fabric<br>faint with poorly developed bedding. Highly<br>to slightly weathered. Very low to low<br>strength.                                  |
| Bedrock       | 4.5 to 6.1                                          | SILTSTONE (Class III); grey and dark grey<br>with orange banding, thin fine-grained<br>sandstone laminations observed.<br>Moderately to slightly weathered. Low to<br>medium strength.                                                                                       |
|               | 4.1 to 4.2                                          | LAMINITE (Class III); dark grey with<br>sandstone laminations, 70-80% siltstone,<br>20-30% fine grained sandstone, well to very<br>well developed bedding fabric, distinct thinly<br>laminated bedding, moderately weathered<br>to fresh, typically medium to high strength. |
|               |                                                     | Note that there is a layer of Class V<br>siltstone between depth of 5.2 m and 5.8 m<br>in BH36. This layer underlies approximately<br>1 m thick Class III laminite.                                                                                                          |



# Table 5 – Approximate depth to the top of inferred geotechnical units encountered in boreholes

| Approximate depth to top of inferred geotechnical units (m) |                        |         |      |                  |         |                         |                   |      |  |  |
|-------------------------------------------------------------|------------------------|---------|------|------------------|---------|-------------------------|-------------------|------|--|--|
| Test<br>ID                                                  | Concrete/<br>Asphalt   | Topsoil | Fill | Residual<br>Soil | Bedrock | Class<br>V / IV<br>Rock | Class III<br>Rock | ЕОН  |  |  |
| CENTE                                                       | CENTENNIAL AVENUE SITE |         |      |                  |         |                         |                   |      |  |  |
| BH01                                                        | N/E                    | 0.0     | 0.1  | N/E              | 2.0     | N/A                     | N/A               | 2.6  |  |  |
| BH02                                                        | N/E                    | 0.0     | 0.1  | N/E              | 1.8     | N/A                     | N/A               | 3.2  |  |  |
| BH03                                                        | N/E                    | 0.0     | 0.05 | 3.0              | 5.8     | N/A                     | N/A               | 6.0  |  |  |
| BH04                                                        | N/E                    | 0.0     | 0.1  | 6.0              | N/E     | N/A                     | N/A               | 7.5  |  |  |
| BH05                                                        | N/E                    | 0.0     | 0.1  | N/E              | 1.2     | N/A                     | N/A               | 2.8  |  |  |
| BH06                                                        | N/E                    | 0.0     | 0.1  | 2.0              | 3.0     | 3.0                     | 5.8               | 8.2  |  |  |
| BH07                                                        | N/E                    | 0.0     | 0.2  | 1.6              | 2.5     | 2.5                     | 7.2               | 9.4  |  |  |
| BH08                                                        | 0.0                    | N/E     | 0.15 | 1.5              | 1.9     | N/A                     | N/A               | 6.3  |  |  |
| BH09                                                        | 0.0                    | N/E     | 0.1  | 2.5              | 3.2     | N/A                     | N/A               | 9.0  |  |  |
| BH10                                                        | N/E                    | 0.0     | 0.2  | N/E              | 4.2     | N/A                     | N/A               | 8.0  |  |  |
| BH11                                                        | N/E                    | 0.0     | 0.1  | N/E              | 2.5     | N/A                     | N/A               | 8.0  |  |  |
| BH12                                                        | N/E                    | 0.0     | 0.1  | N/E              | 1.5     | N/A                     | N/A               | 5.2  |  |  |
| BH13                                                        | N/E                    | N/E     | 0.0  | N/E              | 1.5     | N/A                     | N/A               | 5.0  |  |  |
| BH14                                                        | N/E                    | 0.0     | 0.1  | 2.0              | 2.5     | N/A                     | N/A               | 3.0  |  |  |
| BH15                                                        | N/E                    | 0.0     | 0.1  | 1.0              | 3.0     | N/A                     | N/A               | 6.3  |  |  |
| BH16                                                        | N/E                    | 0.0     | 0.1  | 1.3              | 2.0     | N/A                     | N/A               | 4.5  |  |  |
| BH17                                                        | N/E                    | 0.0     | 0.2  | N/E              | 2.0     | N/A                     | N/A               | 3.0  |  |  |
| BH24                                                        | 0.0                    | N/E     | N/E  | 0.16             | 2.5     | N/A                     | N/A               | 8.0  |  |  |
| BH25                                                        | 0.0                    | N/E     | N/E  | 0.08             | 1.2     | N/A                     | N/A               | 8.0  |  |  |
| BH26                                                        | 0.0                    | N/E     | N/E  | 0.15             | 1.8     | 1.8                     | 7.2               | 8.6  |  |  |
| BH27                                                        | 0.0                    | N/E     | N/E  | 0.08             | 1.5     | N/A                     | N/A               | 8.0  |  |  |
| BH28                                                        | 0.0                    | N/E     | N/E  | 0.04             | 3.3     | 3.3                     | 9.5               | 11.5 |  |  |
| PACIF                                                       | IC HIGHWAY             | ' SITE  |      |                  |         |                         |                   |      |  |  |
| BH18                                                        | 0.0                    | N/E     | 0.2  | N/E              | 1.8     | 1.8                     | 6.1               | 9.6  |  |  |
| BH19                                                        | 0.0                    | N/E     | 0.2  | N/E              | 1.5     | 1.5                     | 4.5               | 8.2  |  |  |
| BH20                                                        | 0.0                    | N/E     | 0.1  | N/E              | 1.5     | N/A                     | N/A               | 7.6  |  |  |
| BH21                                                        | 0.0                    | N/E     | 0.15 | N/E              | 1.2     | N/A                     | N/A               | 4.8  |  |  |
| BH22                                                        | N/E                    | N/E     | 0.0  | N/E              | 1.3     | N/A                     | N/A               | 5.5  |  |  |
| BH23                                                        | 0.0                    | N/E     | 0.1  | N/E              | 1.3     | N/A                     | N/A               | 5.8  |  |  |
| BH29                                                        | 0.0                    | N/E     | N/E  | 0.1              | 1.7     | N/A                     | N/A               | 4.0  |  |  |



|            | Approximate depth to top of inferred geotechnical units (m) |         |      |                  |         |                         |                   |     |
|------------|-------------------------------------------------------------|---------|------|------------------|---------|-------------------------|-------------------|-----|
| Test<br>ID | Concrete/<br>Asphalt                                        | Topsoil | Fill | Residual<br>Soil | Bedrock | Class<br>V / IV<br>Rock | Class III<br>Rock | ЕОН |
| BH30       | N/E                                                         | N/E     | 0.0  | 0.7              | 1.6     | N/A                     | N/A               | 4.0 |
| BH31       | 0.0                                                         | N/E     | 0.1  | 0.8              | 3.0     | N/A                     | N/A               | 4.0 |
| BH32       | N/E                                                         | N/E     | 0.0  | 1.5              | 3.2     | N/A                     | N/A               | 4.0 |
| BH33       | 0.0                                                         | N/E     | 0.04 | 0.9              | 2.5     | 2.5                     | 4.1               | 8.2 |
| BH34       | N/E                                                         | N/E     | 0.0  | 0.5              | 1.7     | N/A                     | N/A               | 4.0 |
| BH35       | 0.0                                                         | N/E     | 0.05 | N/E              | 0.5     | N/A                     | N/A               | 4.0 |
| BH36       | 0.0                                                         | N/E     | 0.03 | 0.6              | 1.0     | 1.0                     | 4.2*              | 8.2 |
| BH37       | 0.0                                                         | N/E     | 0.09 | 0.5              | 2.3     | N/A                     | N/A               | 4.0 |
| BH38       | 0.0                                                         | N/E     | 0.18 | 1.6              | 2.3     | N/A                     | N/A               | 4.0 |
| BH39       | 0.0                                                         | N/E     | 0.02 | N/E              | 1.6     | N/A                     | N/A               | 4.0 |

Note: \*Note that there is a 0.6 m thick layer of Class V siltstone below the Class III laminite. EOH = End of Hole N/E = Not Encountered

# 4.4 Groundwater

No groundwater was observed within the boreholes during the investigation.

# 5 Discussion

# 5.1 Excavation Conditions

It is unclear at the time of the investigation if any basements are proposed. Depending on the required earthworks or excavations for the development and based on the geotechnical investigation, excavation may include Topsoil, Fill, Residual Soil and Bedrock units. Excavation in the Topsoil, Fill, Residual Soil and weathered Bedrock should be achievable using conventional earth moving equipment with minor rock breaking. Excavation of more competent Bedrock may require the use of hydraulic impact breakers, rock saws and/or rock grinders and must be undertaken by contractors with suitable experience in rock excavation close to existing structures. Please note that auger TC bit refusal was encountered in most boreholes.

Prospective contractors should make their own assessment of excavatability based on the borehole logs and their site inspection and experience. It is our experience that excavatability is heavily dependent on both the operator and the plant used. Heavy rock breaking equipment will generate vibrations that may impact on neighbouring structures. Where controls on vibrations are required, the contractor should consider the use of smaller hammers, rock saws and grinders to undertake the excavation. The contractor should recognise that there is a potential for damage to adjacent buildings or infrastructure (if any) and consider this in its planning.

# 5.2 Earthworks and Disposal of Excavated Material

We anticipate that some earthworks may be required as part of the redevelopment. We consider that topsoil is not suited for reuse as engineered fill (but could be potentially blended in small quantities) but may be reused for landscaping purposes. It is our opinion that most of the remaining cut material (i.e., Fill, Residual Soil and Bedrock) would be suitable for reuse on the site as engineered fill.

We envisage that the earthworks proposed at the site will require the preparation of a detailed fill specification developed following the guidelines in AS 3798 (2007), "Guidelines on earthworks for commercial and residential



*developments*". Preparation of this fill specification is outside the scope of this report. We consider, however, that the fill specification should address at least the following:

- 1. Subgrade preparation and base geometry requirements.
- 2. Material requirements, including a clear definition of:
  - a. Suitable and unsuitable material.
  - b. Grading or maximum particle size requirements. We note that a conservative definition of maximum particle size may result in some of the materials on site being excluded from reuse as engineered fill. It is our opinion that this restriction may not significantly benefit fill performance.
- 3. Fill placement requirements, including a clear definition of compacted layer thickness, we suggest 300 mm.
- 4. Compaction requirements. We suggest that a minimum and maximum density ratio be adopted to control any potential shrink swell of the clayey fill material and to limit the effect of fill material variability on the fill performance, we suggest 98 to 102 % standard.
- 5. Moisture control requirements. We consider that control on placement moisture variation should be adopted to control any potential shrink swell of the clayey fill material, we suggest moisture variation of +- 2%.
- 6. Inspection and testing requirements, including a clear definition of:
  - a. Level of control testing, e.g. Level 1 as per AS3798
  - b. Lot testing, this is an important aspect of earthworks control but often ignored in acceptance of the works
  - c. Testing methodology
  - d. Testing frequency.
- 7. Responsibilities of the contractor. We envisage that such responsibilities would include:
  - a. Undertake the earthworks in accordance with fill specification
  - b. Seek approvals by the GITA as required by the fill specification, in particular prior to placing any new fill
  - c. Responsibilities of the Geotechnical Inspection and Testing Authority (GITA). The fill specification should define:
  - d. The inspection and testing responsibilities of the GITA
  - e. The reporting responsibilities of the GITA
  - f. The final certification responsibilities of the GITA. We note that the specification should require the GTA to certify that "all the earthworks have been documented and have been undertaken in accordance with the relevant fill specification". It is not adequate just to refer to AS3798 Level 1.

For disposal purposes, it is likely the Residual Soil and Bedrock units are able to be validated as Virgin Excvataed Natural Material (VENM). However, the Fill unit encountered can either be disposed as General Solid Waste or validated as Excavated Natural Material (ENM).

The most economical outcome would be to re-use the existing fill on site as much as possible and dispose the VENM off site. VENM verification would be required during construction for material disposal. Based on the Fill observed during the geotechnical investigation, we have not found attributes that can be assessed visually (e.g. rubber, plastic, bitumen, paper, cloth, paint and wood) that would preclude ENM validation. We consider it is likely that the existing fill will be able to be so validated but this can only be done once the material is stockpiled on site during construction. We note that the earthwork contractor should go to considerable extent to segregate different materials (eg Topsoil, Fill and Residual Soils).

#### 5.3 Site Classification

Based on the field observations and the inferred geotechnical units from the boreholes, we recommend that structures within scope of AS2870 be designed for a site classification of Class "M" for both sites. This is due to the presence of clay fill layer deeper than 1.0 m over the majority of the sites. The site can be re-classified during the works for specific areas where required.

#### 5.4 Permanent and Temporary Batters



The batter slope angles shown in Table 6 are recommended for the design of batters up to 5 m height subject to the following recommendations:

- The batters shall be protected from erosion. Permanent batters will need face support such as vegetation or shotcrete
- Permanent batters shall be drained for a distance behind the faces at least equal to the height
- Temporary batters shall not be left unsupported for more than 2 months without further advice, and inspection by a suitably experienced geotechnical engineer should be undertaken following significant rain events
- No buildings, surcharge loads or services should be located within 1 batter height of the crest.

If the conditions above cannot be met, further advice should be sought.

Where Fill is not engineered/controlled fill, batter slope angles should be assessed by a suitable experienced geotechnical engineer.

Exposed rock faces should be inspected by a geotechnical engineer or engineering geologist to assess the need for localised rock bolting to control adverse jointing in the Bedrock unit and shotcreting for overall face support and weather protection.

#### Table 6 – Batter Slope Angles

| Unit            | Temporary | Permanent |
|-----------------|-----------|-----------|
| ENGINEERED FILL | 2H : 1V   | 2.5H : 1V |
| RESIDUAL SOIL   | 1.5H : 1V | 2H : 1V   |
| BEDROCK         | 0.5H : 1V | 1H : 1V   |

Steeper batters may be possibly subject to further advice, probably including inspection during construction and shortcreting and rock bolting etc.

## 5.5 Retaining Walls

Cuts in the Fill, Residual Soil and Bedrock units steeper than the recommended permanent batter slopes in Table 6 will need to be supported by some form of retaining structure.

The selection of the appropriate retention system is a matter of design. The designer should consider the following factors in making its selection:

- Technical factors
  - Performance
  - Ground conditions (this is addressed below with the design parameters)
  - Surcharge loading and
  - Proximity of structures, buildings and roads, etc.
- Non- technical factors
  - Cost (to build and to maintain)
  - Other constraints such as real estate, neighbouring site / boundary, aesthetics, legislation, etc.

The design of these structures should be based on the following geotechnical properties:

- Effective strength parameters in Table 7 when assessing the earth pressure on retaining structures
- A lateral pressure of 10 kPa for vertical cuts in the Bedrock units (Class III or better). This is to allow for blocks and rock wedges formed due to adverse defects that may exist within the unit
- Water pressure (depending on the type of structure).

Note that design of retention systems may be based on either  $K_a$  or  $K_o$  earth pressures. Design using active earth pressures provides the minimum lateral earth pressure that must be supported to avoid failure and requires a wall



that can rotate or translate to allow the pressures to reduce to these values (vertical and lateral movements up to 2% of height may occur, typical movements will be much less).

Where the design is based on  $K_o$  pressures, construction should be carefully controlled to avoid unwanted effects. It should be noted that designing for  $K_o$  pressures do not, of themselves, ensure that movement does not occur. Movements are controlled by the construction method, especially sequence.

Both surface and sub-surface drainage needs to be designed and constructed properly to prevent pore water pressures from building up behind the retaining walls or appropriate water pressures must be included in the design.



#### Table 7 – Engineering Parameters of Inferred Geotechnical Units

|                                                                       | Bulk Unit         | Effective<br>Strength<br>Parameters |                         | Ultimate<br>Bearing<br>Pressure                     | Allowable<br>Bearing<br>Pressure                 | Ultimate                   | Elastic Parameters                                                                  |                        |
|-----------------------------------------------------------------------|-------------------|-------------------------------------|-------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------|------------------------|
| Inferred Unit                                                         | Weight<br>(kN/m3) | c'<br>(kPa)                         | Ф <sup>,</sup><br>(deg) | under<br>Vertical<br>Centric<br>Loading2<br>1 (kPa) | under<br>Vertical<br>Centric<br>Loading<br>(kPa) | Shaft<br>Adhesion<br>(kPa) | Young's<br>Modulus<br>(MPa)                                                         | Poisso<br>n's<br>Ratio |
| Engineered Fill                                                       | 18                | 0                                   | 30                      | 4001                                                | 1501                                             | N.A.                       | Engineer<br>ed Fill                                                                 | 18                     |
| Residual Soil                                                         | 18                | 0                                   | 30                      | 4001                                                | 1501                                             | N.A.                       | Residual<br>Soil                                                                    | 18                     |
| Siltstone/Laminite<br>V/IV                                            | 22                | 10                                  | 30                      | 30002                                               | 7003                                             | 50                         | Siltstone/<br>Laminite<br>V/IV                                                      | 22                     |
| Siltstone/Laminite<br>/ Interbedded<br>siltstone and<br>sandstone III | 24                | N.A.                                | N.A.                    | 60002                                               | 20003                                            | 350                        | Siltstone/<br>Laminite/<br>Interbedd<br>ed<br>siltstone<br>and<br>sandston<br>e III | 24                     |

Note: 1. Minimum plan dimension of 1.0 m and a minimum embedment depth of 0.5 m.

2. Ultimate bearing pressure for bedrock assumes a settlement of approximately 5% of the least footing dimension for footings in rock.

3. Allowable bearing pressure assumes a settlement of approximately 1% of the least footing dimension for footings in rock.

#### 5.6 Foundations

#### 5.6.1 Shallow Footings

Pad footings can be proportioned on the basis of an allowable bearing pressure (ABP) for centric vertical loads provided in Table 7.

We note that an allowable bearing pressure (ABP) is not a soil property. It depends on many factors such as the size of the footings, the embedment depth, the load direction and eccentricity, the stiffness of the footing, the adopted factor of safety (FOS), as well as the soil properties. As footings get bigger or deeper the capacity increases rapidly. As the load gains eccentricity or becomes inclined, the capacity reduces rapidly.

Settlements in the can be estimated using the elastic parameters provided in Table 7. When assessing the settlement of the shallow footings, the designer needs to consider the additional ground settlement due to the total building load on both shallow and deeper units. The differential settlement due to the building load shall also be assessed.

Foundations conditions at the proposed shallow pad footings locations should be inspected by a suitably qualified geotechnical engineer prior to the pouring of concrete.

#### 5.6.2 Piles

We envisage that piles would be founded within the Bedrock unit.



Piles should be designed in accordance with the requirements in AS 2159 (2009), Piling – Design and Installation. The parameters provided in Table 7may be adopted in the design of piles founded in Bedrock unit.

The designer should note the following with regards to the pile design:

- The ABP needs to be confirmed by a geotechnical engineer through pile inspections prior to pouring concrete
- Under permanent load, the contribution of side adhesion for soils including Fill and Residual Soil should be ignored
- Deflection should be checked using the recommended elastic parameters in Table 7
- Where adjacent foundation details differ (e.g., pile and pad, differing loads or ground conditions), differential settlement should also be assessed.

The bearing capacities provided are contingent on piles or footings being vertically and centrally loaded. Further advice should be sought if the footings are not vertically centrically loaded. Should higher bearing capacities be required of the Bedrock, this may be available subject to further advice.

With regards to the pile design we recommend that:

- A geotechnical strength reduction factor,  $\Phi_g = 0.60$  (AS2159 CL. 4.3.2) be adopted for a high redundancy system for an assessed average risk rating (ARR) between 2.5 and 3.0. This should be reviewed to suit the specific design and appropriate pile testing proposed by the structural designers in accord with the requirements of AS2159
- It may be possible to increase the pile reduction factors, if the details of the proposed pile installation procedures indicate a high level of quality control with regards to concrete placement, base cleanliness, etc
- If a geotechnical strength reduction factor,  $\Phi_g = 0.40$  is adopted then no pile testing will be required (AS2159 Clause 8.2.4 (b)).

## 5.7 Pavements

Subgrade CBR for pavement design depends on the material at the finished subgrade levels. Based on the CBR tests undertaken by PSM (refer to Table 1) we recommend a design subgrade CBR of 2% be adopted for the pavement design at both sites. Should a higher design CBR be required, further testing at specific locations may be required and further advice should be sought.

# 6 Salinity and Aggressivity Assessment

# 6.1 Salinity

Site Investigations for Urban Salinity (DLWC 2002) classify soil salinity based on electrical conductivity (ECe). The method of conversion from EC1:5 to ECe (electrical conductivity of saturated extract) is based on DLWC (2002) and given by ECe = EC1:5 x M, where M is the multiplication factor based on "Soil Texture Group".

The "Soil Texture Group" of the samples tested were assessed during our investigation. The salinity classification for the soil samples that were tested are presented in Table 8.

| Sample ID              | EC1:5  | Soil Type  | М   | ECe    | Salinity Class |  |
|------------------------|--------|------------|-----|--------|----------------|--|
|                        | (dS/m) |            |     | (dS/m) |                |  |
| CENTENNIAL AVENUE SITE |        |            |     |        |                |  |
| BH01 – 2.0m            | 0.092  | Clay Loam  | 9   | 0.828  | Non-saline     |  |
| BH03 - 2.0m            | 0.180  | Light Clay | 8.5 | 1.53   | Non-saline     |  |
| BH05 - 0.2m            | 0.075  | Light Clay | 8.5 | 0.638  | Non-saline     |  |
| BH07 - 2.5m            | 0.048  | Clay Loam  | 9   | 0.432  | Non-saline     |  |

#### Table 8 – Salinity Classification



| Sample ID            | EC1:5  | Soil Type         | м   | ECe    | Salinity Class |
|----------------------|--------|-------------------|-----|--------|----------------|
|                      | (dS/m) |                   |     | (dS/m) |                |
| BH08 - 2.5m          | 0.019  | Clay Loam         | 9   | 0.171  | Non-saline     |
| BH09 - 0.5m          | 0.208  | Light Clay        | 8.5 | 1.768  | Non-saline     |
| BH11 - 6.0m          | 0.051  | Clay Loam         | 9   | 0.459  | Non-saline     |
| BH12 - 0.3 – 0.4m    | 0.083  | Medium Clay       | 7   | 0.581  | Non-saline     |
| BH14 - 0.1 – 1.0m    | 0.119  | Light Clay        | 8.5 | 1.012  | Non-saline     |
| BH16 - 2.5m          | 0.106  | Clay Loam         | 9   | 0.954  | Non-saline     |
| PACIFIC HIGHWAY SITE |        |                   |     |        |                |
| BH18 – 1.0m          | 0.090  | Light Medium Clay | 8   | 0.72   | Non-saline     |
| BH19 – 2.6m          | 0.017  | Clay Loam         | 9   | 0.153  | Non-saline     |
| BH20 – 7.0m          | 0.025  | Clay Loam         | 9   | 0.225  | Non-saline     |
| BH21 – 0.5m          | 0.047  | Medium Clay       | 7   | 0.329  | Non-saline     |
| BH22 – 1.5m          | 0.058  | Clay Loam         | 9   | 0.522  | Non-saline     |

It is assessed that the soils on site are classified as "non-saline". We have referred to Clause 4.8.2 of Australian Standard AS3600-2009 "Concrete Structures" and note that the assessed soil electrical conductivity ( $EC_e$ ) is less than the upper limit of the "A2" exposure classification for both sites.

# 6.2 Corrosivity / Aggressivity

Table 6.4.2(C) of Australian Standard AS2159:2009, Piling – Design and Installation provides criteria for exposure classification for concrete piles based on sulfates in the soil and groundwater, soil and groundwater pH, and chlorides in groundwater. On the basis of the soil sulfates and pH testing completed we assess the exposure classification for concrete piles in the soil to be mild for both sites.

Table 6.5.2(C) of Australian Standard AS2159:2009, Piling – Design and Installation provides criteria for exposure classification for steel piles based on resistivity, soil and groundwater pH, and chlorides in soil and groundwater. On the basis of soil chlorides and pH testing completed we assess the exposure classification for steel piles in the soil to be non-aggressive for both sites.

# 6.3 Sodicity

Sodicity provides a measure of the likely dispersion on wetting and to shrink/swell properties of a soil. Soil sodicity is classified based on the Exchangeable Sodium Percentage (ESP) which is the amount of exchangeable sodium as a percentage of the Cation Exchange Capacity (DLWC, 2002).

The Exchangeable Sodium Percentages calculated from these laboratory results, ranging from 2.3% to 41.8%, indicates that the soils on both sites are highly sodic when compared to criteria listed in "Site Investigations for Urban Salinity", DLWC (2002).

# 7 Environmental and Contamination Investigation

An environmental and contamination site investigation has been undertaken by JBS&G for both sites and the results of the investigation is presented in Appendix F. The main conclusions are extracted from the JBS&G report and presented below.

# 7.1 Chatswood High School



Based on the scope of works undertaken, and in accordance with the limitations outlined in Section 12 of the report in Appendix F1, it is considered that the site does not present any unacceptable risks to human and ecological health, pursuant to NEPC (2013), and is considered suitable for use as a primary and secondary school facility. JBS&G recommend the formulation of an Unexpected Finds Protocol (UFP) for the site to address any unexpected finds that may be encountered during the redevelopment of the site.

# 7.2 Chatswood Public School

Based on the scope of investigation undertaken, and in accordance with the limitations in Section 12 of the report in Appendix F2, the following conclusions are made:

- Potentially unacceptable concentrations of COPCs were identified within soils at the site, primarily associated with petroleum hydrocarbons and PAHs;
- Based on the current configuration and uses of the site, JBS&G do not consider there to be complete sourcereceptor pathways that would result in potentially unacceptable risk to current site users (i.e. concrete hardstand separates impacted soils from the ground surface);
- Should excavation works be required prior to the commencement of redevelopment activities at the site, JBS&G
  recommend the development of a CEMP, or similar, to ensure that the current site configuration that enables
  the site to be considered suitable under the current site uses, are maintained; and
- JBS&G recommend the development of a RAP to guide the required management of identified soil contamination during and after development such that the site can be considered suitable for the proposed educational land use.

# 8 Hazardous Materials Assessment

A hazardous materials (hazmat) assessment has been undertaken by JBS&G for both sites and the results of the assessment is presented in Appendix G. The main conclusions are extracted from the JBS&G report and presented below.

## 8.1 Chatswood High School

Based on the scope of this assessment and with reference to the limitations included in Section 6, the following conclusions are made with respect to the Hazardous Building Materials Survey completed at the Chatswood High School site.

#### 8.1.1 Hazardous Materials

Identified and suspected hazardous materials were observed throughout the site as a result of visual identification and laboratory analysis. The following recommendations are made for the removal of the identified hazardous materials to potentially mitigate harmful effects as a result of the proposed works program. The person with management or control of the site, must ensure so far as is reasonably practicable that the identified hazardous materials are removed prior to the commencement of demolition and refurbishment works.

The identified and suspected hazardous materials are presented in the Hazardous Materials Register included in Appendix G1.

- Friable Asbestos Containing Dust: friable ACD has been identified at the site. Prior to the demolition of the structures it is recommended that the following work is undertaken:
  - A Class A (friable and non-friable) licensed asbestos removalist shall be engaged to remove all asbestos containing dust as identified in the Hazardous Materials Register, included in Appendix G1
  - SafeWork NSW is to be notified of all asbestos removal work with appropriate permits to remove friable asbestos obtained prior to works commencing. In addition, an asbestos removal control plan is to be developed by the engaged licensed asbestos removalist prior to the removal works outlining the specific control measures necessary to minimise any risk from exposure to asbestos. All removal and disposal of friable asbestos materials shall be conducted in accordance with Work Health and Safety Act (2011), Work Health and Safety Regulation (2017) and SWA2018a. The materials should be disposed of to an



appropriately licensed landfill in accordance with the Waste Classification Guidelines Part 1: Classifying Waste (NSW EPA, 2014)

- Air monitoring is required to be conducted by an independent Licensed Asbestos Assessor (LAA) before and during the removal of the friable asbestos containing dust identified within Room R1007 in Building A, Room R1009 in Building B and Room R1005 in Building C. Air monitoring must also be conducted as part of the clearance inspection
- Following removal works, a clearance inspection shall be undertaken by the appointed LAA to ensure that the friable ACD materials identified in the Asbestos Register have been removed to a satisfactory industry standard or have been maintained in a manner that does not present an exposure hazard to current or future site occupants. Following the completion of the clearance inspection, a clearance certificate shall be issued by the LAA to confirm that the friable ACD has been successfully removed and that the removal area is suitable for planned demolition works to commence.
- Non-Friable Asbestos Containing Materials: non-friable ACM has been identified at the site. Prior to the demolition and/or refurbishment of the structures it is recommended that the following work is undertaken:
  - A Class A or B licensed asbestos removalist shall be engaged to remove all asbestos containing materials as identified in the Hazardous Materials Register (Appendix G1). Removal and disposal of non-friable asbestos materials shall be undertaken in accordance with the Work Health and Safety Act (2011), Work Health and Safety Regulation (2017) and SWA2018a
  - While not mandatory during the removal of non-friable ACM, it is considered best practice and recommended that asbestos air monitoring is undertaken during any non-friable asbestos removal works
  - Following removal works, a clearance inspection shall be completed by a competent person or LAA to
    ensure that the asbestos materials identified at the site have been removed to a satisfactory standard.
    Following the completion of the clearance inspection, a clearance certificate shall be issued by the
    competent person or LAA to confirm that the ACM has been successfully removed and that the site is
    suitable for planned demolition works to commence.
- Lead Containing Dust: elevated levels of lead in dust above the adopted site criteria were identified at the site. A
  suitably experienced hazardous materials removal contractor should be engaged to remove the lead containing
  dust prior to the commencement of demolition and refurbishment works
- Lead Based Paints: lead based paints identified in Hazardous Materials Register (Appendix G1) should be managed in accordance with the AS4361.2-2017. If peeling or deteriorated they should be removed under controlled conditions by an experienced contractor prior to demolition and refurbishment. Stable lead based paints adhered to building fabric can be removed as general solid waste provided care is taken to minimise any potential for paint flakes to be dispersed onto ground surfaces
- Synthetic Mineral Fibres: the synthetic mineral fibres encountered during this inspection were generally contained and deemed to be low risk. These SMF materials can be removed with the building and demolition waste with care taken not to generate fibres. Appropriate PPE is recommended including the use of P2 respirator as minimum and appropriate removal methodology as outlined in [NOHSC: 1004(1990)] and [NOHSC: 2006(1990)]
- Polychlorinated Biphenyls: all old fluorescent light fittings throughout the site are to be treated as containing PCB capacitors unless further investigation confirms otherwise. These light fittings should be removed and disposed of as Scheduled Waste or re-inspected once isolated from the electrical system to confirm the presence or absence of PCB capacitors.

#### 8.1.2 Inaccessible Areas

Areas inaccessible during the current HBMS should be inspected by a suitably qualified competent person prior to any works commencing. Suspected ACM should be sampled by a suitably qualified competent person prior to any works commencing.

#### 8.1.3 Unexpected Finds

Any materials deemed to be consistent with those detailed in the Hazardous Materials Register that have not been previously identified should be assumed to have the same content and be treated accordingly. Should any



additional suspected hazardous materials be observed during or prior to demolition works, works should cease until a suitably qualified occupational hygienist can assess the suspected hazardous material and provide appropriate recommendations for management and/or removal.

# 8.2 Chatswood Public School

Based on the scope of this assessment and with reference to the limitations included in Section 6, the following conclusions are made with respect to the Hazardous Building Materials Survey completed at the Chatswood Public School site.

#### 8.2.1 Hazardous Materials

Identified and suspected hazardous materials were observed throughout the site as a result of visual identification and laboratory analysis. The following recommendations are made for the removal of the identified hazardous materials to potentially mitigate harmful effects as a result of the proposed works program. The person with management or control of the site, must ensure so far as is reasonably practicable that the identified hazardous materials are removed prior to the commencement of demolition and refurbishment works.

The identified and suspected hazardous materials are presented in the Hazardous Materials Register included in Appendix G2.

- Asbestos Containing Materials: non-friable ACM has been identified at the site. Prior to the demolition and/or refurbishment of the structures it is recommended that the following work is undertaken:
  - A Class A or B licensed asbestos removalist shall be engaged to remove all asbestos containing materials as identified in the Hazardous Materials Register (Appendix G2). Removal and disposal of non-friable asbestos materials shall be undertaken in accordance with the Work Health and Safety Act (2011), Work Health and Safety Regulation (2017) and SWA2018a
  - While not mandatory during the removal of non-friable ACM, it is considered best practice and recommended that asbestos air monitoring is undertaken during any non-friable asbestos removal works
  - Following removal works, a clearance inspection shall be completed by a competent person or licensed asbestos assessor to ensure that the asbestos materials identified at the site have been removed to a satisfactory standard. Following the completion of the clearance inspection, a clearance certificate shall be issued by the competent person or LAA to confirm that the ACM has been successfully removed and that the site is suitable for planned demolition works to commence.
- Lead Containing Dust: elevated levels of lead in dust above the adopted site criteria were identified at the site. A
  suitably experienced hazardous materials removal contractor should be engaged to remove the lead containing
  dust prior to the commencement of demolition and refurbishment works
- Lead Based Paints: lead based paints identified in Hazardous Materials Register (Appendix G2) should be managed in accordance with the AS4361.2-2017. If peeling or deteriorated they should be removed under controlled conditions by an experienced contractor prior to demolition and refurbishment. Stable lead based paints adhered to building fabric can be removed as general solid waste provided care is taken to minimise any potential for paint flakes to be dispersed onto ground surfaces
- Synthetic Mineral Fibres: the synthetic mineral fibres encountered during this inspection were generally contained and deemed to be low risk. These SMF materials can be removed with the building and demolition waste with care taken not to generate fibres. Appropriate PPE is recommended including the use of P2 respirator as minimum and appropriate removal methodology as outlined in [NOHSC: 1004(1990)] and [NOHSC: 2006(1990)]
- Polychlorinated Biphenyls: all old fluorescent light fittings throughout the site are to be treated as containing PCB capacitors unless further investigation confirms otherwise. These light fittings should be removed and disposed of as Scheduled Waste or re-inspected once isolated from the electrical system to confirm the presence or absence of PCB capacitors.

#### 8.2.2 Inaccessible Areas



Areas inaccessible during the current HBMS should be inspected by a suitably qualified competent person prior to any works commencing. Suspected ACM should be sampled by a suitably qualified competent person prior to any works commencing.

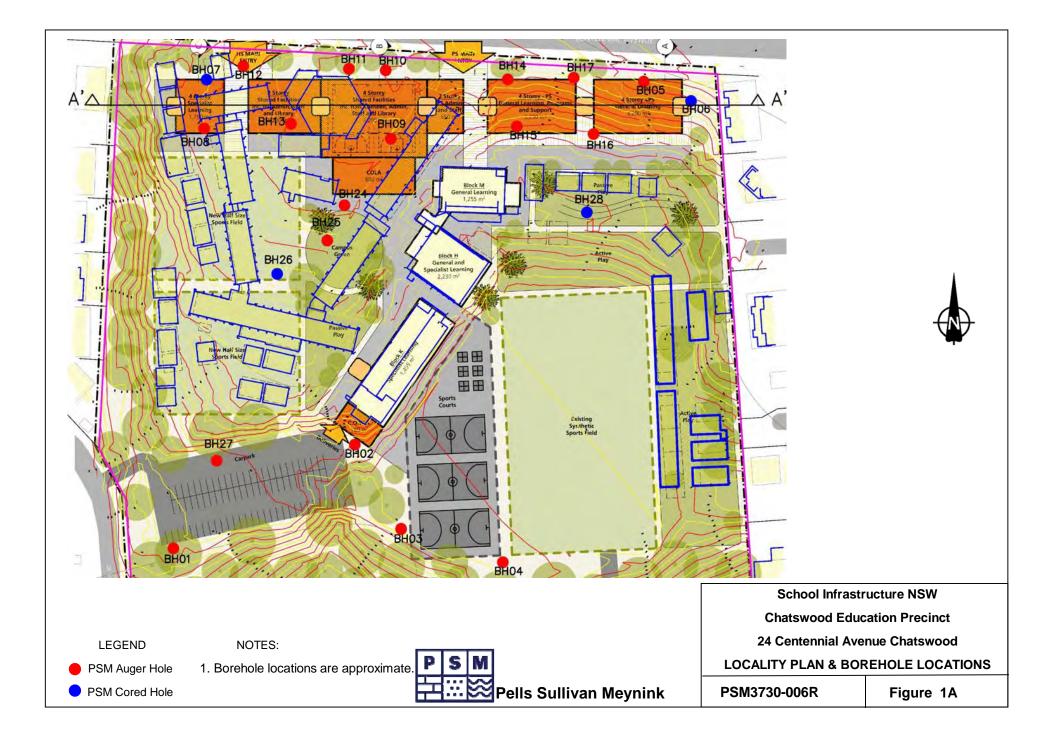
#### 8.2.3 Unexpected Finds

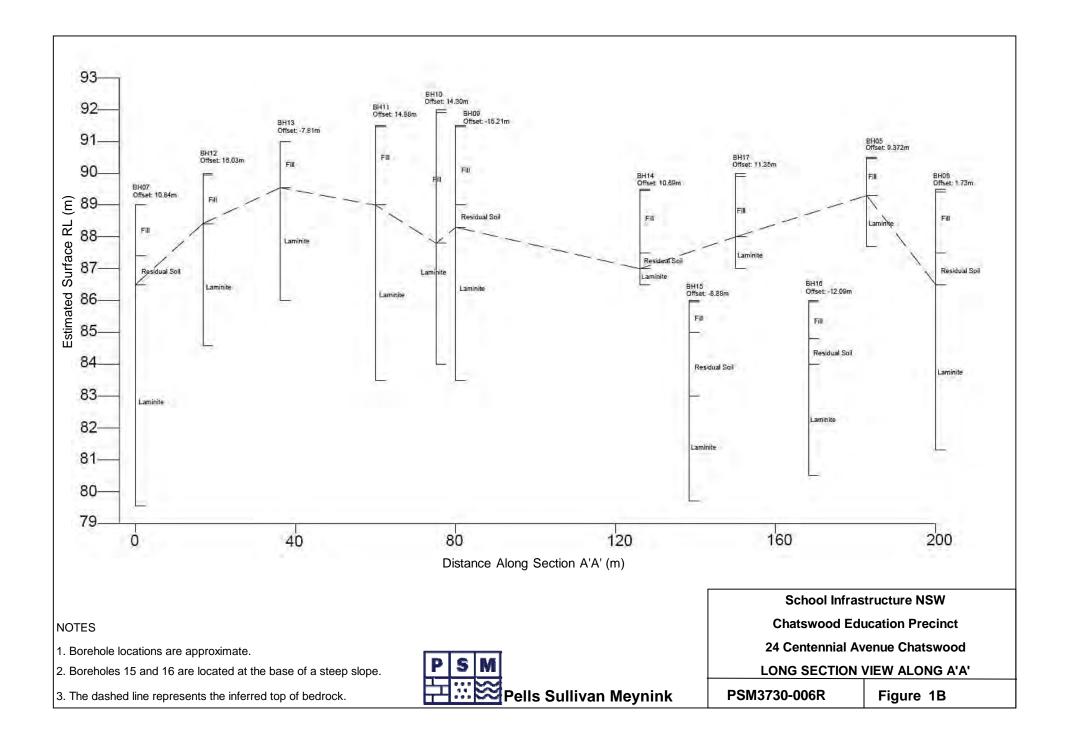
Any materials deemed to be consistent with those detailed in the Hazardous Materials Register that have not been previously identified should be assumed to have the same content and be treated accordingly. Should any additional suspected hazardous materials be observed during or prior to demolition works, works should cease until a suitably qualified occupational hygienist can assess the suspected hazardous material and provide appropriate recommendations for management and/or removal.

Should there be any queries, do not hesitate to contact the undersigned.

For and on behalf of PELLS SULLIVAN MEYNINK

h


YUN BAI SENIOR GEOTECHNICAL ENGINEER


Encl.

- Figure 1A Test Locations (Centennial Avenue)
- Figure 1B Long Section View Along A'A'
- Figure 2 Test Locations (Pacific Highway)
- Figure 3 Selected Photos (1 of 2)
- Figure 4 Selected Photos (2 of 2)
- Figure 5 Atterberg Limits Graph
- Appendix A Geotechnical Engineering Borehole Logs
- Appendix B Point Load Test Results
- Appendix C CBR testing results
- Appendix D Atterberg Limit Test Results
- Appendix E Environmental testing results
- Appendix F JBS&G Environmental Assessment Report
- Appendix G JBS&G Hazardous Material Assessment Report

BERNARD SHEN PRINCIPAL







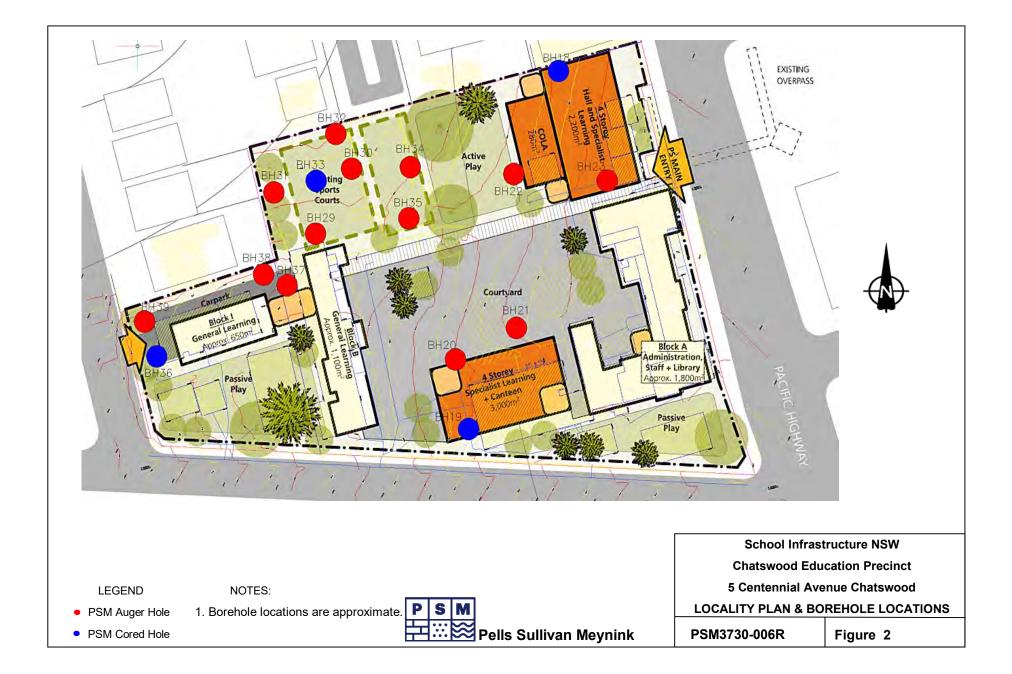





Photo 1: General site conditions - Centennial Avenue site facing South towards BH03



Photo 2: General site condtions - Centennial Avenue site facing East towards BH11

School Infrastructure NSW

**Chatswood Education Precinct** 

5 & 24 Centennial Avenue Chatswood SELECTED SITE PHOTOS (SHEET 1 OF 2)

Pells Sullivan Meynink

PSM3730-006R

Figure 3



Photo 3: General site conditions - Pacific Highway site facing East towards BH19



Photo 4: Typical Rig Coring setup - Centennial Avenue site facing East towards BH07

School Infrastructure NSW

**Chatswood Education Precinct** 

5 & 24 Centennial Avenue Chatswood SELECTED SITE PHOTOS (SHEET 2 OF 2)

Pells Sullivan Meynink

PSM3730-006R

Figure 4



Appendix A Geotechnical Engineering Borehole Logs



**Centennial Avenue Site** 

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                    | Notes                                      |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| BH01<br>(RL 79.0m)                             | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, dry and soft consistency, roots and rootlets present.                           | Topsoil                                    |
|                                                |                      |                                                                                                                         | Inferred Fill                              |
|                                                | 0.1 – 2.0 m          | Silty CLAY; dark brown, low plasticity, trace gravel<br>up to 10 mm, sub-angular, dry and hard<br>consistency.          | SPT at 1.5 m:<br>3, 35, 45, N = 80         |
|                                                |                      | Becomes brown at 0.5 m.                                                                                                 | ES collected at 2.0 m.                     |
|                                                | 2.0 – 2.6 m          |                                                                                                                         | Inferred Bedrock                           |
|                                                |                      | LAMINITE; grey and dark grey, extremely low to<br>low strength, extremely weathered. Sandstone<br>laminations observed. | Description<br>based on drill<br>cuttings. |
|                                                | 2.6 m                | Hole terminated at 2.6 m.                                                                                               | TC-bit refusal.                            |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                              | Notes                                                                                         |
|------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| BH02<br>(RL 79.5m)                             | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, moist, soft consistency, roots and rootlets present.                                                      | Topsoil<br>CBR sample<br>collected at 0.1 –<br>0.5m.                                          |
|                                                | 0.1 – 1.8 m          | Silty CLAY; brown, low plasticity, trace gravel<br>up to 10 mm, sub-angular to angular, dry, hard<br>consistency.<br>Becomes pale brown at 1.0 m. | Inferred Fill<br>SPT at 1.0 m:<br>10, 13, 27, N= 40<br>Atterberg sample<br>collected at 1.5m. |
|                                                | 1.8 – 3.2 m          | LAMINITE; grey and black, extremely low<br>strength, extremely weathered. Sandstone<br>laminations observed.                                      | Inferred Bedrock<br>Description based<br>on drill cuttings.<br>SPT at 2.5 m:<br>Refusal.      |
|                                                | 3.2 m                | Hole terminated at 3.2 m.                                                                                                                         | TC-bit refusal.                                                                               |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                            | Notes                                                                                                             |
|------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.05 m           | Silty CLAY; dark brown, low plasticity, moist and soft consistency, roots and rootlets present.                                 | Topsoil                                                                                                           |
|                                                | 0.05 – 1.0 m         | Silty Sand; grey, medium grained sand, trace<br>gravel up to 10mm, sub-angular to angular, dry<br>and medium dense consistency. | Inferred Fill<br>SPT at 1.0 m:<br>5, 18, 17, N =<br>35                                                            |
|                                                | 1.0 – 3.0 m          | Silty CLAY; red and grey, low plasticity, with<br>gravel up to 15mm, sub-angular, dry and very stiff<br>consistency.            | Inferred Fill<br>ES collected at<br>2.0m.<br>SPT at 2.5m:                                                         |
| BH03<br>(RL 77.5m)                             | 3.0 – 5.8 m          | CLAY; red and brown, medium to high plasticity,<br>with gravel up to 10mm, angular, dry, very stiff to<br>hard consistency.     | 5, 9, 15, N = 24<br>Inferred<br>Residual Soil<br>SPT at 4.0m:<br>6, 10, 21, N =<br>31<br>SPT at 5.5m:<br>Refusal. |
|                                                | 5.8 – 6.0 m          | LAMINITE; grey, extremely low strength,<br>extremely weathered. Sandstone laminations<br>observed.                              | Inferred<br>Bedrock<br>Description<br>based on drill<br>cuttings.                                                 |
|                                                | 6.0 m                | Hole terminated at 6.0 m.                                                                                                       | TC-bit refusal.                                                                                                   |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                           | Notes                                         |
|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, moist and soft consistency, roots and rootlets present.                                | Topsoil                                       |
|                                                |                      |                                                                                                                                | Inferred Fill                                 |
|                                                |                      |                                                                                                                                | SPT at 1.0 m:<br>2, 4, 8. N = 12              |
|                                                |                      | CLAY; orange and brown, low to medium plasticity, with silt, trace gravel up to 5mm, sub-angular, moist and stiff consistency. | Atterberg<br>sample<br>collected at 1.0<br>m. |
|                                                |                      | Becomes dark brown at 2.0 m.                                                                                                   | Occasional<br>gravel fill                     |
| BH04                                           | 0.1 – 6.0 m          | Becomes dark brown and orange, stiff to very stiff at 3.0 m.                                                                   | observed from 2.0 m.                          |
| (RL 77.5m)                                     |                      | Becomes hard at 5.5 m.                                                                                                         | SPT at 2.5 m:<br>3, 5, 6, N = 11              |
|                                                |                      |                                                                                                                                | SPT at 4.0 m:<br>3, 7, 13, N = 20             |
|                                                |                      |                                                                                                                                | SPT at 5.5 m:<br>11, 14, 30, N=<br>44         |
|                                                | 6.0 – 7.5 m          | Sandy CLAY; grey, yellow and brown, medium plasticity, fine grained sand, dry to moist, hard consistency.                      | Inferred<br>Residual Soil                     |
|                                                |                      | Siltstone fragments encountered at 6.5 m.                                                                                      |                                               |
|                                                | 7.5 m                | Hole terminated at 7.5 m.                                                                                                      | TC-bit refusal.                               |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                                       | Notes                                                                                                                                                                         |
|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, with gravel<br>up to 2mm, sub-angular to angular, dry and soft<br>consistency, roots and rootlets present.                                                                         | Topsoil                                                                                                                                                                       |
| BH05<br>(RL 90.5m)                             | 0.1 – 1.2 m          | CLAY; dark brown, low plasticity, with silt, trace<br>gravel up to 2mm, angular, dry and hard<br>consistency.<br>Becomes pale brown and grey at 1.0 m.                                                                     | Inferred Fill<br>CBR sample<br>collected at 0.1<br>– 0.3 m.<br>ES collected at<br>0.2 m.<br>Atterberg<br>sample<br>collected at<br>1.0m<br>SPT at 1.0 m:<br>4, 20, 32, N = 52 |
|                                                | 1.2 – 2.8 m          | LAMINITE; grey with yellow staining, extremely<br>low strength, extremely weathered. Sandstone<br>laminations observed. Increasing strength and<br>decreasing weathering with depth.<br>Becomes highly weathered at 2.5 m. | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.                                                                                                                |
|                                                | 2.8 m                | Hole terminated at 2.8 m.                                                                                                                                                                                                  | TC-bit refusal.                                                                                                                                                               |

| Ρ | S | М  |
|---|---|----|
| Ŧ |   | ** |

|                           | -                       |                                    |                                          | g Log - N                                              |          |           |                                            |             |                          |                                                                                                                                                                                                                                                                                                   |                                      |                                   |                                |                               |                        |                                                                                                                                                                                                                                      |
|---------------------------|-------------------------|------------------------------------|------------------------------------------|--------------------------------------------------------|----------|-----------|--------------------------------------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|--------------------------------|-------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | lient<br>rojec          |                                    | me.                                      | SINSW<br>Chatsv                                        |          | Eduz      | ration                                     | Procir      | nct                      | Comm                                                                                                                                                                                                                                                                                              |                                      | :                                 |                                | 01/20<br>01/20                |                        |                                                                                                                                                                                                                                      |
|                           | ole L                   |                                    |                                          |                                                        |          |           |                                            |             |                          | •                                                                                                                                                                                                                                                                                                 | Completed: 23/01/20<br>Logged By: MB |                                   |                                |                               | 19                     |                                                                                                                                                                                                                                      |
|                           | ole F                   |                                    |                                          |                                                        |          | -         |                                            |             |                          | Check                                                                                                                                                                                                                                                                                             |                                      |                                   | YΒ                             |                               |                        |                                                                                                                                                                                                                                      |
| D                         | rill N                  | lode                               | lan                                      | d Mounting:                                            | Hai      | njin D    | B8 Tr                                      | ack M       | ounted                   | I Inclination: -90° RL Su                                                                                                                                                                                                                                                                         | face:                                | 89                                | .50 n                          | n                             |                        |                                                                                                                                                                                                                                      |
| H                         | ole [                   | Diam                               | eter                                     | 1                                                      | 110      | ) mm      |                                            |             |                          | Bearing: Datum                                                                                                                                                                                                                                                                                    |                                      | Ał                                | ID                             | (                             | Operator               | BG Drilling                                                                                                                                                                                                                          |
|                           |                         |                                    | Drill                                    | ling Informat                                          | ion      |           |                                            |             |                          | Soil Description                                                                                                                                                                                                                                                                                  |                                      |                                   |                                |                               |                        | Observations                                                                                                                                                                                                                         |
| Michiod                   | Penetration             | Support                            | Water                                    | Samples<br>Tests<br>Remarks                            | Recovery | RL<br>(m) | Depth<br>(m)                               | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional                                                                                                                                                                                                                   | Moisture                             | Consistency /<br>Relative Density | Pene<br>L<br>(ł                | land<br>tromet<br>JCS<br>(Pa) |                        | Structure and<br>Additional Observations                                                                                                                                                                                             |
|                           |                         |                                    |                                          | SPT<br>1.00 - 1.45 m<br>2, 5, 12<br>N = 17             |          | 88.5      | -<br>-<br>-<br>1-                          |             |                          | Silty CLAY; dark brown, non-plastic, trace<br>sand coarse-grained up to 2 mm, roots and<br>(rootlets observed.<br>CLAY; orange and dark brown, low plasticity,<br>with silt, with gravel up to 3 mm, sub-angular                                                                                  |                                      | _St_                              |                                |                               | 0.00: To<br>0.10: Infi | psoil<br>erred FILL<br>'T recovered: 0.45 m.                                                                                                                                                                                         |
|                           |                         | <br> <br> <br> <br> <br> <br> <br> | Not Observed                             |                                                        |          | <br>87.5  | -<br>-<br>2                                |             | CL                       | Becomes orange and red.<br>Silty CLAY; pale brown and grey, low<br>plasticity.<br>Laminite fragments observed from 2.0 m.                                                                                                                                                                         | D                                    |                                   |                                |                               | 2.00: Infi             | erred residual soil.                                                                                                                                                                                                                 |
|                           |                         |                                    |                                          | SPT<br>2.50 - 2.65 m<br>10, Refusal                    |          | <br>86.5  | -<br>-<br>-<br>3-                          |             |                          | LAMINITE; grey, orange and yellow, extreme                                                                                                                                                                                                                                                        |                                      | н                                 |                                |                               |                        | 'T recovered: 0.15 m.                                                                                                                                                                                                                |
|                           |                         |                                    |                                          |                                                        |          | 85.5      | -<br>-<br>-<br>4                           |             |                          | low strength, extremely weathered.                                                                                                                                                                                                                                                                | y                                    |                                   |                                |                               | cuttings.              |                                                                                                                                                                                                                                      |
|                           |                         |                                    |                                          |                                                        |          |           | -                                          |             |                          | Continued on cored borehole sheet                                                                                                                                                                                                                                                                 |                                      |                                   |                                |                               |                        |                                                                                                                                                                                                                                      |
| AE<br>AE<br>W<br>SF<br>P1 | D/T -<br>D/V -<br>B - W | Aug<br>Vashi<br>tand<br>ush t      | er dri<br>er dri<br>bore<br>ard p<br>ube | lling TC bit<br>Iling V bit<br>enetration test<br>wing | Pe       | throu     | t <b>ion</b><br>sistancu<br>ugh to<br>usal | -           | $>$ Inflo $\lhd$ Par     | ater Samples and Tests<br>bw U - Undisturbed Sample<br>D - Disturbed Sample<br>SPT - Standard Penetration Te<br>ES - Environmental Sample<br>TW - Thin Walled<br>LB - Large Disturbed Sample<br>Classification symbols<br>and soil descriptions<br>based on Unified Soil<br>Classification System | st                                   | Μ                                 | re Co.<br>- Di<br>- M<br>' - W | ry<br>oist                    | n Con                  | sistency/Relative Dens<br>VS - Very soft<br>S - Soft<br>F - Firm<br>VSt - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose<br>L - Loose<br>MD - Medium dense<br>D - Dense<br>VD - Very dense<br>Ce - Cemented<br>C - Compact |

| Ρ | S | М         |
|---|---|-----------|
| 누 |   | <b>}}</b> |

BH06

| Engine                     | erin                                     | g Log                        | J - C     | ore          | d Bo                 | orehole                                                                         |                                                        |                             | Project                                                                   | No.:                                    | PSN         | /13730                               |                                                                                       |                                                                                        |  |  |
|----------------------------|------------------------------------------|------------------------------|-----------|--------------|----------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|-----------------------------------------|-------------|--------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Client:<br>Project         | Namo:                                    |                              | NSW       |              | ducati               | on Precinct                                                                     |                                                        |                             | Comme                                                                     |                                         |             | )1/2019<br>)1/2019                   |                                                                                       |                                                                                        |  |  |
| Hole Lo                    |                                          | Ch                           | natsw     | ood H        | igh So               | hool BH06                                                                       |                                                        |                             | Logged                                                                    | d By:                                   | MB          | 1/201                                | 9                                                                                     |                                                                                        |  |  |
| Hole Po                    |                                          |                              |           |              |                      | 628.0 m N                                                                       |                                                        |                             | Checke                                                                    | -                                       | YB          |                                      |                                                                                       |                                                                                        |  |  |
| Drill Mo<br>Barrel T       |                                          |                              | -         | -            |                      |                                                                                 | clination:                                             | -90°                        | RL Sur<br>Datum:                                                          |                                         | .50 m<br>ID |                                      | oera                                                                                  | ator: BG Drilling                                                                      |  |  |
| Di                         | illing I                                 | nformat                      | tion      |              |                      | I                                                                               | Rock Substa                                            | nce                         |                                                                           |                                         |             |                                      | Ro                                                                                    | ock Mass Defects                                                                       |  |  |
|                            |                                          | s &<br>TS                    |           |              | g                    | Material De                                                                     | ecription                                              |                             |                                                                           | Strength<br>Is(50)                      |             |                                      | 1                                                                                     | Defect Descriptions / Commen                                                           |  |  |
| Method<br>Water<br>TCR (%) | RQD (%)                                  | SAMPLES &<br>FIELD TESTS     | RL<br>(m) | Depth<br>(m) | Graphic Log          | ROCK TYPE: Colour, g<br>(texture, fabric, mineral co<br>alteration, cementation | grain size, struc<br>omposition, har                   | dness,<br>able)             | Weathering                                                                | O-Diametral                             |             | Defect<br>Spacing<br>(mm)            |                                                                                       | Description, alpha/beta, infilling<br>or coating, shape, roughness<br>thickness, other |  |  |
| 2 5 +                      | Ľ                                        |                              | (11)      | (11)         | 0                    |                                                                                 |                                                        |                             | HM HM L                                                                   | H I I I I I I I I I I I I I I I I I I I | 1 1         | 600<br>600<br>1                      | -<br>-                                                                                |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      | i                                                                                     |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      | i                                                                                     |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              | 88.5      | 1-           |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              | 87.5      | 2-           |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      | i I                                                                                   |                                                                                        |  |  |
|                            |                                          |                              | 86.5      | 3-           |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      | i I                                                                                   |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      | i                                                                                     |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      | i                                                                                     |                                                                                        |  |  |
|                            |                                          |                              |           | -            |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      | i                                                                                     |                                                                                        |  |  |
|                            |                                          |                              | 85.5      | 4-           |                      |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
|                            |                                          |                              |           |              |                      | Continued from non-cored<br>No core: 400 mm.                                    | borehole sheet                                         | :                           |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
| LC<br>Observed<br>7        |                                          |                              |           | -            | X                    |                                                                                 |                                                        |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
| Not Obs<br>67              | 24                                       |                              |           | -            |                      | LAMINITE; dark grey with c                                                      | range banding                                          |                             |                                                                           |                                         |             |                                      |                                                                                       |                                                                                        |  |  |
| ZŽ                         |                                          |                              |           | -            |                      | bedding fabric faint, some l                                                    | hard clay.                                             | ,                           |                                                                           |                                         |             |                                      |                                                                                       | - SM 0° CL SN PR S 10 mm                                                               |  |  |
|                            | Method                                   | ,                            |           |              | Wa                   | ter                                                                             | Weathe                                                 |                             |                                                                           | fect Type                               |             | illing/C                             |                                                                                       |                                                                                        |  |  |
| AD/V - A                   | luger drilli<br>luger drilli<br>Vashbore | ng V bit                     |           |              | > Inflov<br>⊲ Partia |                                                                                 | EW - Extreme<br>HW - Highly W<br>MW - Moderat          | Veathered<br>tely Weathered | SS - 3<br>d SZ - 3                                                        | Shear Surface<br>Shear Zone             |             | CN - Clea<br>SN - Stair<br>VN - Vene | n<br>eer                                                                              | SL - Slickensided<br>POL - Polished<br>S - Smooth                                      |  |  |
| HQ3- V<br>PQ3- V           | Vireline co<br>Vireline co               | ore (63.5 mr<br>ore (85.0 mr | (63.5 mm) |              |                      |                                                                                 | Strengt                                                | h                           | ered BP - Bedding parting CC<br>SM - Seam RF<br>IS - Infilled Seam G      |                                         |             |                                      |                                                                                       | Shape                                                                                  |  |  |
|                            | tandard p<br>ush tube                    | enetration                   | test      | Grap         | Core r               | og/Core Loss<br>ecovered (hatching                                              | EL - Extreme<br>VL - Very Lov<br>L - Low<br>M - Medium | Ň                           | JT - Joint S - Sar<br>CO - Contact Z - Sitt<br>CZ - Crushed Zone CA - Cal |                                         |             |                                      | cite                                                                                  | PR - Planar<br>CU - Curved<br>UN - Undulating                                          |  |  |
|                            |                                          |                              |           |              |                      |                                                                                 |                                                        |                             | VN - Vein<br>FZ - Fracture Zone<br>BSH - Bedding Shear                    |                                         |             |                                      | CL - Clay ST - Stepped<br>FE - Iron IR - Irregular<br>QZ - Quartz<br>X - Carbonaceous |                                                                                        |  |  |



**BH06** 

|        | <b>igi</b> i                         |                                                        | erin                                                               |                                                                      | <b>g - C</b><br>NSW | ore                   | d Bo                                                                                                                                                                | orehole                                                                                                                                                                                                                                                                                                                                                   |                                                  | Project                                                                                                             |                                                                                                                      | PSM3730                                                                                                                                                                                                  |                                                                                                                                                                                           |
|--------|--------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F      | Proje<br>Iole                        | ect N                                                  | ame:<br>ation:<br>tion:                                            | CI                                                                   | natsw               | ood H                 | igh So                                                                                                                                                              | on Precinct<br>hool BH06<br>628.0 m N                                                                                                                                                                                                                                                                                                                     |                                                  | Comme<br>Comple<br>Logged<br>Checke                                                                                 | eted: 2<br>By:                                                                                                       | 23/01/2019<br>23/01/2019<br>MB<br>YB                                                                                                                                                                     |                                                                                                                                                                                           |
|        |                                      |                                                        |                                                                    | d Mount<br>Id Lengt                                                  | -                   |                       |                                                                                                                                                                     | Track Mounted Inclination<br>100mm Bearing:                                                                                                                                                                                                                                                                                                               | : -90°                                           | RL Surl<br>Datum:                                                                                                   | ace: 89.5<br>AHD                                                                                                     |                                                                                                                                                                                                          | ator: BG Drilling                                                                                                                                                                         |
|        |                                      |                                                        |                                                                    | Information                                                          |                     |                       |                                                                                                                                                                     | Rock Su                                                                                                                                                                                                                                                                                                                                                   | bstance                                          | Balam                                                                                                               |                                                                                                                      |                                                                                                                                                                                                          | ock Mass Defects                                                                                                                                                                          |
| Method | Water                                | TCR (%)                                                | RQD (%)                                                            | SAMPLES &<br>FIELD TESTS                                             | RL<br>(m)           | Depth<br>(m)          | Material Description<br>ROCK TYPE: Colour, grain size, structure<br>(texture, fabric, mineral composition, hardness,<br>alteration, cementation, etc as applicable) |                                                                                                                                                                                                                                                                                                                                                           | Strength<br>Is(50)<br>O - Axial<br>O - Diametral | Defect<br>Spacing<br>(mm)<br><sup>X</sup> <sub>ଛ</sub> ର୍ ଚ୍ଚି ଚ୍ଚି                                                 | Defect Descriptions / Comme<br>Description, alpha/beta, infillir<br>or coating, shape, roughness<br>thickness, other |                                                                                                                                                                                                          |                                                                                                                                                                                           |
|        |                                      | 67                                                     | 24                                                                 |                                                                      |                     | -                     |                                                                                                                                                                     | LAMINITE; dark grey with orange ba<br>bedding fabric faint, some hard clay.                                                                                                                                                                                                                                                                               | nding,                                           |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                          | BP 3° FE SN ST RF<br>BP 1° FE SN PR S<br>BP 0° FE SN PR S<br>BP 0° FE SN PR S 3 mm<br>Heavily fractured along<br>bedding planes.<br>BP 0° FE SN PR S<br>BP 0° FE SN CU RF                 |
|        | served                               |                                                        |                                                                    | 6.00m<br>01 ls(50)<br>d=0.1<br>a=0.5<br>MPa                          | 83.5                | -<br>6<br>-           |                                                                                                                                                                     | Becoming black with occasional orar<br>rock fabric visible, thin fine-grained<br>laminations developing, spaced 5 - 3                                                                                                                                                                                                                                     | sandstone                                        |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                          | DB<br>BP 0° FE SN PR S<br>BP 0° FE SN PR S<br>BP 5° CL PR S 3 mm                                                                                                                          |
| NINEC  | Not Observed                         | 100                                                    | 66                                                                 | 6.90m<br>02 Is(50)<br>d=0.6<br>a=1.3<br>MPa                          | 82.5                | -<br>-<br>7           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                          | — JT 65° FE SN UN RF<br>— BP 0° FE SN PR S<br>— BP 0° CN ST RF<br>— BP 0° CN ST RF<br>— BP 0° CN ST RF<br>— BP 3° FE SN PR S                                                              |
|        |                                      |                                                        |                                                                    | 7.79m<br>03 Is(50)<br>d=0.1<br>a=1.3<br>MPa                          | 81.5                |                       |                                                                                                                                                                     | Hole Terminated at 8.20 m                                                                                                                                                                                                                                                                                                                                 |                                                  |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                          | - BP 3° FE SN PR S<br>- JT 70° FE SN PR S<br>- JT 70° FE SN PR S            |
|        |                                      |                                                        |                                                                    |                                                                      | 80.5                | -<br>-<br>9<br>-<br>- |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                                                                           |
| See    | AD/<br>WB<br>HQ3<br>PQ3<br>SPT<br>PT | T - Aug<br>- Wa<br>3- Wir<br>3- Wir<br>7- Sta<br>- Pus | ger drilli<br>shbore<br>eline co<br>eline co<br>ndard p<br>sh tube | ing TC bit<br>ing V bit<br>ore (63.5 m<br>ore (85.0 m<br>penetration | m)<br>test          | Graj                  | <ul> <li>&gt; Inflov</li> <li>□ Parti</li> <li>■ Com</li> <li>■ Core</li> <li>□ Core</li> <li>□ Core</li> <li>□ Indica</li> <li>□ No co</li> </ul>                  | w         EW - E           hill Loss         HW - I           al Loss         MW - I           olete Loss         SW - S           bjete Loss         F           bg/Core Loss         EL - E           bg/Core Loss         EL - E           becovered (hatching         L - L           tes material)         M - I           re recovery         H - H | Medium                                           | d FT - F<br>SS - SZ - S<br>BP - B<br>SM - S<br>IS - II<br>JT - J<br>CO - C<br>CZ - C<br>VN - V<br>FZ - F<br>BSH - E | thear Surface<br>thear Zone<br>ledding parting<br>team<br>filled Seam<br>oint<br>contact<br>crushed Zone             | Infilling/Coat<br>CN - Clean<br>SN - Stain<br>VN - Veneer<br>CO - Coating<br>RF - Rock fra<br>G - Gravel<br>S - Sand<br>Z - Silt<br>CA - Calcite<br>CL - Clay<br>FE - Iron<br>QZ - Quartz<br>X - Carbona | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough<br>VR - Very Rough<br>VR - Very Rough<br>PR - Pilanar<br>CU - Curved<br>UN - Undulating<br>ST - Stepped<br>IR - Irregular |



| Ρ | S | М  |
|---|---|----|
| ÷ |   | }} |

| Er        | ngin                                                      | ee                                    | rin                                              | g Log - N                                                                         | lor          | l Co           | ored                       | Βοι         | reho                     | le                                                                                                                                                                                                                  | Project                                                                               | No.:                  |                                   | PS                       | SM37                          | 730          |                                                                                                                                                                                                                                          |
|-----------|-----------------------------------------------------------|---------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|--------------|----------------|----------------------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-----------------------------------|--------------------------|-------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F         | Client:<br>Projec<br>Hole L<br>Hole F                     | t Na<br>.oca                          | tion                                             |                                                                                   | vood<br>vood | High           | Scho                       | ol BH(      | 07                       |                                                                                                                                                                                                                     | Comme<br>Comple<br>Logged<br>Checke                                                   | eted:<br>I By:        |                                   |                          |                               |              |                                                                                                                                                                                                                                          |
|           | Drill M<br>Hole D                                         |                                       |                                                  | d Mounting:                                                                       |              | njin D<br>) mm | B8 Tr                      | ack M       | ounteo                   | l Inclination: -90°<br>Bearing:                                                                                                                                                                                     | RL Sur<br>Datum:                                                                      |                       |                                   | ).00<br>HD               | m                             | O            | perator: BG Drilling                                                                                                                                                                                                                     |
|           |                                                           |                                       | Drill                                            | ling Informati                                                                    | ion          |                |                            |             |                          | tion                                                                                                                                                                                                                |                                                                                       |                       |                                   |                          |                               | Observations |                                                                                                                                                                                                                                          |
| Method    | Penetration                                               | Support                               | Water                                            | Samples<br>Tests<br>Remarks                                                       | Recovery     | RL<br>(m)      | Depth<br>(m)               | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, struct<br>plasticity, additional                                                                                                                                         | ıre,                                                                                  | Moisture<br>Condition | Consistency /<br>Relative Density | Pene                     | Hand<br>etrom<br>UCS<br>(kPa) | eter         | Structure and<br>Additional Observations                                                                                                                                                                                                 |
|           |                                                           |                                       |                                                  | CBR<br>0.10-0.30 m                                                                |              |                | -                          |             |                          | Silty CLAY; pale brown, non-plastic<br>gravel up to 3 mm, sub-angular to a<br>roots and rootlets observed.<br>Becoming dark brown.                                                                                  |                                                                                       |                       |                                   |                          |                               |              | 0.00: Topsoil<br>0.20: FILL                                                                                                                                                                                                              |
| AD/V      |                                                           | z                                     |                                                  | SPT:<br>1.00 - 1.45 m<br>2, 5, 8<br>N = 13                                        |              | 88.0           | -<br>-<br>1<br>-           |             |                          | Silty CLAY; grey, orange and yello plasticity.                                                                                                                                                                      |                                                                                       |                       | St                                |                          |                               |              | 1.00: SPT recovered: 0.45 m.                                                                                                                                                                                                             |
|           |                                                           |                                       | p                                                | D 1.70 m                                                                          |              | l<br>87.0      | -<br>-<br>2                |             | СІ-СН                    | Silty CLAY; pale brown, medium to<br>plasticity.                                                                                                                                                                    |                                                                                       |                       | VSt                               |                          |                               |              | 1.60: Inferred residual soil.<br>1.80: V-bit Refusal.                                                                                                                                                                                    |
|           |                                                           |                                       | Not Observed                                     | ES 2.50 m                                                                         |              |                | -                          |             |                          | LAMINITE; grey, black and orange<br>low strength, extremely weathered.                                                                                                                                              | <br>extremely                                                                         | ,- D                  |                                   | -                        |                               |              | 2.50: Rock properties inferred from dril<br>cuttings.                                                                                                                                                                                    |
| AD/T      |                                                           | z                                     |                                                  | SPT<br>3.00 - 3.10<br>Refusal                                                     |              | 85.0 86.0      | 3                          |             |                          |                                                                                                                                                                                                                     |                                                                                       |                       |                                   |                          |                               |              | 3.00: SPT recovered: 0.10 m.                                                                                                                                                                                                             |
| A V SIF A | AD/T -<br>AD/V -<br>VB -W<br>SPT-S1<br>2T - P1<br>AS - A1 | Auge<br>asht<br>anda<br>ush t<br>uger | er dri<br>er dri<br>oore<br>ard p<br>ube<br>Scre | lling TC bit<br>lling V bit<br>enetration test<br>wing<br>details of abbreviation |              | throu<br>ref   | sistanco<br>ugh to<br>usal |             | $>$ Inflo $\lhd$ Par     | ater Samples and<br>w U - Undisturbed S<br>tial Loss D - Disturbed San<br>SPT - Standard Pen<br>ES - Environmenta<br>TW - Thin Walled<br>LB - Large Disturbe<br>Classification :<br>and soil desci<br>based on Unit | ample<br>opte<br>stration Te<br>Sample<br>d Sample<br>symbols<br>riptions<br>ied Soil | st                    | N                                 | - E<br>- E<br>- N<br>- V | Dry<br>Noist                  | ion          | Consistency/Relative Densit<br>VS - Very soft<br>S - Soft<br>F - Firm<br>St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose<br>L - Loose<br>MD - Medium dense<br>D - Dense<br>VD - Very dense<br>Ce - Cemented<br>C - Compact |

| Ρ | S | м  |
|---|---|----|
| 누 |   | }} |

| n      | ngir             | nee           | rin              | g Log - N                   | lor      | n Co       | ored                      | Boi         | reho                     | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project                | No.:                  |                                   | PS                | SM3                         | 730                  |                                                               |
|--------|------------------|---------------|------------------|-----------------------------|----------|------------|---------------------------|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|-----------------------------------|-------------------|-----------------------------|----------------------|---------------------------------------------------------------|
|        | Client           |               |                  | SINSW                       | ,        |            |                           |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Comme                  |                       |                                   | 24                | /01/                        | 201                  | 9                                                             |
|        | Proje            |               |                  | Chatsw                      |          |            |                           |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Comple                 |                       |                                   |                   |                             | 201                  | 9                                                             |
|        | lole<br>lole     |               | tion:<br>ion:    | Chatsw<br>330982            |          | -          |                           |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Logged<br>Checke       | -                     |                                   | ME<br>YB          |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            |                           |             | ounted                   | Inclination: -90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RL Surf                |                       | 80                                | .00 r             |                             |                      |                                                               |
|        |                  |               | neter:           | -                           |          | ) mm       |                           |             | Junie                    | Bearing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Datum:                 | uu <del>e</del> .     | AF                                |                   | 11                          | 0                    | perator: BG Drilling                                          |
|        |                  |               | Drilli           | ing Informati               | ion      |            |                           |             |                          | Soil Descri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ption                  |                       |                                   |                   |                             |                      | Observations                                                  |
|        | Penetration      | Support       | Water            | Samples<br>Tests<br>Remarks | Recovery | RL         | Depth                     | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, struc<br>plasticity, additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cture,                 | Moisture<br>Condition | Consistency /<br>Relative Density | H<br>Pene<br>I    | Hand<br>etron<br>UCS<br>kPa | d<br>neter<br>;<br>) | r Structure and<br>Additional Observations                    |
|        | Pe<br>WW         | ns<br>x       | Ŵ                |                             | Re       | (m)        | Depth<br>(m)              | ö           | ଚଁଚଁ                     | LAMINITE; grey, black and orang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e extremely            | ≗°                    | с<br>К<br>С                       | 100               | 300                         | 200 ·                |                                                               |
|        |                  | z             |                  |                             |          |            | -                         |             |                          | low strength, extremely weathered<br>(continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d.                     | D                     |                                   |                   |                             |                      |                                                               |
| Í      |                  |               |                  |                             |          |            |                           |             |                          | Continued on cored borehole she                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | et                     |                       |                                   |                   |                             |                      |                                                               |
|        |                  | L             |                  |                             |          |            |                           |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | 1             |                  |                             |          | 0          | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          | 83.0       | 6-                        | 1           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | L             |                  |                             |          |            | -                         | -           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | _                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          | 0          |                           |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | İ.            |                  |                             |          | 82.0       | 7-                        | 1           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | İ.            |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | İ.            |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | -                         | -           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | _                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | !             |                  |                             |          | O.         |                           |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          | - 18       | 8-                        | 1           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | -                         | -           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | L             |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | 1             |                  |                             |          |            | _                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          | O.         |                           |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          | 80.0       | 9-                        | 1           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | İ.            |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  | 1             |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | -                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            | _                         |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
|        |                  |               |                  |                             |          |            |                           |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       |                                   |                   |                             |                      |                                                               |
| _      |                  | Meth          |                  | ing TC hit                  | Pe       | netrat     |                           | . '         | ₩<br>⊳ Infle             | ater Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Samples and Sample | nd Tests<br>Sample     | 1                     | <i>loistu</i><br>D                | re Co<br>- D      |                             | tion                 | VS - Verv soft                                                |
| A<br>W | \D/V -<br>VB - \ | Aug<br>Vash   | er drill<br>oore | ing TC bit<br>ing V bit     |          | throu      | sistanc<br>ugh to<br>usal |             | Par                      | tial Loss D - Disturbed Sa<br>SPT - Standard Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Imple<br>netration Tes | st                    | M                                 | - N<br>- N<br>- V | loist                       |                      | S - Soft<br>F - Firm                                          |
| S<br>P | SPT-8<br>PT-F    | Stand<br>Push | ard pe<br>ube    | enetration test             |          |            |                           |             | Cor                      | TW - Thin Walled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al Sample              |                       |                                   |                   |                             |                      | St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose |
| A      | NS - A           | Auger         | Screv            | wing                        | _        |            |                           |             |                          | LB - Large Distur<br>Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | symbols                |                       |                                   |                   |                             |                      | VL - Very loose<br>L - Loose<br>MD - Medium dense             |
|        |                  |               |                  |                             |          |            |                           |             |                          | and soil des<br>based on Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ified Soil             |                       |                                   |                   |                             |                      | D - Dense<br>VD - Verv dense                                  |
| 20     | Explan           | atory N       | otes for o       | details of abbreviation     | is and   | basis of d | lescriptior               | ıs.         |                          | Classificatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n System               |                       |                                   |                   |                             |                      | Ce - Cemented<br>C - Compact                                  |

| Ρ | S | М  |
|---|---|----|
| 누 |   | }} |

| Ξn     | ngi          | nee                           | erin                | g Lo                                      | g - C      | ore          | d Bo                          | prehole                                                                                                                                                             | Projec                          | t No.:                                           | I                             | PSM3730                                   | Page 3 of 3                                                                                                       |
|--------|--------------|-------------------------------|---------------------|-------------------------------------------|------------|--------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| P<br>H | lole         | nt:<br>ect Na<br>Loca<br>Posi | ation:              | C<br>C                                    | hatsw      | ood Hi       | igh So                        | on Precinct<br>hool BH07<br>641.0 m N                                                                                                                               | Comm<br>Compl<br>Logge<br>Check | d By:                                            | :                             | 24/01/2019<br>24/01/2019<br>MB<br>YB      |                                                                                                                   |
|        |              |                               |                     | d Moun                                    | -          | -            |                               | Track Mounted Inclination: -90°                                                                                                                                     | RL Su                           |                                                  | 89.0                          |                                           | tor: BC Drilling                                                                                                  |
| В      | sarre        |                               |                     | id Leng                                   |            | Iriple       | Tube                          | 100mm Bearing:                                                                                                                                                      | Datum                           |                                                  | AHD                           |                                           |                                                                                                                   |
|        |              | Dril                          | ling l              | nforma                                    | tion       |              |                               | Rock Substance                                                                                                                                                      |                                 |                                                  |                               | Ro                                        | ck Mass Defects                                                                                                   |
| Method | Water        | TCR (%)                       | RQD (%)             | SAMPLES &<br>FIELD TESTS                  | RL<br>(m)  | Depth<br>(m) | Graphic Log                   | Material Description<br>ROCK TYPE: Colour, grain size, structure<br>(texture, fabric, mineral composition, hardness,<br>alteration, cementation, etc as applicable) | Weathering<br>≧ ≩ ≩ ⊗ ⊥         | O - Diame                                        | al<br>etral<br>co <sup></sup> | Defect<br>Spacing<br>(mm)                 | Defect Descriptions / Comme<br>Description, alpha/beta, infill<br>or coating, shape, roughnes<br>thickness, other |
|        |              |                               |                     |                                           |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           |            | -            |                               | Continued from non-cored borehole sheet                                                                                                                             |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           |            |              |                               | No core: 400 mm.                                                                                                                                                    | ++++                            |                                                  | + +                           |                                           |                                                                                                                   |
|        |              |                               |                     |                                           |            | -            |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           | 83.0       | 6-           |                               | LAMINITE; dark grey and grey with orange banding, bedding fabric faint.                                                                                             |                                 |                                                  | + +<br>   <br>   <br>         |                                           |                                                                                                                   |
|        |              |                               |                     |                                           |            | _            |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           |            | -            |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           | Heavily fractured along                                                                                           |
|        |              | 83                            | œ                   |                                           |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           | bedding planes.                                                                                                   |
|        |              |                               |                     |                                           |            | _            |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           | 82.0       | 7-           |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        | erved        |                               |                     |                                           |            |              |                               | Bedding fabric visible, fine-grained thin sandstone                                                                                                                 |                                 |                                                  |                               |                                           | BP 5° FE SN PR RF<br>BP 30° FE SN CU RF                                                                           |
|        | Not Observed |                               |                     |                                           |            |              |                               | laminations.                                                                                                                                                        |                                 |                                                  |                               |                                           | BP 2° FE SN PR RF<br>BP 2° FE SN CU RF                                                                            |
|        | Ž            |                               |                     | 7.56m<br>Is(50)<br>d=0.7                  |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           | BP 0° FE SN PR RF<br>BP 0° FE SN PR RF                                                                            |
|        |              |                               |                     | a=0.1<br>MPa                              |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           | BP 0° FE SN IR RF<br>BP 5° FE SN PR S<br>BP 5° FE SN UN S                                                         |
|        |              |                               |                     |                                           | 81.0       | 8-           |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           | JT 60° FE SN PR RF                                                                                                |
|        |              |                               |                     |                                           |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           | BP 6° FE SN ST RF<br>JT 90° FE SN ST RF Heal                                                                      |
|        |              |                               |                     | 8.39m<br>Is(50)                           |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           | joint<br>BP 0° FE SN ST S<br>BD 2° FE SN DD DE                                                                    |
|        |              | 100                           | 88                  | d=1.2<br>a=0.9<br>MPa                     |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           | BP 3° FE SN PR RF<br>BP 8° FE SN PR S                                                                             |
|        |              |                               |                     |                                           |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           | 80.0       | 9—           |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           | 8          |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     | 9.34m<br>Is(50)                           |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     | d=0.5<br>a=1.2<br>MPa                     |            |              |                               | Hole Terminated at 9.40 m                                                                                                                                           |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        |              |                               |                     |                                           |            |              |                               |                                                                                                                                                                     |                                 |                                                  |                               |                                           |                                                                                                                   |
|        | AD/          |                               | ethoo<br>aer drill  | I<br>ing TC bit                           |            |              |                               | ter Weathering<br>, EW - Extremely Weather                                                                                                                          | ed FT -                         |                                                  |                               | Infilling/Coatin<br>CN - Clean            | SL - Slickensided                                                                                                 |
|        | AD/<br>WB    | /V-Aug<br>3-Wa                | ger drill<br>shbore | ing V bit                                 | nm\        | <            | > Inflov<br>☐ Partia<br>■ Com | HW - Highly Weathered<br>al Loss MW - Moderately Weathered<br>SW - Slightly Weathered                                                                               | red SZ -<br>BP -                | Shear Surface<br>Shear Zone<br>Bedding parting   | 1                             | SN - Stain<br>VN - Veneer<br>CO - Coating | POL - Polished<br>S - Smooth<br>RF - Rough                                                                        |
|        | PQ:<br>SP1   | 3- Wir<br>T- Sta              | eline c<br>ndard j  | ore (63.5 r<br>ore (85.0 r<br>penetration | nm)        |              |                               | og/Core Loss EL - Extremely Low                                                                                                                                     | IS -<br>JT -                    |                                                  |                               | RF - Rock fragm<br>G - Gravel<br>S - Sand | PR - Planar                                                                                                       |
|        | PT           | - Pus                         | sh tube             |                                           |            |              | Core i indica                 | ecovered (hatching L - Low<br>es material) M - Medium                                                                                                               | CZ -<br>VN -                    |                                                  |                               | Z - Silt<br>CA - Calcite<br>CL - Clay     | CU - Curved<br>UN - Undulating<br>ST - Stepped                                                                    |
| ee     | Explar       | natorv N                      | otes for            | details of at                             | breviation | s and basis  |                               | re recovery H - High<br>VH - Very High<br>iptions. EH - Extremely High                                                                                              | BSH -                           | Fracture Zone<br>Bedding Shear<br>Drilling Break |                               | FE - Iron<br>QZ - Quartz<br>X - Carbonace | IR - Irregular<br>ous                                                                                             |



| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                 | Notes                                                                                               |
|------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.15 m           | ASPHALT; 150 mm thick.                                                                                                                                                                               |                                                                                                     |
|                                                | 0.15 – 0.25 m        | SAND; orange, medium to coarse grained, with sandstone gravel up to 20mm, sub-angular to angular, dry compacted consistency.                                                                         | Inferred Fill                                                                                       |
| BH08                                           | 0.25 – 1.5 m         | Becomes brown at 0.5 m.<br>Silty CLAY; dark brown, low plasticity, trace gravel<br>up to 5mm, sub-angular, moist, stiff consistency.<br>Becomes pale brown and grey at 1.0m.                         | Inferred Fill<br>SPT at 1.0 m:<br>3, 4, 6, N = 10.<br>Atterberg<br>sample<br>collected at 1.5<br>m. |
| (RL 89.0m)                                     | 1.5 – 1.9 m          | CLAY; orange, brown and grey, high plasticity,<br>moist and stiff consistency.<br>Organic material and siltstone fragments<br>encountered at 1.6 m.                                                  | Inferred<br>Residual Soil<br>V-bit refusal at<br>1.9 m.                                             |
|                                                | 1.9 – 6.3 m          | LAMINITE; grey-brown, extremely low strength,<br>extremely weathered. Sandstone laminations<br>observed. Increasing strength and decreasing<br>weathering with depth.<br>Becomes dark grey at 5.0 m. | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.<br>ES collected at<br>2.5 m.         |
|                                                | 6.3 m                | Hole terminated at 6.3 m.                                                                                                                                                                            | TC-bit refusal.                                                                                     |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                            | Notes                                                             |
|------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                          | 0 – 0.1 m            | Concrete, 100 mm thick.                                                                                                                                         |                                                                   |
|                                          | 0.1 – 0.5 m          | CLAY; dark brown, low plasticity, with gravel<br>up to 10 mm, angular, moist, compacted.<br>Becomes brown at 0.5 m.                                             | Inferred Fill<br>ES collected at<br>0.5 m.                        |
|                                          | 0.5 – 1.5 m          | CLAY; orange-brown, low to medium plasticity,<br>trace gravel up to 8mm, angular, ironstone<br>gravels, moist and stiff consistency.                            | Inferred Fill<br>Atterberg sample<br>collected at 0.5 –<br>1.0 m. |
|                                          |                      | Becomes mottled grey and orange at 1.5m.                                                                                                                        | SPT at 1.0 m:<br>3, 4, 7, N = 11                                  |
| BH09<br>(RL 91.5m)                       | 1.5 – 2.5 m          | Silty Gravelly CLAY; red and brown, low to medium plasticity, sub-angular gravel up to 5 mm, dry, very stiff consistency.                                       | Inferred Fill<br>SPT at 2.5 m:<br>3, 10, 17, N = 27               |
|                                          | 2.5 – 3.2 m          | CLAY; grey and red, low to medium plasticity,<br>dry and very stiff consistency.                                                                                | Inferred Residual<br>Soil<br>V-bit refusal at<br>3.2 m.           |
|                                          | 3.2 – 9.0 m          | LAMINITE; grey, extremely low strength,<br>extremely weathered. Sandstone laminations<br>observed. Increasing strength and decreasing<br>weathering with depth. | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.    |
|                                          |                      | Becomes dark grey from 4.5 m.                                                                                                                                   | SPT at 4.0 m:<br>18, Refusal.                                     |
|                                          | 9.0 m                | Hole terminated at 9.0 m.                                                                                                                                       | TC-bit auger did not refuse.                                      |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                                  | Notes                                                                                                          |
|------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.2 m            | Silty CLAY; dark brown, low plasticity, dry, soft consistency, roots and rootlets observed.                                                                                                                           | Topsoil<br>CBR sample<br>collected at 0.1 -<br>0.3 m.                                                          |
| BH10<br>(RL 92.0m)                             | 0.2 – 4.2 m          | CLAY; red and brown, low plasticity, trace gravel<br>up to 5mm, angular, dry and very stiff consistency.<br>With silt, dark brown and red at 1.0 m.<br>Becomes grey and red at 1.5 m.<br>Becomes mostly red at 2.5 m. | Inferred Fill<br>SPT at 1.0 m:<br>3, 10, 19, N = 29<br>V-bit refusal at<br>2.3 m.<br>SPT at 2.5 m:<br>Refusal. |
|                                                | 4.2 – 8.0 m          | LAMINITE; grey, extremely low strength,<br>extremely weathered. Sandstone laminations<br>observed. Increasing strength and decreasing<br>weathering with depth.                                                       | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.                                                 |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                                                                                                             | Maximum depth<br>reached. Auger<br>did not refuse.                                                             |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                              | Notes                                                                                                                                                       |
|------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, dry, soft consistency, bark observed.                                                                                                     | Topsoil                                                                                                                                                     |
| BH11<br>(RL 91.5m)                             | 0.1 – 2.5 m          | Silty CLAY; red and grey, medium plasticity, dry<br>and very stiff consistency.<br>Angular ironstone gravels up to 2mm at 1.5 m.<br>Mostly red with siltstone fragments at 2.0 m. | Inferred Fill<br>Atterberg<br>sample at 0.2 –<br>0.5 m.<br>V-bit refusal at<br>0.5 m.<br>SPT at 1.0 m:<br>2, 7, 23, N = 30<br>SPT at 2.5 m:<br>20, Refusal. |
|                                                | 2.5 – 8.0 m          | LAMINITE; grey and red, extremely low strength,<br>extremely weathered. Sandstone laminations<br>observed. Increasing strength and decreasing<br>weathering with depth.           | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.<br>ES collected at<br>6.0 m.                                                                 |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                                                                         | Maximum depth<br>reached. Auger<br>did not refuse.                                                                                                          |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                        | Notes                                                                                                                                             |
|------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, dry, soft consistency, roots and rootlets observed. | Topsoil                                                                                                                                           |
| BH12<br>(RL 90.0m)                             | 0.1 – 1.5 m          | Silty CLAY; pale brown, medium plasticity, trace gravel, dry and hard consistency.          | Inferred Fill<br>ES collected at<br>0.4 m.<br>V-bit refusal at<br>0.5 m on<br>possible tree<br>root.<br>Atterberg<br>sample collected<br>at 1.0m. |
|                                                | 1.5 – 5.2 m          | LAMINITE; grey, extremely low strength,<br>extremely weathered. Sandstone laminations       | SPT at 1.0 m:<br>4, 24, 39, N = 63<br>Inferred Bedrock                                                                                            |
|                                                | 1.5 – 5.2 m          | observed. Increasing strength and decreasing weathering with depth.                         | Description<br>based on drill<br>cuttings.                                                                                                        |
|                                                | 5.2 m                | Hole terminated at 5.2 m.                                                                   | TC-bit refusal.                                                                                                                                   |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth     | Material Encountered                                                                                                                                                                                                                                                                                                                                     | Notes                                                                                                                                               |
|------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| BH13<br>(RL 91.0m)                             | 0 – 1.5 m<br>1.5 – 5.0 m | Silty CLAY; grey and red, low plasticity, dry and<br>very stiff consistency, roots and rootlets present.<br>Laminite fragments observed from surface.<br>Becomes pale brown at 1.0 m.<br>LAMINITE; grey, extremely low strength,<br>extremely weathered. Sandstone laminations<br>observed. Increasing strength and decreasing<br>weathering with depth. | Inferred Fill<br>V-bit refusal at<br>0.3 m.<br>SPT at 1.0 m:<br>3, 19, 26, N = 45<br>Inferred Bedrock<br>Description<br>based on drill<br>cuttings. |
|                                                | 5.0 m                    | Becomes slightly red at 2.0 m.<br>Becomes dark grey at 3.0 m.<br>Hole terminated at 5.0 m.                                                                                                                                                                                                                                                               | TC-bit refusal.                                                                                                                                     |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                   | Notes                                                                                                   |
|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; dark brown, low plasticity, trace gravel<br>up to 10mm, sub-angular, dry, soft consistency,<br>roots and rootlets present. | Topsoil                                                                                                 |
|                                                | 0.1 – 1.5 m          | Silty CLAY; dark brown, low plasticity, dry, soft to firm consistency, roots and rootlets present.                                     | Inferred Fill<br>ES collected at<br>0.5 – 1.0 m.<br>SPT at 1.5 m:                                       |
|                                                | 1.5 – 2.0 m          | CLAY; pale brown, high plasticity, with silt, dry and very stiff consistency.                                                          | 6, 12, 33, N= 45<br>Inferred Fill                                                                       |
| BH14<br>(RL 89.5m)                             | 2.0 – 2.5 m          | CLAY; grey, medium to high plasticity, dry and hard consistency.                                                                       | Inferred<br>Residual Soil<br>V-bit refusal at<br>2.1 m.<br>Atterberg<br>sample<br>collected at<br>2.1m. |
|                                                | 2.5 – 3.0 m          | LAMINITE; grey, extremely low strength, extremely weathered.                                                                           | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.<br>SPT at 3.0 m:<br>Refusal.             |
|                                                | 3.0 m                | Hole terminated at 3.0 m.                                                                                                              | TC-bit refusal.                                                                                         |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                            | Notes                                                                           |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | CLAY; dark brown, low plasticity, trace gravel up to 5 mm, sub-angular, dry, soft consistency, roots and rootlets observed.                                                                     | Topsoil                                                                         |
|                                                | 0.1 – 1.0 m          | Silty CLAY; grey and pale brown, low plasticity, dry and stiff consistency.                                                                                                                     | Inferred Fill<br>SPT at 1.0 m:<br>2, 9, 12, N = 21                              |
|                                                | 1.0 – 3.0 m          | CLAY; orange and dark brown, low plasticity, dry and very stiff consistency.                                                                                                                    | Inferred<br>Residual Soil                                                       |
| BH15<br>(BL 86.0m)                             |                      | Becomes grey and medium plasticity at 2.5 m.                                                                                                                                                    | V-bit refusal at<br>2.6 m.                                                      |
| (RL 86.0m)                                     | 3.0 – 6.3 m          | LAMINITE; pale brown, extremely low strength,<br>extremely weathered. Sandstone laminations<br>observed. Increasing strength and decreasing<br>weathering with depth.<br>Becomes grey at 4.5 m. | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.<br>SPT at 4.0 m: |
|                                                |                      |                                                                                                                                                                                                 | 2, 25, Refusal.                                                                 |
|                                                | 6.3 m                | Hole terminated at 6.3 m.                                                                                                                                                                       | TC-bit refusal.                                                                 |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                      | Notes                                                                                                                           |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.1 m            | Silty CLAY; pale brown, low plasticity, trace gravel<br>up to 10mm, sub-angular, dry and soft<br>consistency, roots and rootlets present. | Topsoil                                                                                                                         |
|                                                | 0.1 – 1.3 m          | CLAY; orange-brown, low plasticity, with silt, dry<br>and very stiff consistency.<br>Becomes brown at 0.5 m.                              | Inferred Fill<br>Atterberg<br>sample collected<br>at 1.0 m                                                                      |
|                                                |                      |                                                                                                                                           | SPT at 1.0 m:<br>2, 10, 17, N = 27                                                                                              |
|                                                | 1.3 – 2.0 m          | CLAY; grey and brown, medium plasticity, dry and very stiff consistency.                                                                  | Inferred<br>Residual Soil                                                                                                       |
| BH16<br>(RL 86.0m)                             |                      | Siltstone fragments observed at 1.5 m.                                                                                                    | V-bit refusal at<br>1.8 m.                                                                                                      |
|                                                | 2.0 – 4.5 m          | LAMINITE; grey, extremely to low strength, extremely weathered.                                                                           | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.<br>ES collected at<br>2.5 m.<br>SPT at 2.5 m:<br>2, 19, Refusal. |
|                                                | 4.5 m                | Hole terminated at 4.5 m.                                                                                                                 | TC-bit refusal.                                                                                                                 |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                      | Notes                                                                                                                           |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.2 m            | Silty CLAY; dark brown, low plasticity, trace gravel<br>up to 10mm, sub-angular, dry and soft<br>consistency, roots and rootlets present. | Topsoil                                                                                                                         |
|                                                | 0.2 – 2.0 m          | CLAY; orange and dark brown, low plasticity, dry and very stiff consistency.                                                              | Inferred Fill                                                                                                                   |
|                                                | 0.2 2.0 11           | Becomes mottled grey and brown at 1.0 m.                                                                                                  | SPT at 1.0 m:<br>4, 8, 12, N = 20                                                                                               |
| BH17<br>(RL 90.0m)                             | 2.0 – 3.0 m          | LAMINITE; grey, extremely low strength,<br>extremely weathered.                                                                           | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.<br>V-bit refusal at<br>2.6 m.<br>SPT at 2.5 m:<br>2, 3, Refusal. |
|                                                | 3.0 m                | Hole terminated at 3.0 m.                                                                                                                 | TC-bit refusal.                                                                                                                 |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                | Notes                                                          |  |  |
|------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
|                                                | 0 – 0.16 m           | Concrete; 160 mm thick.                                                                                                             |                                                                |  |  |
|                                                | 0.16 – 0.4 m         | CLAY; orange-brown and grey, high plasticity, moist and stiff consistency.                                                          | Inferred<br>Residual Soil                                      |  |  |
|                                                | 0.4 – 1.0 m          | CLAY; grey and red-brown, medium plasticity,<br>trace of ironstone gravel, sub-angular, up to 13<br>mm moist and stiff consistency. | SPT at 1.0 m:<br>7, 8, 11, N = 19<br>SPT at 2.0 m:             |  |  |
| BH24<br>(RL 90.3m)                             | 1.0 – 2.5 m          | CLAY; grey and yellow-brown, medium to high plasticity, moist, very stiff consistency.                                              | 19, Refusal.<br>Roots observed<br>at 2.0 m.                    |  |  |
|                                                | 2.5 – 8.0 m          | LAMINITE; dark grey, very low strength, extremely to highly weathered.                                                              | Inferred Bedrock<br>Description<br>based on drill<br>cuttings. |  |  |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                           | Maximum depth<br>reached. V-bit<br>auger did not<br>refuse.    |  |  |

| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                                   | Notes                                                                                                                          |
|------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                | 0 – 0.08 m           | Concrete; 80 mm thick.                                                                                                                                                                                                 |                                                                                                                                |
|                                                | 0.08 – 1.2 m         | CLAY; grey, medium to high plasticity, moist and stiff consistency.                                                                                                                                                    | Inferred<br>Residual Soil                                                                                                      |
|                                                |                      | Trace of ironstone gravel, sub-angular up to 10 mm observed at 1.0 m.                                                                                                                                                  | SPT at 1.0 m:<br>8, 13, 12, N = 25                                                                                             |
| BH25<br>(RL 89.5m)                             | 1.2 – 8.0 m          | LAMINITE; dark grey, very low strength, highly<br>weathered. Increasing strength with depth.<br>Becomes dark grey and red-brown from 2.0 m.<br>Increased drill resistance from 5.0 m.<br>Becomes dark grey from 7.0 m. | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.<br>Roots observed<br>at 1.4 m.<br>SPT at 2.0 m:<br>20, Refusal. |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                                                                                                              | Maximum depth<br>reached. V-bit<br>auger did not<br>refuse.                                                                    |

| Ρ | S | Μ  |
|---|---|----|
| Ŧ |   | ** |

BH26

| Clier<br>Proje<br>Hole<br>Hole | ect<br>e Lo                                                  | cat                           | ion:                                      | SINSW<br>Chatsv<br>Chatsv<br>331032                  | vood<br>vood | High          | Scho              | ol          |                          | Com <sub>l</sub><br>Logg                                                                                                                                                                                      | nenced<br>ileted:<br>ed By:<br>ked By: |                                   |                                   | 5/04<br>B                    | /201<br>/201     |                                                                                                                                                                               |
|--------------------------------|--------------------------------------------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------|--------------|---------------|-------------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|-----------------------------------|------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill<br>Hole                  |                                                              |                               |                                           | Mounting:                                            | -            | 8 Tra<br>mm ( | ack Mo            | ounte       | d                        | Inclination: -90° RL S<br>Bearing: Datu                                                                                                                                                                       | urface:                                |                                   | 8.50<br>HD                        | m                            | O                | perator: BG Drilling                                                                                                                                                          |
|                                |                                                              |                               |                                           | ing Informat                                         |              | ,             |                   |             |                          | Soil Description                                                                                                                                                                                              |                                        | ,,                                |                                   |                              | 0                | Observations                                                                                                                                                                  |
|                                |                                                              | -                             |                                           |                                                      |              |               |                   |             |                          | Son Description                                                                                                                                                                                               |                                        | ≥                                 |                                   |                              |                  |                                                                                                                                                                               |
| Penetration                    |                                                              | Support                       | Water                                     | Samples<br>Tests<br>Remarks                          | Recovery     | RL<br>(m)     | Depth<br>(m)      | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional                                                                                                                               | Moisture                               | Consistency /<br>Relative Density | Per                               | Han<br>letror<br>UCS<br>(kPa | meter<br>S<br>a) | Structure, Zoning, Origin,<br>Additional Observations                                                                                                                         |
|                                |                                                              | z                             |                                           |                                                      |              |               |                   | 44          |                          | CONCRETE: 145 mm thick.                                                                                                                                                                                       |                                        |                                   |                                   |                              |                  |                                                                                                                                                                               |
|                                |                                                              | Z                             | ᅙㅣ                                        | SPT:<br>1.00 - 1.45 m                                |              | <br>87.5      | -<br>-<br>-<br>1- |             | СН                       | CLAY: high plasticity, grey and pale brown.<br>Becomes dark grey and orange-brown.                                                                                                                            | м                                      | St                                |                                   |                              |                  | 0.15: Inferred residual soil.<br>1.00: SPT recovered: 450 mm.                                                                                                                 |
|                                |                                                              |                               |                                           | 3, 5, 7<br>N = 12                                    |              |               | -                 |             |                          | Shale fragments observed.                                                                                                                                                                                     |                                        |                                   |                                   |                              |                  | 1.80: Inferred bedrock. Rock propertie<br>inferred from drill cuttings.                                                                                                       |
|                                |                                                              |                               |                                           | SPT:<br>2.00 - 2.14 m                                |              | <br>86.5      | 2-                |             |                          | very low strength, extremely to highly weathered.                                                                                                                                                             | D                                      |                                   |                                   |                              |                  | 2.00: SPT recovered: 140 mm.                                                                                                                                                  |
|                                |                                                              |                               |                                           |                                                      |              | –<br>85.5     | 3                 |             |                          |                                                                                                                                                                                                               |                                        |                                   |                                   |                              |                  |                                                                                                                                                                               |
| AD/T<br>AD/T<br>WB             | <br>   <br>   <br>   <br>   <br>   <br>   <br>   <br>   <br> | luĝe<br>Ishb<br>Inda<br>sh tu | r drill<br>r drill<br>ore<br>rd pe<br>ıbe | ling TC bit<br>ling V bit<br>enetration test<br>wing | Pe           | throu         | 4                 | -           | ⊳ Inflo<br>⊲ Par         | ater Samples and Tests<br>Dw U - Undisturbed Sample<br>tial Loss D - Disturbed Sample<br>SPT - Standard Penetration<br>mplete Loss ES - Environmental Sample<br>TW - Thin Walled<br>LB - Large Disturbed Samp | est                                    | Moist<br>[<br>]                   | <b>иге С</b><br>D -<br>Л -<br>V - | Dry<br>Mois                  |                  | Consistency/Relative Densistency/Relative Densistency<br>VS - Very soft<br>S - Soft<br>F - Firm<br>St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose<br>L - Loose |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

Borehole ID

BH26

| ~ | Nien           | <b>4</b> . |                                            | 0             |              |        |              |                                                                                                 | Common                             | and 1                      | E/04/2010                               |                                                                   |
|---|----------------|------------|--------------------------------------------|---------------|--------------|--------|--------------|-------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|-----------------------------------------|-------------------------------------------------------------------|
|   | Clien<br>Proje |            | ame:                                       |               | NSW<br>hatsw | ood F  | ducati       | on Precinct                                                                                     | Commer<br>Complete                 |                            | 5/04/2019<br>5/04/2019                  |                                                                   |
|   |                |            | ation:                                     |               |              | ood H  |              |                                                                                                 | Logged I                           | By: N                      | ЛВ                                      |                                                                   |
| Н | lole           | Posi       | tion:                                      | 33            | 31032        | .0 m E | 6258         | 551.0 m N                                                                                       | Checked                            | By: E                      | BS                                      |                                                                   |
|   |                |            | el and M                                   |               | -            | -      |              | Mounted Inclination: -90°                                                                       | RL Surfa                           |                            |                                         |                                                                   |
| В | Barre          | el Typ     | be and L                                   | _engt         | h:           | NMLC   | ;            | Bearing:                                                                                        | Datum:                             | AHD                        | Ope                                     | rator: BG Drilling                                                |
|   |                | Dril       | ling Info                                  | ormat         | tion         |        |              | Rock Substance                                                                                  |                                    | F                          | Rock Mass Defects                       |                                                                   |
|   |                |            | s<br>TS<br>S                               | (suo          |              |        | σ            | Material Description                                                                            |                                    | Strength<br>Is(50)         |                                         | Defect Descriptions / Comme                                       |
| _ |                | (%         | PLES &<br>) TESTS                          | WPT (Lugeons) |              |        | Graphic Log  | ROCK TYPE: Colour, grain size, structure (texture, fabric, mineral composition, hardness,       | Weathering                         | ● - Axial<br>○ - Diametral | Defect<br>Spacing                       | Description, alpha/beta, infill                                   |
|   | Water          | RQD (%)    | SAMPLI<br>FIELD TI                         | PT (          | RL           | Depth  | raphi        | alteration, cementation, etc as applicable),<br>inclusions and minor components                 |                                    | 0.1<br>0.3<br>3<br>10      | (mm)                                    | or coating, shape, roughne<br>thickness, other                    |
| 2 | \$             | Ľ          | _                                          | 3             | (m)          | (m)    | G            |                                                                                                 | ¥ H M S H                          | ╡╷ѯェ⋛ᇤ                     | <pre>^20<br/>60<br/>600<br/>1000</pre>  |                                                                   |
|   |                |            |                                            |               |              |        |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              | _      |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              |        |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              |        |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               | 87.5         | 1-     |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              |        |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               | Ŀ.           |        |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               | 86.5         | 2-     | ××           | Continued from non-cored borehole sheet                                                         |                                    |                            |                                         |                                                                   |
|   |                |            |                                            |               |              | -      | <u>× ×</u>   | SILTSTONE: dark brown, poorly developed bedding<br>some hard clay.                              | Aig                                |                            |                                         | — SM, 2°, CL, PR, S, 10 mm<br>— BP, 0°, FE SN, PR, S              |
|   |                |            | 2.41m<br>C Is(50)                          |               |              | -      |              | LAMINITE: dark grey and grey, white and orange bands, Thinly Laminated, developed bedding, fine |                                    | Φ ΙΙ                       |                                         | BP, 0°, FE SN, IR, RF<br>BP, 1°, FE SN, PR, S                     |
|   |                |            | d=0.1<br>a=0.7<br>MPa                      |               |              | _      |              | grained sandstone laminations, 70% siltstone, 30% sandstone.                                    |                                    |                            |                                         | SM, 5°, CL, PR, S, 15 mm                                          |
|   |                |            |                                            |               |              |        |              |                                                                                                 |                                    |                            |                                         | BP, 10°, FE SN, ST, RF, 1                                         |
|   |                |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         | BP, 5°, KL, PR, S<br>BP, 0°, FE SN, CU, S                         |
|   |                |            |                                            |               | 85.5         | 3-     |              |                                                                                                 |                                    |                            |                                         | √BP, 20°, FE SN, UN, S<br>BP, 0°, FE SN, PR                       |
|   | _              |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         | — JT, 70°, FE SN, ST, RF<br>— BP, 0°, FE SN, PR, S                |
|   | Not Observed   |            | 3.32m<br>C Is(50)                          |               |              |        |              |                                                                                                 |                                    |                            |                                         | SM, 0°, CL, PR, S, 10 mm<br>BP, 0°, FE SN, PR, RF                 |
|   | Obse           | 0          | d=0.3<br>a=0.4<br>MPa                      |               |              | -      |              |                                                                                                 |                                    |                            | ili                                     | <sup>1</sup> BP, 0°, FE SN, ST, RF                                |
|   | Not            | 52         |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         | BP, 0°, FE SN, UN, RF<br>Healed joint                             |
|   |                |            |                                            |               |              | -      |              | I AMINITE: dork arey white and arease hered                                                     |                                    |                            |                                         | SM, 5°, Fe & Clay SN, UN,                                         |
|   |                |            |                                            |               | 1.5          | 4-     |              | LAMINITE: dark grey, white and orange bands,<br>Thinly Laminated, well developed bedding, fine  |                                    |                            |                                         | RF, 2 mm<br>BP, 2°, FE SN, UN, RF                                 |
|   |                |            |                                            |               | 8            |        |              | grained sandstone laminations, 80% siltstone, 20% sandstone.                                    |                                    |                            |                                         | BP, 2°, CL, PR, S, 1 mm<br>BP, 2°, FE SN, PR, RF                  |
|   |                |            |                                            |               |              | -      | Ē            |                                                                                                 |                                    |                            | <u>Maii</u>                             | BP, 1°, FE SN, PR, RF<br>BP, 0°, FE SN, PR, RF                    |
|   |                |            | 4.43m<br>C Is(50)                          |               |              |        |              |                                                                                                 |                                    |                            |                                         | SM, 0°, CL, IR, S, 10 mm<br>BP, 0°, FE SN, PR, RF                 |
|   |                |            | d=0.1<br>a=0.4<br>MPa                      |               |              | _      |              |                                                                                                 |                                    |                            |                                         | <sup>⊥</sup> BP, 3°, Fe & Clay SN, PR,<br>— BP, 0°, FE SN, PR, VR |
|   |                |            | wira                                       |               |              |        |              |                                                                                                 |                                    |                            |                                         | — BP, 1°, FE SN, PR, S                                            |
|   |                |            |                                            |               |              | -      |              |                                                                                                 |                                    |                            |                                         |                                                                   |
|   |                | м          | ethod                                      |               |              |        | Wa           | ter Weathering                                                                                  | Defe                               | ct Type                    | Infilling/Coa                           | HBP, 0°, FE SN, PR, S<br>ting Roughness                           |
|   |                | T - Aug    | ger drilling 1                             |               |              |        | > Inflov     | XW - Extremely Weathered<br>W HW - Highly Weathered                                             | FT - Fau<br>SS - She               | ult<br>ear Surface         | CN - Clean<br>SN - Stain                | SL - Slickensided<br>POL - Polished                               |
|   | WB             | - Wa       | ger drilling \<br>shbore<br>eline core (   |               | m)           |        | ☐ Partia Com | al Loss MW - Moderately Weathered SW - Slightly Weathered                                       | SZ - She<br>BP - Beo               | ear Zone<br>Iding parting  | VN - Veneer<br>CO - Coating             | S - Smooth<br>RF - Rough                                          |
|   | PQ3            | 3- Wir     | eline core (<br>eline core (<br>ndard pene | 85.0 m        | m)           |        | -            | Strength                                                                                        | SM - Sea<br>IS - Infi<br>JT - Joir | lled Seam                  | RF - Rock fra<br>G - Gravel<br>S - Sand | agments VR - Very Rough<br>Shape<br>PR - Planar                   |
|   |                |            | sh tube                                    |               |              |        | Core r       | ecovered (hatching L - Low Madium                                                               | CO - Cor<br>CZ - Cru               | ntact<br>ished Zone        | Z - Silt<br>CA - Calcite                | CU - Curved<br>UN - Undulating                                    |
|   |                |            |                                            |               |              |        |              | re recovery VH - View Hah                                                                       | VN - Vei                           | n<br>cture Zone            | CL - Clay<br>FE - Iron                  | ST - Stepped<br>IR - Irregular                                    |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

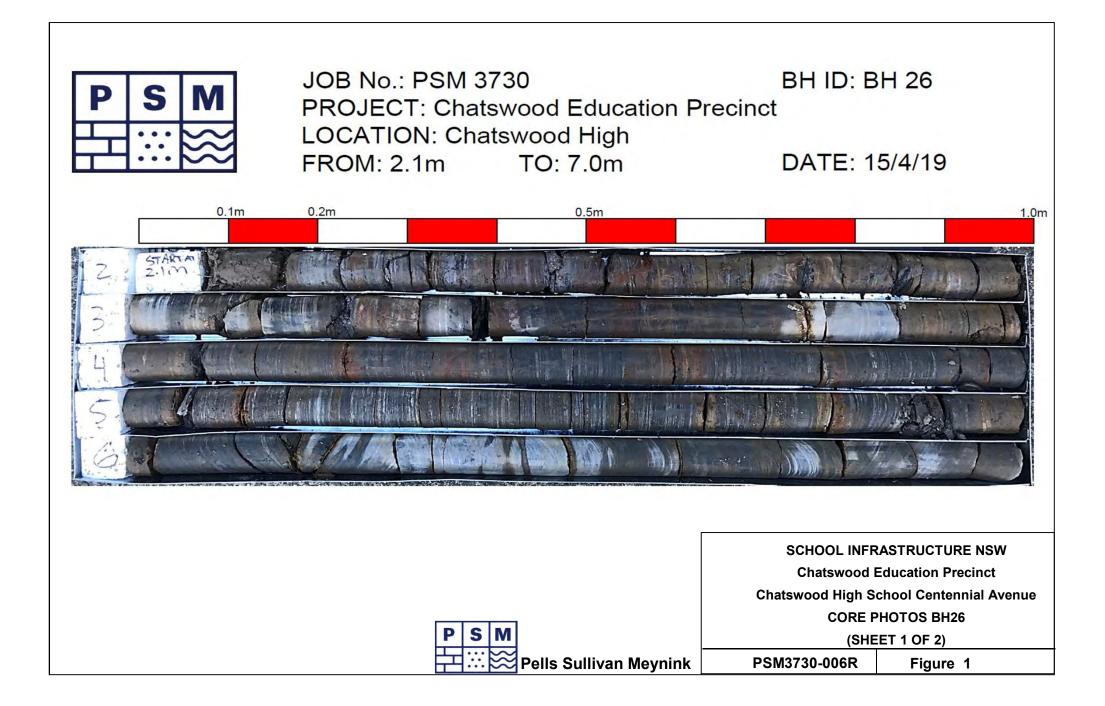
02/05/2019 11:41 10:00.00.69 Datgel Fence and Map Tool | Lib: PSM 3.02.1 2019-03-06 Prj: PSM 2.01 2015-04-07

PSM3730 GINT LOGS.GPJ <<DrawingFile>>

Log PSM AU CORE BH

3.02.1 LIB.GLB

PSM 3


See Explanatory Notes for details of abbreviations and basis of descriptions.

Borehole ID

**BH26** 

| E                                                                                                         | ngi          | nee                               | ering                                      | Log           | g - C     | ore           | d Bo        | orehole                                                                                                                                                                                                 | Project No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSM3730                              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|--------------------------------------------|---------------|-----------|---------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                           | Hole         | nt:<br>ect Na<br>e Loca<br>e Posi | ation:                                     | Ch<br>Ch      | natsw     | ood H         | ligh S      | ion Precinct<br>chool<br>3551.0 m N                                                                                                                                                                     | Commenced:<br>Completed:<br>Logged By:<br>Checked By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15/04/2019<br>15/04/2019<br>MB<br>BS |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                           |              |                                   | el and M<br>be and L                       |               | 0         | Rig 8<br>NML0 |             | Mounted Inclination: -90°<br>Bearing:                                                                                                                                                                   | RL Surface: 88.<br>Datum: AH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 m<br>D Ope                        | rator: BG Drilling                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                           |              | Dril                              | ling Info                                  | rmat          | tion      |               |             | Rock Substance                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                    | Rock Mass Defects                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mathod                                                                                                    | Water        | RQD (%)                           | SAMPLES &<br>FIELD TESTS                   | WPT (Lugeons) | RL<br>(m) | Depth<br>(m)  | Graphic Log | Material Description<br>ROCK TYPE: Colour, grain size, structure<br>(texture, fabric, mineral composition, hardness,<br>alteration, cementation, etc as applicable),<br>inclusions and minor components | Weathering     Strength<br>Is(50)       ● - Axial<br>○ - Diametral       ○ <sup>©</sup> / <sub>0</sub> · <sup>©</sup> / <sub>0</sub> · <sup>©</sup> / <sub>2</sub> ※ <sup>A</sup> / <sub>2</sub> <sup>A</sup> / <sub>2</sub> <sup>A</sup> / <sub>2</sub> <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / <sub>2</sub> · <sup>A</sup> / | Defect<br>Spacing<br>(mm)            | Defect Descriptions / Comments<br>Description, alpha/beta, infilling<br>or coating, shape, roughness,<br>thickness, other                                                                                                                                                                                                                                                                                                            |
|                                                                                                           |              | 46 52                             | 5.35m<br>C ls(50)<br>d=0.1<br>a=0.6<br>MPa |               |           | -             |             | LAMINITE: dark grey, white and orange bands,<br>Thinly Laminated, well developed bedding, fine<br>grained sandstone laminations, 80% siltstone, 20%<br>sandstone.(continued)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | - BP, 0°, FE SN, PR, RF<br>- BP, 3°, FE SN, UN, RF, 1 mm<br>- BP, 3°, FE SN, UN, S<br>- BP, 5°, FE SN, PR, S<br>- BP, 2°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S<br>- BP, 0°, FE SN, PR, S |
|                                                                                                           | Not Observed |                                   | 6.35m<br>C ls(50)<br>d=0.1<br>a=0.3<br>MPa |               | 82.5      | 6             |             | Laminations inclined up to 30°.                                                                                                                                                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | BP, 0°, FE SN, PR, S<br>SM, 15°, CL, IR, S, 20 mm<br>SM, 15°, CL, IR, S, 10 mm<br>BP, 1°, FE SN, UN, RF<br>BP, 30°, CL, PR, S, 1 mm<br>JT, 0°, RF, PR, RF, 1 mm<br>BP, 30°, CL, PR, S, 1 mm<br>BP, 15°, Fe & Clay SN, PR, S<br>BP, 3°, FE SN, PR, RF<br>- BP, 0°, FE SN, CU, RF                                                                                                                                                      |
| Lib: PSM 3.02.1 2019-03-06 Prj: PSM 2.01 2015-04-07<br>NI                                                 | ž            | 20                                | 7.12m<br>C ls(50)<br>d=0.1<br>a=0.5<br>MPa |               | 81.5      | 7             |             | SILTSTONE: dark grey and grey, Thinly Laminated,<br>well developed bedding, Laminations inclined up to<br>30°.                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | → JT, 10°, FE SN, CU, RF<br>→ BP, 10°, FE SN, PR, RF<br>→ BP, 5°, FE SN, PR, RF<br>→ BP, 0°, FE SN, PR, RF<br>→ BP, 5°, FE SN, PR, RF<br>→ BP, 3°, FE SN, PR, S<br>→ Healed joint.                                                                                                                                                                                                                                                   |
|                                                                                                           |              |                                   | 8.09m<br>C Is(50)<br>d=1<br>a=0.4<br>MPa   |               | <br>80.5  | - 8-          | -           | Laminations inclined up to 10°.                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | - JT, 40°, FE SN, PR, RF<br>- BP, 10°, FE SN, PR, RF<br>- BP, 15°, FE SN, PR, S<br>- BP, 13°, FE SN, PR, S<br>- BP, 45°, FE SN, PR, S                                                                                                                                                                                                                                                                                                |
| 30 GINT LOGS.GPJ < <drawingfile>&gt; 02/05/2019 11:41 10:00.00 69 Datgel Fence and Map Tool</drawingfile> |              |                                   |                                            |               | 79.5      | 9             |             | Hole Terminated at 8.61 m                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Infilling/Coating CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fragments G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz X - Carbonaceous Defect Type FT - Fault SS - Shear Surface SZ - Shear Zone BP - Bedding parting SM - Seam IS - Infiled Seam JT - Joint CO - Contact CZ - Crushed Zone VN - Vein FZ - Fracture Zone BSH - Bedding Shear DB - Drilling Break Roughness SL - Slickensided POL - Polished S - Smooth RF - Rough VR - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular Weathering - Extremely Weathered - Highly Weathered - Moderately Weathered - Slightly Weathered - Fresh Water Method AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore HQ3- Wireline core (63.5 mm) PQ3- Wireline core (85.0 mm) SPT- Standard penetration test PT - Push tube XW HW MW SW FR ▷ Inflow Partial Loss Complete Loss - Fresh Strength - Very Low - Low - Medium - High - Very High - Extremely High Graphic Log/Core Loss VL L M H VH EH Core recovered (hatching indicates material)  $\ge$ ⊥ No core recovery





| Borehole<br>ID<br>(Estimated<br>Surface<br>RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                       | Notes                                                          |
|------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                | 0 – 0.08 m           | Asphalt; 80 mm thick.                                                                                                                                                                                      |                                                                |
|                                                | 0.08 – 1.5 m         | Silty CLAY; non-plastic, pale brown, with some<br>gravel, sub-angular up to 10 mm, dry and compact<br>consistency.                                                                                         | Inferred Fill.<br>SPT at 1.0 m:<br>Refusal.                    |
| BH27<br>(RL 80.0m)                             | 1.5 – 8.0 m          | LAMINITE; pale brown, very low strength,<br>extremely weathered. Increasing strength with<br>depth.<br>Becomes grey from 5.0 m.<br>Increased drill resistance from 6.0 m.<br>Becomes dark grey from 7.5 m. | Inferred Bedrock<br>Description<br>based on drill<br>cuttings. |
|                                                | 8.0 m                | Hole terminated at 8.0 m.                                                                                                                                                                                  | Maximum depth<br>reached. V-bit<br>auger did not<br>refuse.    |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

**BH28** 

|               | -              |                         | rin                   | g Log - N                        |          | n Co       | ored                               | Bo                 | reho                     | le Pi                                                                                                                                                                                                                                 | roject No         | 0.:                   |                                   | PSN                     | 13730                       | )                                                                         |
|---------------|----------------|-------------------------|-----------------------|----------------------------------|----------|------------|------------------------------------|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-----------------------------------|-------------------------|-----------------------------|---------------------------------------------------------------------------|
|               | lient:         |                         | mo:                   | SINSW<br>Chatsv                  |          | Educ       | nation                             | Draai              | aat                      |                                                                                                                                                                                                                                       | ommenc<br>omplete |                       |                                   |                         | 4/201<br>4/201              |                                                                           |
|               | rojec<br>ole L |                         |                       |                                  |          |            |                                    |                    | ici                      |                                                                                                                                                                                                                                       | ogged B           |                       |                                   | MB                      | 4/201                       | 9                                                                         |
|               | ole F          |                         |                       |                                  |          | •          |                                    | 0.0 m N Checked By |                          |                                                                                                                                                                                                                                       |                   | -                     |                                   | BS                      |                             |                                                                           |
| D             | rill M         | ode                     | land                  | d Mounting:                      | Rig      | 8 Tra      | ack Mo                             | ounte              |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
| Н             | ole D          | Diam                    | eter                  | :                                | 120      | ) mm       |                                    |                    |                          | Bearing: Da                                                                                                                                                                                                                           | atum:             |                       | AH                                | ID                      | 0                           | perator: BG Drilling                                                      |
|               |                |                         | Drill                 | ing Informat                     | ion      |            |                                    |                    |                          | Soil Description                                                                                                                                                                                                                      | n                 |                       |                                   |                         |                             | Observations                                                              |
| Mailoa        | Penetration    | Support                 | Water                 | Samples<br>Tests<br>Remarks      | Recovery | RL<br>(m)  | Depth<br>(m)                       | Graphic Log        | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional                                                                                                                                                       |                   | Moisture<br>Condition | Consistency /<br>Relative Density | Penetr<br>U(<br>(kl     | and<br>cometer<br>CS<br>Pa) | r Structure, Zoning, Origin<br>Additional Observations                    |
|               |                | z                       |                       |                                  |          |            |                                    |                    |                          | ASPHALT: 40 mm thick.                                                                                                                                                                                                                 |                   | _                     |                                   |                         | 040                         | 0.04: Inferred FILL.                                                      |
|               |                |                         |                       |                                  |          |            | -                                  |                    |                          | Gravelly SAND: medium to coarse grain dark brown; gravel angular, up to 5 mm                                                                                                                                                          |                   |                       | С                                 |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          |            | _                                  |                    | СН                       | CLAY: high plasticity, dark brown, grey red.                                                                                                                                                                                          |                   |                       |                                   |                         |                             | 0.30: Inferred residual soil.                                             |
|               |                |                         |                       |                                  |          |            | -                                  |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       | edt.                             |          | 82.0       | 1-                                 |                    |                          |                                                                                                                                                                                                                                       |                   |                       | F                                 |                         |                             | 1.00: SPT recovered: 450 mm.                                              |
|               |                |                         |                       | SPT:<br>1.00 - 1.45 m<br>2, 3, 4 |          | œ          |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
| P             |                |                         |                       | 2, 3, 4<br>N = 7                 |          |            | ]                                  |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             | 1.20: Roots observed.                                                     |
|               |                |                         | srved                 |                                  | 4        |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         | Not Observed          |                                  |          |            | -                                  |                    |                          |                                                                                                                                                                                                                                       |                   | м                     |                                   |                         |                             |                                                                           |
|               |                | z                       | Not                   |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       | St                                |                         |                             |                                                                           |
|               |                |                         |                       | edt.                             |          | 81.0       | 2-                                 |                    |                          | <b>D</b>                                                                                                                                                                                                                              |                   |                       |                                   |                         |                             | 2.00: SPT recovered: 450 mm.                                              |
|               |                |                         |                       | SPT:<br>2.00 - 2.45 m            |          | ø          |                                    |                    |                          | Becomes red-brown and grey.                                                                                                                                                                                                           |                   |                       |                                   |                         |                             | 2.00. OF 1 1900Vered: 450 mm.                                             |
|               |                |                         |                       | 6, 9, 10<br>N = 19               |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  | Ø        |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       | VSt                               |                         |                             |                                                                           |
| ł             |                |                         |                       |                                  |          |            | -                                  |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
| F             |                |                         |                       |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
| F             |                |                         |                       | ODT                              |          | 0.0        | 3-                                 |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             | 2.00.007                                                                  |
| F             |                |                         |                       | SPT:<br>3.00 - 3.45 m            |          | 80.        |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       | н                                 |                         |                             | 3.00: SPT recovered: 450 mm.                                              |
|               |                |                         |                       | 8, 14, 25<br>N = 39              |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   | +                     |                                   |                         |                             | 3.30: Inferred bedrock. Rock proper                                       |
| ť             |                | +                       |                       |                                  | -14      |            |                                    |                    |                          | SILTSTONE: grey, red and yellow-brow<br>strength, extremely weathered.                                                                                                                                                                | wn, iow           | D                     |                                   |                         | $\left  \right $            | inferred from drill cuttings.                                             |
|               |                |                         |                       |                                  |          |            |                                    |                    |                          | Continued on cored borehole sheet                                                                                                                                                                                                     |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          | 0.0        |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          | 79.        | 4-                                 |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               |                |                         |                       |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             |                                                                           |
|               | D/T -          | letho<br>Auge<br>Auge   | er dril               | ling TC bit<br>ling V bit        |          |            | t <b>ion</b><br>sistance<br>ugh to | -                  | ⊳ Infle                  | ater Samples and Te<br>w U - Undisturbed Sample<br>tial Loss D - Disturbed Sample                                                                                                                                                     | ple               | М                     | D<br>M                            | re Con<br>- Dry<br>- Mo | /<br>ist                    | VS - Very soft<br>S - Soft                                                |
| W<br>SF<br>P1 | ′B-W           | /ashl<br>tanda<br>ush t | oore<br>ard pe<br>ube | enetration test                  |          |            | usal                               |                    |                          | tial Loss<br>nplete Loss<br>D - Disturbed Sample<br>SPT - Standard Penetrat<br>SPT - Standard Penetrat<br>SPT - Standard Penetrat<br>SPT - Standard Penetrat<br>SPT - Standard Penetrat<br>TW - Thin Walled<br>LB - Large Disturbed S | mple              |                       | Ŵ                                 | - We                    | et                          | F - Firm<br>St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose |
| ,             | 5 - A          | agei                    | 2010                  |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       | r ≤               |                       |                                   |                         |                             | L - Loose<br>MD - Medium dense                                            |
|               |                |                         |                       |                                  |          |            |                                    |                    |                          |                                                                                                                                                                                                                                       |                   |                       |                                   |                         |                             | D - Dense<br>VD - Very dense<br>Ce - Cemented                             |
| e E           | Explanat       | tory No                 | tes for               | details of abbreviation          | ns and I | basis of c | description                        | <sub>s.</sub> So   | il and r                 | ock descriptions in accordance with A                                                                                                                                                                                                 | AS 1726:2         | 2017                  |                                   |                         |                             | C - Compact                                                               |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

BH28

| Eng                                        | gir                                                                         | nee     | ering                            | Log           | j - C | ored                                              | d Bo                   | orehole                                                                                       | Project No                           | p.: F                                    | PSM3730                         |                                                                 |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------|---------|----------------------------------|---------------|-------|---------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|---------------------------------|-----------------------------------------------------------------|--|--|
| Cli                                        | ient                                                                        | t:      |                                  | SI            | NSW   |                                                   |                        |                                                                                               | Commenc                              |                                          | 6/04/2019                       |                                                                 |  |  |
| Project Name: Chatswood Education Precinct |                                                                             |         |                                  |               |       | Completed                                         |                        | 6/04/2019                                                                                     |                                      |                                          |                                 |                                                                 |  |  |
|                                            | Hole Location:Chatswood High SchoolHole Position:331153.0 m E 6258580.0 m N |         |                                  |               |       |                                                   | Logged By<br>Checked E | -                                                                                             | ИВ<br>3S                             |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         | and M                            |               |       |                                                   |                        |                                                                                               | RL Surfac                            | -                                        |                                 |                                                                 |  |  |
|                                            |                                                                             |         | be and L                         |               | -     | NMLC                                              |                        | Mounted Inclination: -90°<br>Bearing:                                                         | Datum:                               | AHD                                      |                                 | erator: BG Drilling                                             |  |  |
|                                            |                                                                             |         | ling Info                        | -             |       |                                                   |                        | Rock Substance                                                                                |                                      |                                          |                                 | Rock Mass Defects                                               |  |  |
|                                            |                                                                             |         | (0                               | (sı           |       |                                                   |                        |                                                                                               |                                      | Strength                                 |                                 |                                                                 |  |  |
|                                            |                                                                             |         | SAMPLES &<br>FIELD TESTS         | WPT (Lugeons) |       |                                                   | Log                    | Material Description<br>ROCK TYPE: Colour, grain size, structure                              | Weathering                           | ls(50)<br>● - Axial                      | Defect                          | Defect Descriptions / Comme                                     |  |  |
| Method                                     | er                                                                          | RQD (%) | AMPL<br>ELD 7                    | T (Lu         | RL    | Donth                                             | Graphic Log            | (texture, fabric, mineral composition, hardne<br>alteration, cementation, etc as applicable)  |                                      | ⊖ - Diametral                            | Spacing<br>(mm)                 | Description, alpha/beta, infilli<br>or coating, shape, roughnes |  |  |
| Met                                        | Water                                                                       | RQ      | SE                               | WP            | (m)   | Depth<br>(m)                                      | Gra                    | inclusions and minor components                                                               | W M M M H M H M H                    | ск<br>И 1<br>СН 1<br>6H 1<br>6H 10<br>10 | <20<br>60<br>600<br>600<br>1000 | thickness, other                                                |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | -                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | 1                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | -                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               | 82.0  | 1_                                                |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               | 60    |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | -                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | -                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | 1                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               | 81.0  | 2-                                                |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               | ~~~   |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | -                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      | i i i i i                                |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | -                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               | 80.0  | 3-                                                |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               | -     |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | 1                                                 |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
|                                            | _                                                                           |         |                                  |               |       | -                                                 | 11111                  | Continued from non-cored borehole sheet                                                       |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        | SILTSTONE: orange-brown, poorly developed bedding, hard clay observed throughout.             |                                      |                                          |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | 1                                                 |                        |                                                                                               |                                      | iiii                                     |                                 |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 |                                                                 |  |  |
| 3                                          | ,ed                                                                         | ~       | 3.90m<br>C Is(50)<br>d=0.1       |               | 0     |                                                   |                        | SILTSTONE: dark grey, orange brown and pale<br>grey, poorly developed to developed bedding, s | ome                                  | ົ∕†                                      |                                 | - SM, 0°, CL, PR, S, 20 mm                                      |  |  |
|                                            | ser                                                                         | 28      | a=0.1<br>MPa                     |               | 79.0  | 4-                                                |                        | hard clay.                                                                                    |                                      |                                          |                                 |                                                                 |  |  |
|                                            | Not Observed                                                                |         | wird                             |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 | BP, 0°, FE SN, PR, S<br>SM, 0°, CL, PR, S, 20 mm                |  |  |
|                                            | Not                                                                         |         |                                  |               |       |                                                   |                        |                                                                                               |                                      |                                          |                                 | - SM, 0°, CL, PR, S, 90 mm                                      |  |  |
|                                            |                                                                             |         |                                  |               |       | -                                                 |                        |                                                                                               |                                      |                                          |                                 | - SM, 0°, CL, PR, S, 10 mm                                      |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   | ШШ                     |                                                                                               |                                      |                                          |                                 | <u>- SM, 0°, CL, PR, S, 40 mm</u>                               |  |  |
|                                            | ſ                                                                           |         | 4 79~                            |               |       | ]                                                 | $\geq$                 | NO CORE: 172 mm.                                                                              |                                      |                                          | <u>+</u>                        |                                                                 |  |  |
|                                            |                                                                             | 35      | 4.78m<br>C ls(50)<br>d=0.7       |               |       | -{                                                |                        | SILTSTONE: dark grey, developed bedding.                                                      |                                      |                                          |                                 | - JT, 85°, CL, ST, S, 1 mm                                      |  |  |
|                                            |                                                                             |         | a=1.1<br>MPa                     |               |       |                                                   | $\geq$                 | NO CORE: 110 mm.                                                                              |                                      |                                          |                                 | SM, 0°, CL, PR, S, 100 mm                                       |  |  |
|                                            |                                                                             |         | ethod                            |               |       |                                                   | W                      | ater Weathering                                                                               | Defect                               |                                          | Infilling/Coa                   | ating Roughness                                                 |  |  |
|                                            |                                                                             |         | jer drilling T<br>jer drilling V |               |       |                                                   | > Inflo                |                                                                                               | ed SS - Shear                        | r Surface                                | CN - Clean<br>SN - Stain        | SL - Slickensided<br>POL - Polished                             |  |  |
| 1                                          | WB                                                                          | - Wa    | shbore<br>eline core (           |               | m)    |                                                   | ☐ Parti ▲ Com          | SW - Slightly Weathe                                                                          | red BP - Beddi                       | ir Zone<br>ling parting                  | VN - Venee<br>CO - Coatin       | g RF - Rough                                                    |  |  |
|                                            | PQ3                                                                         | - Wir   | eline core (                     | 85.0 mr       | m)    |                                                   |                        | Strength                                                                                      | SM - Seam<br>IS - Infiller           | ed Seam                                  | G - Gravel                      | ragments VR - Very Rough<br>Shape                               |  |  |
|                                            |                                                                             |         |                                  | auoni         | ເຕຣເ  | Grap                                              |                        | recovered (hatching L - Low                                                                   | JT - Joint<br>CO - Conta<br>CZ Crush | act                                      | S - Sand<br>Z - Silt            | PR - Planar<br>CU - Curved                                      |  |  |
|                                            |                                                                             |         |                                  |               |       |                                                   |                        | tes material) M - Medium                                                                      | CZ - Crush                           |                                          | CA - Calcite                    |                                                                 |  |  |
|                                            |                                                                             |         |                                  |               |       | $ \rightarrow                                   $ |                        | re recovery VH - Very High                                                                    | VN - Vein<br>FZ - Fractu             |                                          | CL - Clay<br>FE - Iron          | ST - Stepped<br>IR - Irregular                                  |  |  |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

BH28

| _!!                           | gi                                                          | nee                                                    | ring                                                                                              | Log                         | J - C     | ored         | d Bo                                                                                                             | orehole                                                                                                                                                                                                 | Project No.:                                                                                                                                                                                                                                                                                     | PSM3730                                                                                                                                                                  |                                                                                                                                                                                                                                        |  |
|-------------------------------|-------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|-----------|--------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                               | Client: SINSW<br>Project Name: Chatswood Education Precinct |                                                        |                                                                                                   |                             |           |              | ducat                                                                                                            | ion Precinct                                                                                                                                                                                            | Commenced:<br>Completed:                                                                                                                                                                                                                                                                         | 16/04/2019<br>16/04/2019                                                                                                                                                 |                                                                                                                                                                                                                                        |  |
| Hole Location: Chatswood High |                                                             |                                                        |                                                                                                   |                             | natsw     | ood Hi       | igh S                                                                                                            | chool                                                                                                                                                                                                   | Logged By:                                                                                                                                                                                                                                                                                       | MB                                                                                                                                                                       |                                                                                                                                                                                                                                        |  |
|                               |                                                             |                                                        | tion:<br>el and M                                                                                 |                             |           |              |                                                                                                                  | 3580.0 m N<br>K Mounted Inclination: -90°                                                                                                                                                               | ,                                                                                                                                                                                                                                                                                                | BS<br>00 m                                                                                                                                                               |                                                                                                                                                                                                                                        |  |
|                               |                                                             |                                                        | be and L                                                                                          |                             | -         | NMLC         |                                                                                                                  | Bearing:                                                                                                                                                                                                | Datum: AHI                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                                                                        |  |
|                               |                                                             | Dril                                                   | ling Info                                                                                         | ormat                       | ion       |              |                                                                                                                  | Rock Substance                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                        |                                                                                                                                                                                                                                        |  |
| Method                        | Water                                                       | RQD (%)                                                | SAMPLES &<br>FIELD TESTS                                                                          | WPT (Lugeons)               | RL<br>(m) | Depth<br>(m) | Graphic Log                                                                                                      | Material Description<br>ROCK TYPE: Colour, grain size, structure<br>(texture, fabric, mineral composition, hardness,<br>alteration, cementation, etc as applicable),<br>inclusions and minor components | Weathering<br>Weathering<br>Strength<br>Is(50)<br>● - Axial<br>○ - Diametral<br>○ - Diametral<br>○ - Sec.<br>Strength<br>Is(50)                                                                                                                                                                  | Defect<br>Spacing<br>(mm)<br>ତି ହି ଛ ଛି ଛି ଛି                                                                                                                            | Defect Descriptions / Commer<br>Description, alpha/beta, infillir<br>or coating, shape, roughness<br>thickness, other                                                                                                                  |  |
|                               |                                                             | 35                                                     | 5.36m<br>C ls(50)<br>d=0.01<br>a=0.1<br>MPa                                                       |                             |           |              |                                                                                                                  | SILTSTONE: dark grey and brown, poorly<br>developed to developed bedding, some hard<br>clay.( <i>continued</i> )<br>NO CORE: 1080 mm.                                                                   |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          | - SM, 0°, CL, PR, S, 13 mm<br>SM, 0°, CL, PR, S, 5 mm<br>SM, 0°, CL, PR, S, 5 nm<br>BP, 20°, FE SN, CU, S                                                                                                                              |  |
| NMLC<br>NVF Observed          |                                                             |                                                        |                                                                                                   |                             | 1         | 6            | $\left \right\rangle$                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                                                                        |  |
|                               | rved                                                        | 32                                                     | 6.84m<br>C ls(50)<br>d=0.3<br>a=0.01<br>MPa                                                       |                             | 1<br>76.0 | - 7          |                                                                                                                  | SILTSTONE: dark grey with orange bands, Thinly<br>Laminated, developed bedding.                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          | - SM, 0°, CL, PR, S, 20 mm<br>- BP, 4°, FE SN, PR, RF<br>- BP, 5°, FE SN, PR, S<br>- BP, 2°, Fe & Clay SN, ST, S<br>- SM, 0°, CL, PR, S, 25 mm<br>- SM, 0°, CL, PR, S, 5 mm<br>- BP, 0°, FE SN, CU, S<br>- JJT, 70°, FE SN, PR, S      |  |
|                               | Not Observed                                                |                                                        | 7.56m<br>C ls(50)<br>d=0.1<br>a=0.1<br>MPa                                                        |                             | 1<br>75.0 |              |                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          | BP, 10°, FE SN, PR, S<br>SM, 0°, CL, PR, S, 20 mm<br>BP, 7°, Fe & Clay SN, PR, S<br><1 mm<br>BP, 0°, FE SN, PR, S<br>BP, 3°, FE SN, PR, S<br>BP, 2°, FE SN, PR, S<br>30°, Healed joint.                                                |  |
|                               |                                                             | 58                                                     | 8.80m<br>C ls(50)                                                                                 |                             |           | -            |                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          | JT, 40°, FE SN, PR, S<br>JT, 40°, FE SN, PR, S<br>−FZ, G, Highly fractured.                                                                                                                                                            |  |
|                               | -                                                           |                                                        | d=0.01<br>a=0.1<br>MPa                                                                            |                             | 74.0      | 9            |                                                                                                                  | Becomes dark grey.                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          | FZ, G, Highly fractured.<br>SM, 0°, CL, PR, S, 3 mm<br>JT, 30°, FE SN, PR, RF                                                                                                                                                          |  |
|                               |                                                             | 89                                                     | 9.45m<br>C ls(50)<br>d=0.3<br>a=0.3<br>MPa<br>10.00m                                              |                             |           |              |                                                                                                                  | INTERBEDDED SILTSTONE AND SANDSTONE:<br>fine to medium grained, dark grey and grey, Thinly<br>Laminated, developed bedding, 50% sandstone,<br>50% siltstone.                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          | - BP, 0°, FE SN, IR, RF<br>BP, 0°, FE SN, PR, S<br>- BP, 10°, FE SN, UN, RF<br>- SM, 3°, CL, PR, S, 2 mm<br>- BP, 4°, FE SN, IR, RF                                                                                                    |  |
|                               | AD/<br>WB<br>HQ3<br>PQ3<br>SPT                              | 'T-Aug<br>'V-Aug<br>- Wa<br>3- Wir<br>3- Wir<br>3- Wir | ethod<br>Jer drilling T<br>Jer drilling V<br>shbore<br>eline core (<br>eline core (<br>ndard pene | / bit<br>63.5 mi<br>85.0 mi | m)        | <            | <ul> <li>&gt; Inflo</li> <li>□ Parti</li> <li>□ Com</li> <li>□ Core</li> <li>□ Core</li> <li>□ indica</li> </ul> | The Highly Weathered                                                                                                                                                                                    | Defect Type           FT - Fault           SS - Shear Surface           SZ - Shear Zone           BP - Bedding parting           SM - Seam           IS - Infilled Seam           JT - Joint           CO - Contact           CZ - Crushed Zone           VN - Vein           FZ - Fracture Zone | Infilling/Coa<br>CN - Clean<br>SN - Stain<br>VN - Veneer<br>CO - Coating<br>RF - Rock fr<br>G - Gravel<br>S - Sand<br>Z - Silt<br>CA - Calcite<br>CL - Clay<br>FE - Iron | Iting         Roughness           SL - Slickensided         POL - Polished           SC - Smooth         Somoth           gaments         VR - Rough           NRF - Rough         NR- Rough           PR - Planar         CU - Curved |  |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

Client:

2019-03-06 Pri: PSM 2 01 2015-04-07

Tool | Lib: PSM 3.02.1

and Map

Datgel I

12/05/2019 11:41

PSM3730 GINT LOGS GP.I

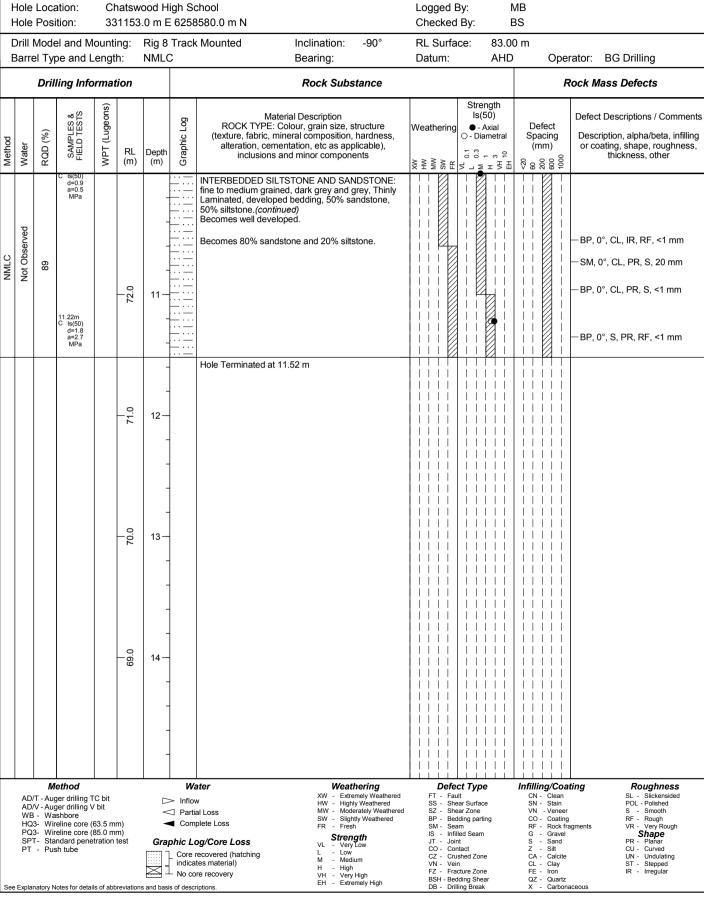
ALLCORF RH

PSM 2

6

I LIB.GLB

PSM


Project Name:

SINSW


Borehole ID

**BH28** 

Page 4 of 4 **Engineering Log - Cored Borehole** Project No .: PSM3730 Commenced: 16/04/2019 **Chatswood Education Precinct** Completed: 16/04/2019 Logged By: MR BS Checked By: Inclination: -90° RL Surface: 83.00 m Bearing: Datum: AHD Operator: BG Drilling Rock Substance **Rock Mass Defects** Strength Is(50) Defect Axial Weathering O - Diametral Spacing (mm) 0.1 1 0.3 3 inclusions and minor components 0 <20 600 1000 M M M M M 」ᡓᠴ᠍ᠮ 2 T 1 1 1 1 1 







**Pacific Highway Site** 

| Ρ | S | М  |
|---|---|----|
| 누 |   | }} |

Borehole ID

BH18

| En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ngineering Log - Non Cored Borehole   |              |                                 |                                                                      |              |                |        |        |                          |                                                                                                 |                |                                                            |                                                                                                                                                                                                                                          | PSN                      | /137      | 30 |                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|---------------------------------|----------------------------------------------------------------------|--------------|----------------|--------|--------|--------------------------|-------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|----|-----------------------------------------------------------------------|
| P<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client:<br>Projec<br>Iole L<br>Iole F | t Na<br>.oca | tion                            | Chatsw                                                               | vood<br>vood | Prim           | ary Sc | hool E | 3H18                     | Comm<br>Compl<br>Logged<br>Checke                                                               | eted:<br>I By: |                                                            |                                                                                                                                                                                                                                          | 16/0<br>16/0<br>MB<br>YB |           |    |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drill M<br>Hole D                     |              |                                 | d Mounting:                                                          |              | njin D<br>) mm | B8 Tra | ack M  | ounteo                   | d Inclination: -90° RL Sur<br>Bearing: Datum                                                    |                |                                                            | 106<br>AHE                                                                                                                                                                                                                               | .00 ı<br>)               | n         | Op | perator: BG Drilling                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |              | Drill                           | ling Informati                                                       | ion          |                |        |        |                          | Soil Description                                                                                |                |                                                            |                                                                                                                                                                                                                                          |                          |           |    | Observations                                                          |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Penetration                           | Support      | Tests An Arrow RL Depth (m) (m) |                                                                      |              |                |        |        | Classification<br>Symbol | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional                 | Moisture       | Moisture<br>Condition<br>Consistency /<br>Relative Density |                                                                                                                                                                                                                                          | eneti<br>U               | CS<br>Pa) |    | Structure and<br>Additional Observations                              |
| AD/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | z            |                                 | CBR<br>0.20-1.50 m                                                   |              |                | 1      |        |                          | ASPHALT; 200 mm thick.<br>Silty CLAY; dark brown, orange and grey, low<br>to medium plasticity. | -              | -                                                          |                                                                                                                                                                                                                                          |                          |           |    | 0.20: Inferred FILL                                                   |
| AD/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | z            |                                 | ES 1.00 m<br>SPT<br>1.00 - 1.45 m<br>4, 10, 14<br>N = 24<br>D 1.50 m |              | 1<br>105.0     |        |        |                          |                                                                                                 |                | V                                                          | St                                                                                                                                                                                                                                       |                          |           |    | 1.00: SPT recovered: 0.45 m.                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |              | ,ed                             |                                                                      |              | 104.0          | 2-     |        |                          | SILTSTONE; grey, orange and red, extremely<br>low strength, extremely weathered.                | ,              |                                                            |                                                                                                                                                                                                                                          |                          |           |    | 1.80: V-bit refusal. Rock properties<br>inferred from drill cuttings. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |              | Not Observed                    | SPT<br>2.50 - 2.95 m<br>4, 12, 25<br>N = 37                          |              | <br>103.0      |        |        |                          |                                                                                                 | D              |                                                            |                                                                                                                                                                                                                                          |                          |           |    | 2.50: SPT recovered: 0.45 m.                                          |
| AD/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | z            |                                 | SPT<br>4.00 - 4.45 m<br>11, 20, 27<br>N = 47                         |              | 102.0          | 4      |        |                          | Becoming red and grey.                                                                          |                |                                                            |                                                                                                                                                                                                                                          |                          |           |    | 4.00: SPT recovered: 0.45 m.                                          |
| Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions         Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions         Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions         Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state of descriptions       Image: Second state |                                       |              |                                 |                                                                      |              |                |        | Mois   | D<br>M                   | • <b>Cor</b><br>- Dr<br>- Mc<br>- We                                                            | /<br>bist      | on                                                         | Consistency/Relative Densit<br>VS - Very soft<br>S - Soft<br>F - Firm<br>St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose<br>L - Loose<br>MD - Medium dense<br>D - Dense<br>VD - Very dense<br>Ce - Cemented<br>C - Compact |                          |           |    |                                                                       |

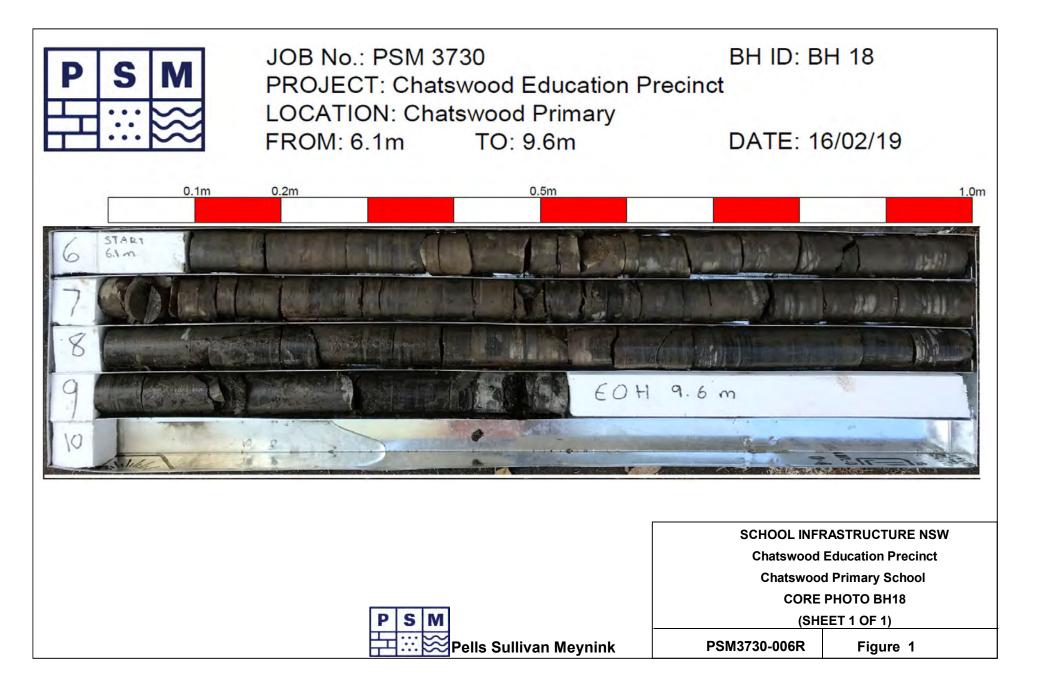
| Ρ | S | М        |
|---|---|----------|
| Ŧ |   | <u>}</u> |

Borehole ID

**BH18** 

Page 2 of 3

| 0                                      |                                |                                              | g Log - N                                          |          |           |                  |              |                          |                                                                       |                                                                                                                                           | 0                                                  |                       |                                   | 40                         | 000         | 004             | •                                                                                                                                                 |
|----------------------------------------|--------------------------------|----------------------------------------------|----------------------------------------------------|----------|-----------|------------------|--------------|--------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|-----------------------------------|----------------------------|-------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Client:<br>Project                     | Na                             | me.                                          | SINSW<br>Chatsw                                    |          | Educ      | cation           | Precir       | nct                      |                                                                       |                                                                                                                                           | Commer<br>Complet                                  |                       |                                   |                            |             | '201<br>'201    |                                                                                                                                                   |
| Hole Lo                                |                                |                                              |                                                    |          |           |                  |              |                          |                                                                       |                                                                                                                                           | Logged I                                           |                       |                                   | ME                         |             | 201             | ~                                                                                                                                                 |
| Hole P                                 | ositi                          | on:                                          | 331321                                             |          |           | -                |              |                          |                                                                       |                                                                                                                                           | Checked                                            | -                     |                                   | YB                         |             |                 |                                                                                                                                                   |
|                                        |                                |                                              | -                                                  |          | -         | B8 Tr            | ack M        | ounteo                   |                                                                       | -90°                                                                                                                                      | RL Surfa                                           | ice:                  |                                   | 6.00                       | m           |                 |                                                                                                                                                   |
| Hole D                                 | iam                            | eter                                         | :                                                  | 11(      | ) mm      |                  | Bearing:     |                          |                                                                       |                                                                                                                                           | Datum:                                             |                       | AF                                | HD                         |             | 0               | perator: BG Drilling                                                                                                                              |
|                                        | I                              | Drill                                        | ing Informati                                      | on       |           |                  | Soil Descrip |                          |                                                                       |                                                                                                                                           | ion                                                |                       |                                   |                            |             |                 | Observations                                                                                                                                      |
| Penetration                            | Support                        | Water                                        | Samples<br>Tests<br>Remarks                        | Recovery | RL<br>(m) | Depth<br>(m)     | Graphic Log  | Classification<br>Symbol | SOIL NAME:                                                            | Description<br>Colour, structur<br>y, additional                                                                                          | re,                                                | Moisture<br>Condition | Consistency /<br>Relative Density | ۲<br>Pene<br>(<br>00       | UCS<br>kPa  | netei<br>S<br>) | r Structure and<br>Additional Observations                                                                                                        |
|                                        | Z                              | Not Observed                                 | SPT<br>5.50 - 5.65 m<br>14, Refusal                |          | 100.0     | -<br>-<br>-<br>6 |              |                          | SILTSTONE; grey, or<br>low strength, extreme<br>(continued)           | ange and red,<br>ly weathered.                                                                                                            | extremely                                          | D                     |                                   | - 0                        |             | 2               | 5.50: SPT recovered: 0.15 m.                                                                                                                      |
|                                        |                                |                                              |                                                    |          | 98.0      |                  |              |                          |                                                                       |                                                                                                                                           |                                                    |                       |                                   |                            |             |                 |                                                                                                                                                   |
| ининининининининининининининининининин | Auĝe<br>ashb<br>anda<br>ish ti | er drill<br>er drill<br>ore<br>ird pe<br>ube | ing TC bit<br>ing V bit<br>enetration test<br>ving | Pe       | throu     | 9                |              | $>$ Inflo $\lhd$ Par     | ow U - L<br>tial Loss D - I<br>mplete Loss ES - E<br>TW - T<br>LB - L | Samples and<br>Jndisturbed Sa<br>Disturbed Samg<br>Standard Penel<br>Environmental S<br>Thin Walled<br>_arge Disturbec<br>Massification s | ample<br>ple<br>tration Test<br>Sample<br>d Sample |                       | M                                 | re Cc<br>- D<br>- M<br>- V | ry<br>loist |                 | Consistency/Relative Dens<br>VS - Very soft<br>S - Soft<br>F - Firm<br>St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose<br>L - Loose |


| Ρ | S | М  |
|---|---|----|
| 구 |   | }} |

Borehole ID

**BH18** 

Page 3 of 3 PSM3730

|        |                |                  | erin             |                                              |               |             | d Bo        | prehole                                                                                                              | Project                               |                                     | PSM3730                                      |                                                 |
|--------|----------------|------------------|------------------|----------------------------------------------|---------------|-------------|-------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------------|-------------------------------------------------|
|        | Clien<br>Proie | it:<br>ect Na    | ame.             | -                                            | INSW<br>hatsw |             | ducati      | on Precinct                                                                                                          | Comme<br>Comple                       |                                     | 6/02/2019<br>6/02/2019                       |                                                 |
|        | -              | Loca             |                  |                                              |               |             |             | School BH18                                                                                                          | Logged                                |                                     | ИВ                                           |                                                 |
| F      | lole           | Posi             | tion:            |                                              |               |             | -           | 757.0 m N                                                                                                            | Checke                                | -                                   | ′B                                           |                                                 |
| D      | Drill I        | Mode             | el ano           | d Mount                                      | ing:          | Hanji       | n DB8       | Track Mounted Inclination: -90°                                                                                      | RL Sur                                |                                     |                                              |                                                 |
| B      | Barre          | el Typ           | be ar            | nd Leng                                      | th:           | Triple      | Tube        | 100mm Bearing:                                                                                                       | Datum                                 | AHD                                 | Оре                                          | rator: BG Drilling                              |
|        |                | Dril             | ling             | Informa                                      | tion          |             |             | Rock Substance                                                                                                       |                                       |                                     | F                                            | Rock Mass Defects                               |
|        |                |                  |                  | STS                                          |               |             | 0           | Material Description                                                                                                 |                                       | Strength<br>Is(50)                  |                                              | Defect Descriptions / Comme                     |
| g      |                | (%               | (%)              | SAMPLES &<br>FIELD TESTS                     |               |             | lic Log     | ROCK TYPE: Colour, grain size, structure (texture, fabric, mineral composition, hardness,                            | Weathering                            | O - Diametral                       | Defect<br>Spacing                            | Description, alpha/beta, infilli                |
| Method | Water          | TCR (%)          | RQD (%)          | SAM                                          | RL<br>(m)     | Depth       | Graphic I   | alteration, cementation, etc as applicable)                                                                          |                                       | <0.03<br>0.1<br>0.3<br>1<br>3<br>10 | (mm)                                         | or coating, shape, roughnes<br>thickness, other |
| 2      | 5              | μ                | Ľ                |                                              | (11)          | (m)         | U           |                                                                                                                      | N N N N N N N N N N N N N N N N N N N | <u> </u>                            | 420<br>60<br>1000                            |                                                 |
|        |                |                  |                  |                                              |               | -           |             |                                                                                                                      |                                       |                                     |                                              |                                                 |
|        |                |                  |                  |                                              | 100.0         | 6-          | 1           | Continued from non-cored borehole sheet                                                                              |                                       |                                     |                                              |                                                 |
|        |                |                  |                  | 6.28m<br>01 Is(50)<br>d=0.03<br>a=0.2<br>MPa |               | -           |             | SILTSTONE; dark grey with orange banding,<br>developed bedding, distinct thin fine-grained<br>sandstone laminations. |                                       |                                     |                                              | -BP 0° Fe & Clay SN UN S                        |
|        |                | 100              | 83               |                                              |               | -           |             |                                                                                                                      |                                       |                                     |                                              | T BP 0° FE SN PR S<br>JT 90° FE SN PR S         |
|        |                | 1(               | œ                |                                              |               |             |             |                                                                                                                      |                                       |                                     |                                              | BP 2° FE SN UN S<br>□ BP 10° FE SN PR S         |
|        |                |                  |                  |                                              | o             |             | ===         |                                                                                                                      |                                       |                                     |                                              | SM 0° CL PR S 19 mm                             |
|        |                |                  |                  |                                              | 0.66          | /-          |             |                                                                                                                      |                                       |                                     |                                              | - BP 0° FE SN PR S                              |
|        |                |                  |                  | 7.21m<br>02 ls(50)<br>d=0.02                 |               | -           |             | Becoming well developed.                                                                                             |                                       | 9                                   |                                              | BP 0° Fe & Clay SN UN S                         |
|        |                |                  |                  | a=0.12<br>MPa                                |               | -           |             |                                                                                                                      |                                       |                                     |                                              | 1 mm<br>BP 0° FE SN UN S                        |
|        | ved            |                  |                  |                                              |               | -           |             |                                                                                                                      |                                       |                                     |                                              | <sup>L</sup> BP 0° CN PR S                      |
| U.     | ot Observed    |                  |                  |                                              |               |             |             |                                                                                                                      |                                       |                                     |                                              | ─ BP 0° Fe & Clay SN PR S<br>☐ 1 mm             |
| NML    | Not O          |                  |                  |                                              | 0             |             |             |                                                                                                                      |                                       |                                     |                                              | BP 0° FE SN PR S<br>BP 0° Fe & Clay SN PR S     |
| -      | 2              |                  |                  |                                              | - 86          | 8-          |             |                                                                                                                      |                                       |                                     |                                              | └ BP 0° CN PR S<br>├ JT 70° CN UN RF            |
|        |                |                  |                  |                                              |               | -           |             |                                                                                                                      |                                       |                                     |                                              | J JT 50° CL UN S                                |
|        |                | 100              | 11               | 8.38m<br>03 Is(50)                           |               | -           |             |                                                                                                                      |                                       |                                     |                                              | BP 0° FE SN PR S                                |
|        |                | -                |                  | d=0.18<br>a=0.55<br>MPa                      |               |             |             |                                                                                                                      |                                       |                                     |                                              | - BP 0° FE SN PR S<br>JT 70° S & CL UN RF       |
|        |                |                  |                  |                                              |               |             |             |                                                                                                                      |                                       |                                     |                                              |                                                 |
|        |                |                  |                  |                                              |               | -           |             |                                                                                                                      |                                       |                                     |                                              |                                                 |
|        |                |                  |                  |                                              | 97.0          | 9—          |             |                                                                                                                      |                                       |                                     |                                              | BP 0° FE SN PR RF                               |
|        |                |                  |                  | 0.20                                         |               | -           |             |                                                                                                                      |                                       |                                     |                                              | IN JT 70° CN UN S<br>SM CL 10 mm                |
|        |                |                  |                  | 9.30m<br>04 ls(50)<br>d=0.44                 |               | _           |             |                                                                                                                      |                                       |                                     |                                              | IN JT 60° CN UN S                               |
|        |                |                  |                  | a=0.35<br>MPa                                |               |             |             |                                                                                                                      |                                       |                                     |                                              |                                                 |
|        |                |                  |                  |                                              |               |             |             | Hole Terminated at 9.60 m                                                                                            |                                       |                                     |                                              |                                                 |
|        |                |                  |                  |                                              |               | -           |             |                                                                                                                      |                                       |                                     |                                              |                                                 |
|        |                | M                | ethoo            |                                              |               |             | <u>и</u> и  | ter Weathering                                                                                                       |                                       | fect Type                           | Infilling/Coa                                | ting Roughness                                  |
|        | AD/            | T - Aug          | er drill         | ing TC bit<br>ing V bit                      |               |             | > Inflov    | V EW - Extremely Weathered                                                                                           | d FT - I<br>SS - S                    | Fault<br>Shear Surface              | CN - Clean<br>SN - Stain                     | SL - Slickensided<br>POL - Polished             |
|        | WB             | - Wa             | shbore           | ore (63.5 m                                  | ım)           |             | Parti       |                                                                                                                      | red SZ - S                            | Shear Zone<br>Bedding parting       | VN - Veneer<br>CO - Coating<br>RF - Rock fra | RF - Rough                                      |
|        | PQ:<br>SP1     | 3- Wir<br>Γ- Sta | eline c<br>ndard | ore (85.0 m<br>penetration                   | ım)           |             |             | ba/Core Loss EL - Extremely Low                                                                                      | IS - I<br>JT                          | Infilled Seam<br>Joint              | G - Gravel<br>S - Sand                       | Shape<br>PR - Planar                            |
|        | PT             | - Pus            | h tube           |                                              |               |             | Core        | ecovered (hatching L - Low<br>tes material) M - Medium                                                               |                                       | Contact<br>Crushed Zone<br>Vein     | Z - Silt<br>CA - Calcite<br>CL - Clay        | CU - Curved<br>UN - Undulating<br>ST - Stepped  |
| _      |                |                  |                  |                                              |               |             | L No co     | re recovery H - High<br>VH - Very High                                                                               | FZ - 1<br>BSH - 1                     | Fracture Zone<br>Bedding Shear      | FE - Iron<br>QZ - Quartz                     | IR - Irregular                                  |
| ee     | Explar         | natory N         | otes for         | details of ab                                | breviation    | is and basi | is of desci | iptions. EH - Extremely High                                                                                         | DB - I                                | Drilling Break                      | X - Carbon                                   | aceous                                          |



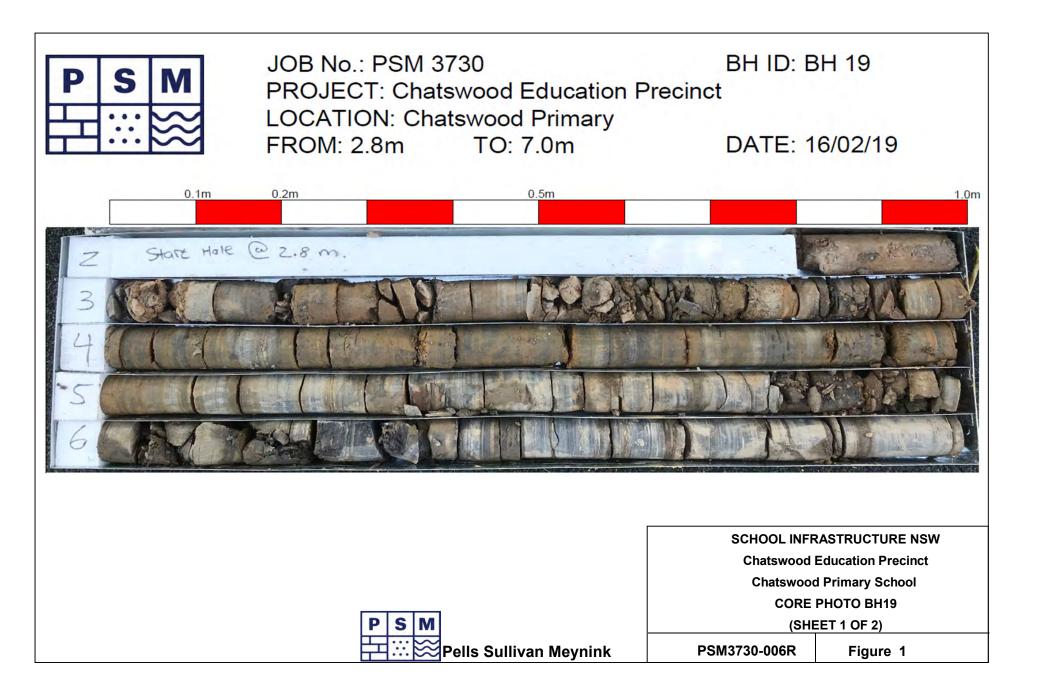
| Ρ | S | М  |
|---|---|----|
| 누 |   | }} |

BH19

| ingi                          | ine                                                   | er                                   | 'n                                       | g Log - N                                          | lor        | n Co           | ored                                    | Bo          | reho                             | le Pro                                                                                                                                                                                                         | Project No.: PSM<br>Commenced: 16/02        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0                                                                                                                                                            |
|-------------------------------|-------------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------------------|------------|----------------|-----------------------------------------|-------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clier<br>Proj<br>Hole<br>Hole | ect I<br>e Lo                                         | cati                                 | on:                                      | SINSW<br>Chatsw<br>Chatsw<br>331294                | ood<br>ood | Prim           | ary So                                  | chool I     | BH19                             | Coi<br>Log                                                                                                                                                                                                     | mmenceo<br>npleted:<br>lged By:<br>ecked By |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                                                                                              |
| Drill<br>Hole                 |                                                       |                                      |                                          | -                                                  |            | njin D<br>) mm | B8 Tr                                   | ack M       | ounteo                           |                                                                                                                                                                                                                | Surface:<br>um:                             |                                   | 03.0<br>\HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Operator: BG Drilling                                                                                                                                        |
|                               |                                                       | Ľ                                    | Drilli                                   | ing Informati                                      | on         |                |                                         |             |                                  | Soil Description                                                                                                                                                                                               |                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | Observations                                                                                                                                                 |
| Denetration                   | Samples<br>Tests<br>Remarks<br>(m)<br>(m)<br>(m)      |                                      |                                          |                                                    |            | RL<br>(m)      | Depth<br>(m)                            | Graphic Log | Classification<br>Symbol         | Material Description<br>SOIL NAME: Colour, structure,<br>plasticity, additional                                                                                                                                | Moisture                                    | Consistency /<br>Relative Density | Hand<br>Benetromete<br>Abo<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kPa)<br>(kP |       | er Structure and<br>Additional Observations                                                                                                                  |
|                               |                                                       | z                                    |                                          |                                                    |            |                | _                                       |             |                                  | ASPHALT; 200 mm thick.                                                                                                                                                                                         |                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                                                                                              |
|                               |                                                       |                                      |                                          | CBR<br>0.20-1.50 m                                 |            |                | -                                       |             |                                  | Silty CLAY; grey and light brown, low to<br>medium plasticity.                                                                                                                                                 |                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0.20: Inferred Fill                                                                                                                                          |
| NICH                          |                                                       | z                                    |                                          | D 0.50 m                                           |            |                | -                                       |             |                                  |                                                                                                                                                                                                                |                                             | н                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0.50: Small siltstone fragments<br>observed.                                                                                                                 |
|                               |                                                       |                                      | ved                                      | SPT:<br>1.00 - 1.45 m                              |            | 102.0          | 1                                       |             |                                  |                                                                                                                                                                                                                |                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1.00: SPT recovered: 0.45 m.                                                                                                                                 |
|                               |                                                       |                                      | Not Observed                             | 3, 16, 23<br>N = 39                                |            |                | -                                       |             |                                  | SILTSTONE; pale grey, red and orange,<br>extremely low strength, extremely weather                                                                                                                             | <br>ered. D                                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1.30: V-bit Refusal. Rock properties<br>inferred from drill cuttings.                                                                                        |
|                               |                                                       | z                                    |                                          | SPT<br>2.5 - 2.65<br>11, Refusal                   |            | 101.0          | 2                                       |             |                                  | Becoming grey.                                                                                                                                                                                                 |                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 2.50: SPT recovered: 0.15 m.                                                                                                                                 |
|                               |                                                       |                                      |                                          | <u>ES 2.60 m</u>                                   |            | 100.0          | 3                                       |             |                                  | Continued on cored borehole sheet                                                                                                                                                                              |                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                                                                                              |
|                               |                                                       |                                      |                                          |                                                    |            | 0.66           | -<br>-<br>4<br>-                        |             |                                  |                                                                                                                                                                                                                |                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                                                                                              |
| AD/T<br>AD/V<br>WB            | <i>Me</i> :<br>- Ai<br>- Ai<br>- Wa:<br>- Stai<br>Pus | ugei<br>ugei<br>shbo<br>ndai<br>h tu | r drill<br>r drill<br>ore<br>rd pe<br>be | ing TC bit<br>ing V bit<br>enetration test<br>ving | Pe         | throu          | <i>ion</i><br>sistanc<br>ugh to<br>usal |             | ightarrow Inflo $ ightarrow$ Par | ater Samples and Tesi<br>ow U - Undisturbed Sample<br>bital Loss SPT - Standard Penetratic<br>nplete Loss ES - Environmental Sam<br>TW - Thin Walled<br>LB - Large Disturbed San<br><i>Classification symb</i> | n Test<br>ole<br>nple                       | [<br>                             | <b>Fure C</b><br>D -<br>M -<br>W -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Móist | n Consistency/Relative Dens<br>VS - Very soft<br>F - Firm<br>St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose<br>L - Loose<br>MD - Medium dense |

| Ρ | S | М  |
|---|---|----|
| 누 |   | }} |

BH19


Page 2 of 3

| En          | gi                                   | nee                                                    | rin                                                               | g Log                                                              | g - C        | ore               | d Bo                                                                                                                                    | orehole                                                                                                                                                                                   |                                                                                                                                                                                                          | Project                                                                                                 | t No.:                                                                                                      | PSM3730                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  |
|-------------|--------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C<br>P<br>H | lien<br>roje                         | it:<br>ect Na                                          | ame:<br>ation:                                                    | SI<br>Cr<br>Cr                                                     | NSW<br>natsw | ood Ee            | ducati<br>rimary                                                                                                                        | on Precinct<br>School BH19<br>692.0 m N                                                                                                                                                   |                                                                                                                                                                                                          | Comme<br>Comple<br>Logged<br>Checke                                                                     | eted:<br>d By:                                                                                              | 16/02/2019<br>16/02/2019<br>MB<br>YB                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |
|             |                                      |                                                        |                                                                   | l Mounti                                                           |              |                   |                                                                                                                                         | Track Mounted Inclinat                                                                                                                                                                    | ion: -90°                                                                                                                                                                                                | RL Sur                                                                                                  |                                                                                                             | 00 m                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |
| В           | arre                                 | el Typ                                                 | be an                                                             | d Lengt                                                            | h:           | Triple            | Tube                                                                                                                                    | 100mm Bearing                                                                                                                                                                             | <b>j</b> :                                                                                                                                                                                               | Datum                                                                                                   | : AHD                                                                                                       | ) Ope                                                                                                                                                                                                 | rator: BG Drilling                                                                                                                                                                                                                                                                                               |
|             |                                      | Dril                                                   | ling l                                                            | nformat                                                            | tion         | 1                 |                                                                                                                                         | Rock                                                                                                                                                                                      | Substance                                                                                                                                                                                                |                                                                                                         |                                                                                                             | F                                                                                                                                                                                                     | Rock Mass Defects                                                                                                                                                                                                                                                                                                |
| Method      | Water                                | TCR (%)                                                | RQD (%)                                                           | SAMPLES &<br>FIELD TESTS                                           | RL<br>(m)    | Depth<br>(m)      | Graphic Log                                                                                                                             | Material Descripti<br>ROCK TYPE: Colour, grain s<br>(texture, fabric, mineral compos<br>alteration, cementation, etc a                                                                    | ize, structure<br>sition, hardness,                                                                                                                                                                      | Weathering<br>≧ ≩ ≩ ⊗ ແ                                                                                 | Strength<br>Is(50)<br>● - Axial<br>○ - Diametral                                                            | Defect<br>Spacing<br>(mm)                                                                                                                                                                             | Defect Descriptions / Comme<br>Description, alpha/beta, infilii<br>or coating, shape, roughnes<br>thickness, other                                                                                                                                                                                               |
|             |                                      |                                                        |                                                                   |                                                                    | 102.0        | -<br>-<br>1_<br>- |                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                          |                                                                                                         |                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |
|             |                                      |                                                        |                                                                   |                                                                    | 101.0        | -<br>2<br>-<br>-  |                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                          |                                                                                                         |                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |
|             |                                      | 100                                                    | 59                                                                | 3.13m<br>Is(50)<br>d=0.22<br>a=0.35<br>MPa                         | 100.0        | 3-                |                                                                                                                                         | Continued from non-cored boreh<br>SILTSTONE; dark grey, pale grey<br>banding, bedding fabric faint, poo<br>bedding, distinct thin sandstone I<br>Some clay infilled seams.                | y with orange<br>only developed                                                                                                                                                                          |                                                                                                         |                                                                                                             |                                                                                                                                                                                                       | FZ<br>SM CL S 20 mm<br>JT 70° FE SN PR S<br>BP 0° FE SN PR S<br>BP 0° FE SN PR S<br>BP 0° FE SN ST RF<br>BP 0° FE SN IR S                                                                                                                                                                                        |
| NMLC        | Not Observed                         | 100                                                    | 56                                                                | 4.58m<br>Is(50)<br>d=0.02<br>a=0.21<br>MPa                         | 0.99         |                   |                                                                                                                                         | Bedding becomes developed.                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                         |                                                                                                             |                                                                                                                                                                                                       | BP 0° FE SN IR S<br>BP 0° FE SN CU S<br>Heavily fractured along<br>bedding planes.<br>BP 3° FE SN PR S<br>BP 0° Fe & Clay SN IR S<br>2 mm<br>BP 0° FE SN UN S<br>BP 4° FE SN ST S<br>BP 0° FE & Clay SN PR S<br>1 mm<br>BP 5° FE SN IR S<br>SM CL 10 mm<br>JT 75° Fe & Clay SN PR S<br>1 mm<br>BP 1° FE SN ST RF |
|             | AD/<br>WB<br>HQ3<br>PQ3<br>SPT<br>PT | T - Aug<br>- Wa<br>3- Wir<br>3- Wir<br>7- Sta<br>- Pus | jer drilli<br>shbore<br>eline co<br>eline co<br>ndard p<br>h tube | ng TC bit<br>ng V bit<br>ore (63.5 m<br>ore (85.0 m<br>oenetration | m)<br>test   | Graµ              | <ul> <li>&gt; Inflov</li> <li>□ Partia</li> <li>□ Com</li> <li>□ Core n</li> <li>□ Core n</li> <li>□ indica</li> <li>− No co</li> </ul> | //     HW       al Loss     MW       will coss     SW       op/Core Loss     F       pg/Core Loss     EL       ecovered (hatching     L       es material)     M       re recovery     VH | Weathering<br>- Extremely Weathered<br>- Highly Weathered<br>- Moderately Weathered<br>- Fresh<br>Strength<br>- Extremely Low<br>- Low<br>- Low<br>- Medium<br>- High<br>- Very High<br>- Extremely High | i FT -  <br>SS - :<br>BP -  <br>SM - :<br>SM - :<br>JT<br>CO -  <br>CZ -  <br>VN - '<br>FZ -  <br>BSH - | Shear Surface<br>Shear Zone<br>Bedding parting<br>Seam<br>Infilled Seam<br>Joint<br>Contact<br>Crushed Zone | Infilling/Coa<br>CN - Clean<br>SN - Stain<br>VN - Veneer<br>CO - Coating<br>RF - Rock fr<br>G - Gravel<br>S - Sand<br>Z - Silt<br>CA - Calcite<br>CL - Clay<br>FE - Iron<br>QZ - Quartz<br>X - Carbor | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>agments VR - Very Rough<br>VR - Very Rough<br>PR - Planar<br>CU - Curved<br>UN - Undulating<br>ST - Stepped<br>IR - Irregular                                                                                                                               |

| Ρ | S | М  |
|---|---|----|
| 누 |   | }} |

BH19 Page 3 of 3

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | a wala a la                                                                                                                                                                                                                                      | Desired Mary                            | 00140700                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NSW<br>NSW Educa                        |                                                                                                                                                                                                                                                  | Commenced:                              | PSM3730<br>16/02/2019<br>16/02/2019                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natswood Primar                         |                                                                                                                                                                                                                                                  |                                         | MB                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1294.0 m E 625                          |                                                                                                                                                                                                                                                  | ,                                       | YB                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Drill Model and Mount<br>Barrel Type and Lengt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,                                      | 8 Track Mounted Inclination: -90°<br>e 100mm Bearing:                                                                                                                                                                                            | RL Surface: 103.<br>Datum: AHD          | 00 m<br>) Opera                                                                                                                                      | tor: BG Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | <u> </u>                                                                                                                                                                                                                                         |                                         |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Drilling Informat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion                                     | Rock Substance                                                                                                                                                                                                                                   |                                         | Ro                                                                                                                                                   | ock Mass Defects                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Method<br>Water<br>TCR (%)<br>RQD (%)<br>SAMPLES &<br>FIELD TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) | Material Description<br>ROCK TYPE: Colour, grain size, structure<br>(texture, fabric, mineral composition, hardness,<br>alteration, cementation, etc as applicable)                                                                              | Weathering                              | Defect                                                                                                                                               | Defect Descriptions / Commen<br>Description, alpha/beta, infilling<br>or coating, shape, roughness                                                                                                                                                                                                                                                                                                                                                                                  |
| Methoo<br>Water<br>TCR ( <sup>6</sup><br>RQD (<br>SAMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RL Depth ਲੋ<br>(m) (m) ()               |                                                                                                                                                                                                                                                  | Н Н К К К К К К К К К К К К К К К К К К | <pre>&lt;20 60 200 600 1000</pre>                                                                                                                    | thickness, other                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 000 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9-10<br>                                | SILTSTONE; dark grey, pale grey with orange<br>banding, bedding fabric faint, poorly developed<br>bedding, distinct thin sandstone laminations.<br>Some clay infilled seams.( <i>continued</i> )<br>Fine-grained sandstone laminations observed. |                                         |                                                                                                                                                      | BP 0° FE SN PR RF 1 mm           SM 9° CL 8 mm           BP 5° FE SN PR RF 2 mm           BP 0° FE SN PR S           BP 0° FE SN PR S           BP 0° FE SN PR S           SB 0° FE SN PR S           -JT 85° FE SN PR S           -FZ G 20 mm           >BP 3° FE SN PR S           -JT 85° FE SN PR S           -JT 50° FE SN PR S           >JT 50° FE SN PR S           >JT 40° FE SN PR S           >JT 40° FE SN PR S           >SD 0° FE SN PR S           >SD 0° FE SN PR S |
| UMIC<br>O DO<br>O DO | 0.80<br>                                | Becomes grey and dark grey.                                                                                                                                                                                                                      |                                         |                                                                                                                                                      | -BP 0° FE SN PR S<br>-BP 0° FE SN PR S<br>-BP 0° FE SN PR S 2 mm<br>-BP 0° FE SN PR S<br>-BP CL 4 mm<br>-JT 80° FE SN IR RF                                                                                                                                                                                                                                                                     |
| MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                      | -BP 15° Fe & Clay SN PR S<br>2 mm<br>-JT 70° FE SN UN S                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <mark>49</mark><br>                   | Hole Terminated at 8.20 m                                                                                                                                                                                                                        |                                         |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Method<br>AD/T - Auger drilling TC bit<br>AD/V - Auger drilling V bit<br>WB - Washbore<br>HQ3- Wireline core (85.0 m<br>SPT- Standard penetration<br>PT - Push tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | The Highly Housing                                                                                                                                                                                                                               | SS - Shear Surface                      | Infilling/Coatin<br>CN - Clean<br>SN - Stain<br>VN - Veneer<br>CO - Coating<br>RF - Rock fragm<br>G - Gravel<br>S - Sand<br>Z - Sitt<br>CA - Calcite | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough                                                                                                                                                                                                                                                                                                                                                                                                                     |





| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                                                              | Notes                                                                                                                                                      |
|------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.1 m            | ASPHALT; 100 mm thick.                                                                                                                                                                                                                            |                                                                                                                                                            |
|                                          | 0.1 – 0.5 m          | CLAY; dark grey and brown, low plasticity, with silt, dry and very stiff consistency.                                                                                                                                                             | Inferred Fill<br>Atterberg sample<br>collected at<br>0.5 m.                                                                                                |
|                                          | 0.5 – 1.5 m          | Silty CLAY; pale brown, medium plasticity, dry and hard consistency.                                                                                                                                                                              | SPT at 1.0 m:<br>5, 18, Refusal.                                                                                                                           |
| BH20<br>(RL 104.5m)                      | 1.5 – 7.6 m          | SILTSTONE; grey, orange and brown, extremely<br>low strength, extremely weathered. Sandstone<br>laminations observed. Increasing strength and<br>decreasing weathering with depth.<br>Becomes dark brown at 2.5 m.<br>Becomes dark grey at 6.5 m. | Inferred Bedrock<br>Description<br>based on drill<br>cuttings.<br>V-bit refusal at<br>2.0 m.<br>SPT at 2.5 m:<br>11, Refusal.<br>ES collected at<br>7.0 m. |
|                                          | 7.6 m                | Hole terminated at 7.6 m.                                                                                                                                                                                                                         | TC-bit refusal.                                                                                                                                            |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                         | Notes                                                                                              |
|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.15 m           | ASPHALT; 150 mm thick.                                                                                                                                                                                       |                                                                                                    |
|                                          | 0.15 – 1.0 m         | CLAY; mottled grey and red, medium to high<br>plasticity, trace of gravel up to 3mm, angular, dry<br>and stiff to very stiff consistency.                                                                    | Inferred Fill<br>CBR sample<br>collected at 0.2<br>– 1.2 m.<br>ES collected at<br>0.5 m            |
| BH21<br>(RL 106.0m)                      | 1.0 – 1.2 m          | Silty CLAY; pale red and brown, medium plasticity, dry and very stiff to hard consistency.                                                                                                                   | SPT at 1.0 m:<br>14, Refusal.<br>V-bit refusal at<br>1.2 m.                                        |
|                                          | 1.2 – 4.8 m          | SILTSTONE; grey, orange and brown, extremely<br>low strength, extremely weathered. Sandstone<br>laminations observed. Increasing strength and<br>decreasing weathering with depth.<br>Becomes grey at 2.5 m. | Inferred<br>Bedrock<br>Description<br>based on drill<br>cuttings.<br>SPT at 2.5 m:<br>13, Refusal. |
|                                          | 4.8 m                | Hole terminated at 4.8 m.                                                                                                                                                                                    | TC-bit refusal.                                                                                    |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                                      | Notes                                                                                                                                                         |  |  |  |  |
|------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                          | 0 – 0.01 m           | ASTROTURF; 10 mm thick.                                                                                                                                                                                                   |                                                                                                                                                               |  |  |  |  |
|                                          | 0.01 – 1.3 m         | Silty CLAY; dark brown, low plasticity, trace of<br>gravel up to 3mm, sub-angular, dry and very stiff<br>consistency.<br>Gravel content and size increases up to 30mm at<br>0.5 m.                                        | Inferred Fill<br>Atterberg<br>sample<br>collected at 0.5<br>to 1.0 m.                                                                                         |  |  |  |  |
|                                          |                      | Becomes hard consistency at 1.0 m.                                                                                                                                                                                        |                                                                                                                                                               |  |  |  |  |
| BH22<br>(RL 105.0m)                      | 1.3 – 5.5 m          | SILTSTONE; pale grey and orange, extremely low<br>strength, extremely weathered. Sandstone<br>laminations observed. Increasing strength and<br>decreasing weathering with depth.<br>Becomes grey and dark brown at 3.0 m. | Inferred<br>Bedrock<br>Description<br>based on drill<br>cuttings.<br>ES collected at<br>1.5 m.<br>V-bit refusal at<br>1.9 m.<br>SPT at 2.5 m:<br>12, Refusal. |  |  |  |  |
|                                          | 5.5 m                | Hole terminated at 5.5 m.                                                                                                                                                                                                 | TC-bit refusal.                                                                                                                                               |  |  |  |  |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                       | Notes                                                                                                                            |
|------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.1 m            | ASPHALT; 100 mm thick.                                                                                                                                                                                     |                                                                                                                                  |
|                                          | 0.1 – 1.3 m          | CLAY; dark brown, orange and grey, low plasticity, with silt, dry and very stiff consistency.                                                                                                              | Inferred Fill<br>Atterberg<br>sample<br>collected at 0.5<br>to 1.0 m.<br>SPT at 1.0 m:<br>4, 11, Refusal.                        |
| BH23<br>(RL 107.0m)                      | 1.3 – 5.8 m          | SILTSTONE; grey, orange and red, extremely low<br>strength, extremely weathered. Sandstone<br>laminations observed. Increasing strength and<br>decreasing weathering with depth.<br>Becomes grey at 3.0 m. | Inferred<br>Bedrock<br>Description<br>based on drill<br>cuttings.<br>V-bit refusal at<br>1.4 m.<br>SPT at 2.5 m:<br>12, Refusal. |
|                                          | 5.8 m                | Hole terminated at 5.8 m.                                                                                                                                                                                  | TC-bit refusal.                                                                                                                  |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                                         | Notes                                                                                                                                                   |
|------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick, some sand, medium grained, yellow-brown.                                                                                                                                                             |                                                                                                                                                         |
|                                          | 0.015 – 0.095<br>m   | ASPHALT; 80 mm thick.                                                                                                                                                                                                        |                                                                                                                                                         |
| BH29<br>(RL 95.5 m)                      | 0.095 – 1.7 m        | CLAY; high plasticity, dark grey & red-brown,<br>dry to moist and stiff to very stiff consistency.<br>Becomes orange, grey & red-brown at 0.8 m.<br>Minor siltstone fragments observed at 1.0 m.<br>Roots observed at 1.5 m. | Inferred<br>Residual Soil<br>SPT at 0.5 m:<br>5, 9, 12, N = 21<br>CBR sample<br>collected at<br>0.095 - 1.0 m.<br>SPT at 1.5 m:<br>5, 12, 14, N =<br>26 |
|                                          | 1.7 – 4.0 m          | SILTSTONE; red-brown & grey, very low strength, extremely to highly weathered.                                                                                                                                               | Inferred<br>Bedrock<br>Rock<br>description<br>based on drill<br>cuttings.                                                                               |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                                                                                    |                                                                                                                                                         |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                                                          | Notes                                                                                           |
|------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                                                                                                                                       |                                                                                                 |
|                                          | 0.015 – 0.7 m        | CLAY with sand and gravel; medium to high<br>plasticity, dark grey & brown, medium to coarse<br>grained sand, sub-angular to angular gravel, up to<br>30 mm, moist and stiff consistency.<br>Some sandstone gravels observed. | Inferred FILL<br>CBR sample<br>collected at 0.02<br>– 1.0 m.<br>SPT at 0.5 m:<br>2, 3, 6, N = 9 |
| BH30<br>(RL 94.6 m)                      | 0.7 – 1.6 m          | CLAY; high plasticity, grey and red-brown, moist,<br>stiff to very stiff consistency, roots and rootlets<br>present, highly weathered siltstone fragments<br>observed.                                                        | Inferred<br>Residual Soil.<br>SPT at 1.5 m:<br>4, 8, 8, N = 16                                  |
|                                          | 1.6 – 4.0 m          | SILTSTONE; grey, red-brown and yellow, highly to extremely weathered, and very low strength.                                                                                                                                  | Inferred<br>Bedrock<br>Rock<br>description<br>based on drill<br>cuttings.                       |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                                                                                     |                                                                                                 |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                        | Notes                                                                     |
|------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                                                                                                     |                                                                           |
|                                          | 0.015 – 0.095<br>m   | ASPHALT; 80 mm thick.                                                                                                                                                                       |                                                                           |
|                                          | 0.095 – 0.8 m        | CLAY trace gravel; high plasticity, dark brown, red<br>and grey, angular gravel, up to 5 mm, moist and<br>stiff consistency.                                                                | Inferred FILL<br>SPT at 0.5 m:<br>1, 4, 5, N = 9                          |
| BH31<br>(RL 94.5 m)                      | 0.8 – 3.0 m          | CLAY; high plasticity, orange-brown and red,<br>moist, stiff consistency, roots and rootlets present,<br>weathered siltstone fragments observed.<br>Becomes grey and yellow-brown at 1.5 m. | Inferred<br>Residual Soil<br>SPT at 1.5 m:<br>2, 4, 7, N = 11             |
|                                          | 3.0 – 4.0 m          | SILTSTONE; dark grey, extremely weathered, very low strength.                                                                                                                               | Inferred<br>Bedrock<br>Rock<br>description<br>based on drill<br>cuttings. |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                                                   |                                                                           |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                                          | Notes                                                                                                 |
|------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                                                                                                       |                                                                                                       |
|                                          | 0.015 – 0.5 m        | Sandy CLAY with some gravel; low to medium<br>plasticity, dark brown and pale grey, medium<br>grained sand, sub-angular gravel, up to 10 mm,<br>moist and stiff consistency.                  | Inferred FILL                                                                                         |
|                                          | 0.5 – 1.5 m          | CLAY with some gravel; medium plasticity,<br>orange and dark brown, sub-angular gravel, up<br>to 5 mm, moist, firm to stiff consistency, roots and<br>rootlets observed.                      | Inferred FILL<br>SPT at 0.5 m:<br>3, 4, 5, N = 9                                                      |
| BH32<br>(RL 94.0 m)                      | 1.5 – 3.2 m          | CLAY; high plasticity, grey, orange and red-<br>brown, moist, firm to very stiff consistency,<br>stiffness increases with depth, roots present and<br>weathered siltstone fragments observed. | Inferred<br>Residual Soil<br>SPT at 1.5 m:<br>3, 4, 5, N = 9<br>SPT at 3.0 m:<br>5, 10, 15, N =<br>25 |
|                                          | 3.2 – 4.0 m          | SILTSTONE; dark grey and red-brown, extremely weathered, very low strength.                                                                                                                   | Inferred<br>Bedrock<br>Rock<br>description<br>based on drill<br>cuttings.                             |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                                                     |                                                                                                       |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

Borehole ID

BH33

| F<br>⊦           | Client:<br>Projec<br>Hole L<br>Hole F | t Na<br>.ocat                          | ion:                                       | SINSW<br>Chatsw<br>Chatsw<br>321259                  | vood<br>vood | Prima             | ry Sch                | lool        |                          | Comme<br>Comple<br>Logged<br>Checke                                                                                                                                       | ted:<br>By:           |                                   | 10/10/<br>10/10/<br>MB<br>YB            |                  |                                                                                                                                                                                       |
|------------------|---------------------------------------|----------------------------------------|--------------------------------------------|------------------------------------------------------|--------------|-------------------|-----------------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|-----------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Drill M<br>Hole D                     |                                        |                                            | Mounting:                                            | Chr<br>85 i  |                   | Rig - Ti              | rack N      | Nounte                   | d Inclination: -90° RL Surf<br>Bearing: Datum:                                                                                                                            | ace:                  | 94<br>A⊢                          | .70 m<br>ID                             | Or               | perator: BG Drilling                                                                                                                                                                  |
|                  |                                       |                                        |                                            | ing Informat                                         |              |                   |                       |             |                          | Soil Description                                                                                                                                                          |                       | 7.4                               |                                         | 01               | Observations                                                                                                                                                                          |
| Meruoa           | Penetration                           | Support                                | Water                                      | Samples<br>Tests<br>Remarks                          | Recovery     | RL<br>(m)         | Depth<br>(m)          | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Plasticity, behaviour or<br>particle characteristics of primary<br>component, colour, secondary components,<br>additional observations | Moisture<br>Condition | Consistency /<br>Relative Density | Han<br>Penetror<br>UCS<br>(kPa          | meter<br>S<br>a) | Structure, Zoning, Origin<br>Additional Observations                                                                                                                                  |
| ב - נ            |                                       | z                                      | -                                          | SPT:<br>0.5 - 0.95 m<br>1, 3, 3<br>N = 6             |              |                   | -                     |             |                          | ASTROTURF - 15 mm thick<br>ASPAHLT - 25 mm thick.<br>CLAY trace gravel: high plasticity, red-brown and<br>grey; gravel sub-angular, up to 3 mm.                           |                       | F                                 | 3.5                                     | 2                | 0.04: Inferred FILL.<br>0.50: SPT recovered: 0.3 m.                                                                                                                                   |
|                  |                                       |                                        | Not Observed                               | SPT:<br>1.50 - 1.95 m<br>5, 4, 8<br>N = 12           |              | 92.7 93.7         | 1<br>-<br>-<br>-<br>2 |             | СН                       | CLAY: high plasticity, grey and yellow-brown;<br>some roots observed.<br>Becomes grey and red-brown with weathered<br>shale fragments.                                    | M                     | <br>St                            |                                         |                  | 0.90: Inferred Residual Soil.<br>1.50: SPT recovered: 0.35 m.                                                                                                                         |
|                  |                                       |                                        |                                            |                                                      |              | 91.7              |                       |             |                          | SILTSTONE: red-brown, extremely weathered<br>and very low strength.<br>Continued on cored borehole sheet                                                                  | <br>                  |                                   |                                         |                  | 2.50: Inferred Bedrock.                                                                                                                                                               |
|                  |                                       |                                        |                                            |                                                      |              | <br>90.7          | -<br>-<br>4           |             |                          |                                                                                                                                                                           |                       |                                   |                                         |                  |                                                                                                                                                                                       |
| A<br>V<br>S<br>P | D/T -<br>D/V -<br>VB - V              | Auge<br>Auge<br>Auge<br>/asht<br>tanda | er dril<br>er dril<br>ore<br>ird pe<br>ibe | ling TC bit<br>ling V bit<br>enetration test<br>ving |              | netrat<br>o resis |                       |             | ⊳ Inflo<br>⊲ Par         | D Disturband Consula                                                                                                                                                      |                       | D<br>M                            | re Condi<br>- Dry<br>- Moist<br>' - Wet |                  | Consistency/Relative Dens.<br>VS - Very soft<br>S - Soft<br>St - Firm<br>St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose<br>L - Loose<br>MD - Medium dense<br>D - Dense |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

Borehole ID

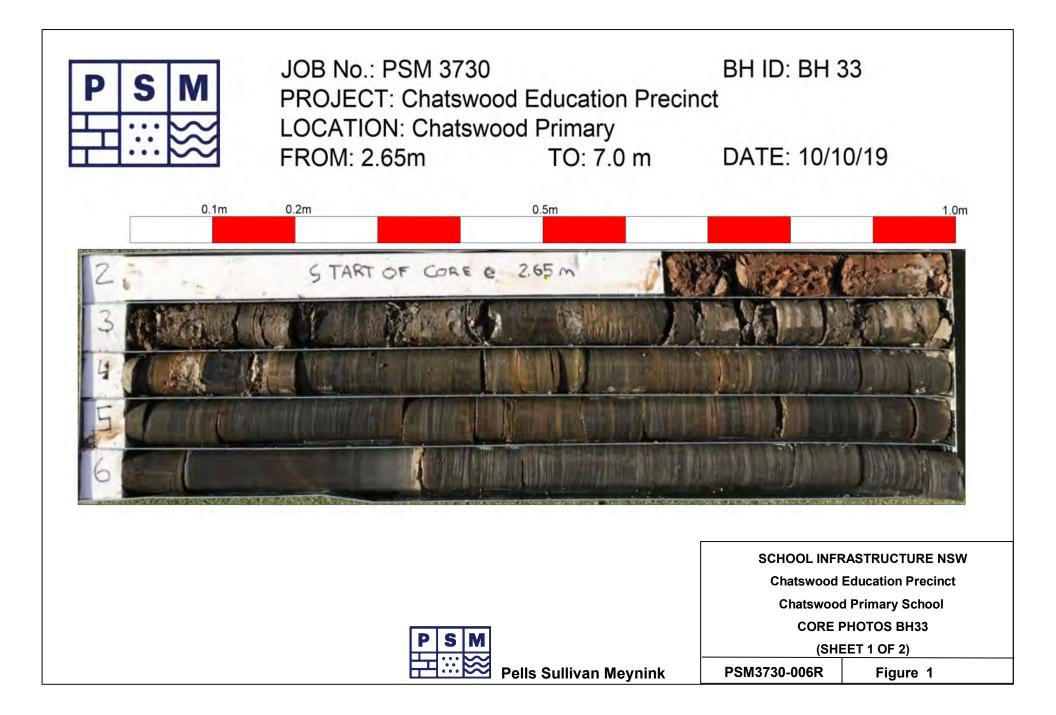
**BH33** 

Page 2 of 3

| ing                       | ine                                                          | ering                                                                                                                      | Log                       | - C       | ore                                    | d B                                                | orehole                                                                                                                                                                                                                                                                                                                               | Project No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P    | SM3730                                                                                                                           |                                                                                                                                                                                                     |
|---------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|----------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clie<br>Proi              | nt:<br>ect N                                                 | ame:                                                                                                                       |                           | NSW       | ood Ed                                 | lucati                                             | on Precinct                                                                                                                                                                                                                                                                                                                           | Commenced:<br>Completed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | )/10/2019<br>)/10/2019                                                                                                           |                                                                                                                                                                                                     |
| -                         | e Loca                                                       |                                                                                                                            |                           |           |                                        |                                                    | School                                                                                                                                                                                                                                                                                                                                | Logged By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M    |                                                                                                                                  |                                                                                                                                                                                                     |
| Hole                      | e Posi                                                       | tion:                                                                                                                      | 32                        | 1259.     | .0 m E                                 | 6258                                               | 3737.0 m N                                                                                                                                                                                                                                                                                                                            | Checked By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y    | 3                                                                                                                                |                                                                                                                                                                                                     |
| Drill                     | Mode                                                         | el and Mo                                                                                                                  | ountin                    | g:        | Christ                                 | ie Rię                                             | g - Track Mounted Inclination: -90°                                                                                                                                                                                                                                                                                                   | RL Surface: 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.70 | m                                                                                                                                |                                                                                                                                                                                                     |
| Barı                      | el Ty                                                        | pe and Le                                                                                                                  | ength                     |           | 3.2 m                                  | - NN                                               | ILC Bearing:                                                                                                                                                                                                                                                                                                                          | Datum: Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HD   | Oper                                                                                                                             | ator: BG Drilling                                                                                                                                                                                   |
|                           | Dril                                                         | lling Info                                                                                                                 | ormat                     | ion       |                                        |                                                    | Rock Substance                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | R                                                                                                                                | ock Mass Defects                                                                                                                                                                                    |
|                           |                                                              | a<br>a                                                                                                                     | ins)                      |           |                                        |                                                    | Material Description                                                                                                                                                                                                                                                                                                                  | Strength<br>Is(50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    |                                                                                                                                  | Defect Descriptions / Commer                                                                                                                                                                        |
| Water                     | RQD (%)                                                      | Samples and<br>Field Tests                                                                                                 | WPT (Lugeons)             | RL<br>(m) | Depth<br>(m)                           | Graphic Log                                        | ROCK NAME: particle/grain characteristics,<br>colour, fabric/texture, inclusions or minor<br>components moisture mineral composition alteration                                                                                                                                                                                       | Weathering • - Axial<br>O - Diametr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ral  | Defect<br>Spacing<br>(mm)<br><sup>∞</sup> <sup>∞</sup> <sup>∞</sup> <sup>∞</sup> <sup>∞</sup>                                    | Description, alpha/beta, infilli<br>or coating, shape, roughness<br>thickness, other                                                                                                                |
|                           |                                                              |                                                                                                                            |                           | 92.7 93.7 |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                       | WX       HX         HX       HX |      |                                                                                                                                  |                                                                                                                                                                                                     |
| +                         |                                                              |                                                                                                                            |                           |           | -                                      |                                                    | Continued from non-cored borehole sheet<br>SILTSTONE: red-brown, poorly developed bedding                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  |                                                                                                                                                                                                     |
|                           |                                                              |                                                                                                                            |                           |           | -                                      |                                                    | fabric, some hard clay throughout.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  | — SM, CL, 30 mm<br>─ SM, CL, 70 mm                                                                                                                                                                  |
|                           | 0                                                            |                                                                                                                            |                           | 91.7      | 3-                                     |                                                    | SILTSTONE: dark grey and brown, developed bedding                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  | — SM, CL, 50 mm                                                                                                                                                                                     |
|                           |                                                              |                                                                                                                            |                           | 0,        |                                        |                                                    | fabric, indistinct thinly laminated bedding.                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  | BP, 0°, FE SN, PR, S                                                                                                                                                                                |
|                           |                                                              |                                                                                                                            |                           |           |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i I  |                                                                                                                                  | — SM, CL, 20 mm                                                                                                                                                                                     |
| Not Observed              | 71                                                           | ls(50)<br>d=0.1<br>a=0.01<br>MPa                                                                                           |                           | <br>90.7  |                                        |                                                    | LAMINITE: dark grey and brown with pale grey<br>sandstone laminations, 70% siltstone and 30% fine<br>grained sandstone, well developed bedding fabric,<br>distinctly thinly laminated bedding.                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  | SM, 30°, CL, 3 mm<br>BP, 0°, FE SN, CU, S<br>SM, 20°, CL, 20 mm<br>BP, 10°, FE SN, PR, S<br>SM, 0°, CL, 5 mm<br>− SM, 0°, CL, 10 mm<br>− SM, CL, 40 mm<br>− SM, CL, 20 mm<br>¬ BP, 0°, FE SN, CU, S |
|                           |                                                              | Is(50)<br>d=0.1                                                                                                            |                           |           |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  | — SM, 5°, CL, 1 mm<br>☆ BP, 2°, FE SN, PR, S                                                                                                                                                        |
|                           |                                                              | d=0.1<br>a=1.3<br>MPa                                                                                                      |                           |           |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  | <sup>1</sup> SM, 0°, 5 mm<br>- BP, 0°, FE SN, UN, S                                                                                                                                                 |
|                           |                                                              | WI a                                                                                                                       |                           |           | -                                      |                                                    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  | ,, -                                                                                                                                                                                                |
|                           | <u> </u>                                                     | lothad                                                                                                                     |                           |           |                                        |                                                    | lator Manufacture                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                  | ing Downhard-                                                                                                                                                                                       |
| AI<br>W<br>HQ<br>PQ<br>SF | D/T - Au<br>D/V - Au<br>B - Wa<br>Q3- Wi<br>Q3- Wi<br>Q3- Wi | <b>dethod</b><br>ger drilling Tr<br>ger drilling V<br>ashbore<br>reline core (<br>reline core (<br>andard penel<br>sh tube | bit<br>63.5 mr<br>85.0 mr | n)        | <                                      | > Inflo<br>⊲ Part<br><b>⊄</b> Con<br><b>phic L</b> | Veathering         Weathering           W         XW         Extremely Weathered           ial Loss         MW         Moderately Weathered           plete Loss         Sightly Weathered         Sightly Weathered           og/Core Loss         FR         Fresh           recovered (hatching indicates         VL         - Low | Defect Type<br>FT - Fault<br>SS - Shear Surface<br>SZ - Shear Zone<br>BP - Bedding parting<br>SM - Seam<br>IS - Infilled Seam<br>JT - Joint<br>CO - Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Infilling/Coat<br>CN - Clean<br>SN - Stain<br>VN - Veneer<br>CO - Coating<br>RF - Rock fra<br>G - Gravel<br>S - Sand<br>Z - Silt | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough                                                                                                                                     |
| w                         | PT - Wa                                                      | ater pressure                                                                                                              | e test                    |           |                                        | mate                                               | rial) M - Medium<br>H - High                                                                                                                                                                                                                                                                                                          | CZ - Crushed Zone<br>VN - Vein<br>FZ - Fracture Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | CA - Calcite<br>CL - Clay<br>FE - Iron                                                                                           | UN - Undulating<br>ST - Stepped                                                                                                                                                                     |
|                           |                                                              |                                                                                                                            | 726-2017                  | Geotech   | ר <del>(נווני)</del><br>nnical site ii |                                                    | ore recovery VH - Very High<br>EH - Extremely High                                                                                                                                                                                                                                                                                    | BSH - Bedding Shear<br>DB - Drilling Break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | QZ - Quartz<br>X - Carbona                                                                                                       | IR - Irregular                                                                                                                                                                                      |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

Engineering Log - Cored Borehole


Borehole ID

BH33 Page 3 of 3

PSM3730

Project No.:

|                                                                                                | Hole<br>Hole                            | ect Na<br>Loca<br>Posit                                                                       | tion:<br>ion:                                                      | Cł<br>Cł<br>32                                    | natsw<br>1259 | ood Pr<br>.0 m E  | imary<br>6258                                                                                                                                  | Comm<br>on Precinct Comple<br>School Logged<br>1737.0 m N Checke<br>I - Track Mounted Inclination: -90° RL Sur                                                                                                |      |                                                                                                                                                                                                        | d: 1<br>y: M<br>By: Y                                                                                    | 0/10/2019<br>0/10/2019<br>//B<br>//B                                                                                                                                                                    |                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|---------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                | -                                       |                                                                                               |                                                                    |                                                   |               | Christ<br>3.2 m   | -                                                                                                                                              |                                                                                                                                                                                                               |      | RL Surfac<br>Datum:                                                                                                                                                                                    | xe: 94.70<br>AHD                                                                                         |                                                                                                                                                                                                         | rator: BG Drilling                                                                                                                                                                                      |
|                                                                                                |                                         | Dril                                                                                          | ing Info                                                           | ormat                                             | ion           |                   |                                                                                                                                                | Rock Substance                                                                                                                                                                                                |      |                                                                                                                                                                                                        |                                                                                                          | F                                                                                                                                                                                                       | ock Mass Defects                                                                                                                                                                                        |
| Method                                                                                         | Water                                   | RQD (%)                                                                                       | Samples and<br>Field Tests                                         | WPT (Lugeons)                                     | RL<br>(m)     | Depth<br>(m)      | Graphic Log                                                                                                                                    | Material Description<br>ROCK NAME: particle/grain characteristics,<br>colour, fabric/texture, inclusions or minor<br>components, moisture, mineral composition, alterat                                       | tion |                                                                                                                                                                                                        | Strength<br>Is(50)<br>● - Axial<br>O - Diametral                                                         | Defect<br>Spacing<br>(mm)                                                                                                                                                                               | Defect Descriptions / Comments<br>Description, alpha/beta, infilling<br>or coating, shape, roughness,<br>thickness, other                                                                               |
|                                                                                                |                                         | 71                                                                                            | ls(50)<br>d=0.2<br>a=0.8<br>MPa                                    |                                                   | <br>88.7      | -<br>-<br>-<br>6- |                                                                                                                                                | LAMINITE: dark grey and brown with pale grey<br>sandstone laminations, 70% siltstone and 30% fine<br>grained sandstone, well developed bedding fabric,<br>distinctly thinly laminated bedding.(continued)     |      |                                                                                                                                                                                                        |                                                                                                          |                                                                                                                                                                                                         | - BP, 0°, FE SN, UN, S<br>- BP, 2°, FE SN, UN, S<br>- BP, 2°, FE SN, UN, S<br>- SM, 0°, CL, 3 mm<br>- BP, 10°, FE SN, CU, S<br>- JT, 45°, Healed Joint<br>- BP, 0°, FE SN, PR, S<br>- SM, 0°, CL, 10 mm |
| PSM 2.01 2015-04-07<br>NMLC                                                                    | Not Observed                            | 26                                                                                            | ls(50)<br>d=0.3<br>a=2.1<br>MPa                                    |                                                   | 87.7          | -<br>-<br>-<br>7- |                                                                                                                                                | Bedding fabric becomes very well developed.                                                                                                                                                                   |      |                                                                                                                                                                                                        |                                                                                                          |                                                                                                                                                                                                         | — JT, 45°, Healed Joint<br>— BP, 0°, FE SN, CU, S<br>— BP, 0°, FE SN, PR, S<br>— JT, 50°, CN, UN, RF                                                                                                    |
| ce and Map Tool   Lib: PSM 3.02.1 2019-03-06 Prj:                                              | _                                       |                                                                                               | Is(50)<br>d=0.6<br>a=2.7<br>MPa<br>Is(50)<br>d=0.7<br>a=1.7<br>MPa |                                                   | <br>86.7      | -<br>-<br>8-      |                                                                                                                                                |                                                                                                                                                                                                               |      |                                                                                                                                                                                                        |                                                                                                          |                                                                                                                                                                                                         | BP, 0°, FE SN, IR, S<br>-> BP, 0°, FE SN, IR, S<br>-> BP, 0°, FE SN, ST, S<br>-> BP, 0°, FE SN, PR, S                                                                                                   |
| PSM3750 GINT LOGS.GPJ < <drawingfile>&gt; 23'10/2019 16:28 10.01.00.01 Datgel Fe</drawingfile> |                                         |                                                                                               |                                                                    |                                                   | <br>85.7      |                   |                                                                                                                                                | Hole Terminated at 8.23 m                                                                                                                                                                                     |      |                                                                                                                                                                                                        |                                                                                                          |                                                                                                                                                                                                         |                                                                                                                                                                                                         |
| A 3.02.2 LIB.GLB Log PSMAU CORE BH                                                             | AD,<br>WE<br>HQ<br>PQ<br>SP<br>PT<br>WF | /T - Aug<br>/V - Aug<br>3 - Wa<br>(3- Wir<br>(3- Wir<br>(3- Wir<br>T- Sta<br>- Pus<br>PT - Wa | eline core (<br>eline core (<br>ndard pene                         | bit<br>63.5 m<br>85.0 m<br>tration t<br>tration t | n)<br>est     | Gra               | <ul> <li>&gt; Inflow</li> <li>☐ Partia</li> <li>■ Com</li> <li><i>phic Le</i></li> <li>_ Core a</li> <li>_ materia</li> <li>- No co</li> </ul> | al Loss MW - Moderately Weather<br>solete Loss FR - Fresh<br>bg/Core Loss FR - Fresh<br>al) H - Moderately Weather<br>FR - Fresh<br>VL - Very Low<br>M - Medium<br>H - High<br>FH - High<br>FH - Fytenbullioh | ered | Defec<br>FT - Fault<br>SS - Shee<br>SZ - Shee<br>BP - Bed<br>SM - Sed<br>SM - Sed<br>SM - Sed<br>SM - Sed<br>CO - Cont<br>CO - Cont<br>CC - Crus<br>VN - Vein<br>FZ - Frac<br>BSH - Bed<br>DB - Drilli | ar Surface<br>ar Zone<br>ding parting<br>n<br>ed Seam<br>t<br>act<br>hed Zone<br>ture Zone<br>ding Shear | Infilling/Coai<br>CN - Clean<br>SN - Stain<br>VN - Veneer<br>CO - Coating<br>RF - Rock fr<br>G - Gravel<br>S - Sand<br>Z - Silt<br>CA - Calcite<br>CL - Clay<br>FE - Iron<br>OZ - Quartz<br>X - Carbone | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough<br>VR - Very Rough<br>PR - Planar<br>CU - Curved<br>UN - Undulating<br>ST - Stepped<br>IR - Irregular                                   |





| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                 | Notes                                                                     |
|------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                                                                              |                                                                           |
|                                          | 0.015 – 0.2 m        | Sandy CLAY with gravel; medium plasticity, grey-<br>brown and yellow-brown, medium grained sand,<br>sub-angular gravel, up to 10 mm, moist and stiff<br>consistency. | Inferred FILL                                                             |
| BH34                                     | 0.2 – 0.5 m          | CLAY trace gravel; medium plasticity, red-<br>brown, sub-angular gravel, up to 3 mm, moist<br>and firm consistency.                                                  | Inferred FILL<br>SPT at 0.5 m:<br>2, 4, 5, N = 9                          |
| (RL 98.0 m)                              | 0.5 – 1.7 m          | CLAY; high plasticity, red-brown and yellow,<br>moist, stiff consistency, and traces of weathered<br>siltstone observed.                                             | Inferred<br>Residual Soil<br>SPT at 1.5 m:<br>7, 8, 11, N = 19            |
|                                          | 1.7 – 4.0 m          | SILSTONE; dark grey and red-brown, highly to extremely weathered and very low strength.                                                                              | Inferred<br>Bedrock<br>Rock<br>description<br>based on drill<br>cuttings. |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                            |                                                                           |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                               | Notes                                                                                                         |
|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.015 m          | ASTROTURF; 15 mm thick.                                                                                            |                                                                                                               |
|                                          | 0.015 – 0.045<br>m   | ASPHALT; 30 mm thick.                                                                                              |                                                                                                               |
|                                          | 0.045 - 0.5 m        | CLAY with gravel; low plasticity, light brown, sub-<br>angular gravel, up to 5 mm, moist and stiff<br>consistency. |                                                                                                               |
| BH35<br>(RL 98.5 m)                      | 0.5 – 4.0 m          | SILTSTONE; dark grey and red-brown, highly to extremely weathered, very low strength.                              | Inferred<br>Bedrock<br>Rock<br>description<br>based on drill<br>cuttings.<br>SPT at 0.5 m:<br>5, 8, 8, N = 16 |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                          |                                                                                                               |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

Borehole ID

BH36

| P<br>H | Client:<br>Project<br>Iole Lo<br>Iole Po | ocati                  | ion:                                      | SINSW<br>Chatsw<br>Chatsw<br>331216               | /ood<br>/ood | Prima     | ary Sch               | lool        |                          | Commen<br>Complet<br>Logged<br>Checked                                                                                                                                                                               | ed:<br>3y:            |                                   |           | 1/10<br>IB                             | /201<br>/201     |                                                                                                                                                                                                                         |
|--------|------------------------------------------|------------------------|-------------------------------------------|---------------------------------------------------|--------------|-----------|-----------------------|-------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|-----------|----------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | orill Mo<br>Iole D                       |                        |                                           | Mounting:                                         | Chr<br>85 i  |           | Rig - Ti              | rack I      | Mounte                   | d Inclination: -90° RL Surfa<br>Bearing: Datum:                                                                                                                                                                      | ace:                  | 97<br>AH                          | .00<br>HD | m                                      | 0                | perator: BG Drilling                                                                                                                                                                                                    |
|        |                                          |                        | Drill                                     | ing Informat                                      | ion          |           |                       |             |                          | Soil Description                                                                                                                                                                                                     |                       |                                   |           |                                        |                  | Observations                                                                                                                                                                                                            |
|        | Penetration                              | Support                | Water                                     | Samples<br>Tests<br>Remarks                       | Recovery     | RL<br>(m) | Depth<br>(m)          | Graphic Log | Classification<br>Symbol | Material Description<br>SOIL NAME: Plasticity, behaviour or<br>particle characteristics of primary<br>component, colour, secondary components,<br>additional observations                                            | Moisture<br>Condition | Consistency /<br>Relative Density | Per       | Han<br>netroi<br>UCS<br>(kPa<br>00 000 | meter<br>S<br>a) | Structure, Zoning, Origin<br>Additional Observations                                                                                                                                                                    |
|        |                                          | z                      |                                           | SPT:<br>0.5 - 0.95 m<br>3, 3, 4<br>N = 7          |              | - 0.96    |                       |             | СН                       | ASPHALT: 30 mm thick.<br>Gravelly CLAY: medium to high plasticity,<br>orange-brown and grey; gravel angular, up to 20<br>mm.<br>CLAY: high plasticity, grey and yellow-brown;<br>weathered shale fragments observed. | м                     | F                                 |           |                                        | 4                | 0.03: Inferred FILL.<br>0.50: SPT recovered: 0.4 m.<br>0.60: Inferred Residual Soil.                                                                                                                                    |
|        |                                          | z                      | Not O                                     |                                                   |              | <br>95.0  | -<br>-<br>-<br>2-     |             |                          | SILTSTONE: red-brown, extremely weathered,<br>very low strength.                                                                                                                                                     |                       |                                   |           |                                        |                  | 1.00: Inferred Bedrock.                                                                                                                                                                                                 |
|        |                                          |                        |                                           |                                                   |              | 94.0      | 3                     |             |                          | Continued on cored borehole sheet                                                                                                                                                                                    |                       |                                   |           |                                        |                  |                                                                                                                                                                                                                         |
|        |                                          |                        |                                           |                                                   |              | 93.0      | -<br>4<br>-<br>-<br>- |             |                          |                                                                                                                                                                                                                      |                       |                                   |           |                                        |                  |                                                                                                                                                                                                                         |
| S<br>P | .D/T - /<br>.D/V - /<br>VB -W            | ashb<br>anda<br>ısh tu | r drill<br>r drill<br>ore<br>rd pe<br>Ibe | ing TC bit<br>ing V bit<br>netration test<br>ving | N            | o resis   | tance                 |             | ⊳ Inflo<br>⊲ Par         | D Disturband Cananda                                                                                                                                                                                                 | · /                   | Moistu<br>D<br>M<br>W             | -         | Condi<br>Dry<br>Moist<br>Wet           |                  | Consistency/Relative Densi<br>VS - Very soft<br>S - Soft<br>F - Firm<br>St - Stiff<br>VSt - Very stiff<br>H - Hard<br>VL - Very loose<br>L - Loose<br>MD - Medium dense<br>D - Dense<br>VD - Very dense<br>C - Cemented |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

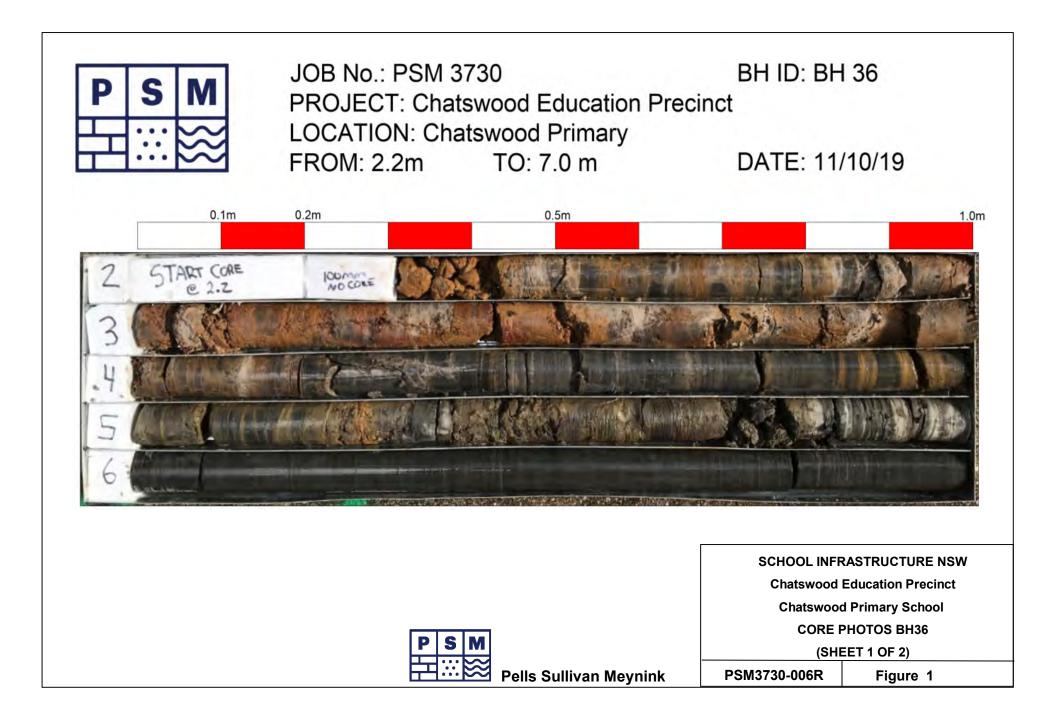
Engineering Log - Cored Borehole

Borehole ID

**BH36** 

Page 2 of 3 PSM3730 11/10/2019 11/10/2019 MB

Project No.:


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hole                                   | nt:<br>ect Na<br>Loca<br>Posit                                                                  | tion:                                         | Ch<br>Ch                                         | atswo        | ood Pri                                                                 | mary                                                                                                             | on Precinct<br>School<br>692.0 m N                                                                                                                                               | Comme<br>Complet<br>Logged<br>Checked                                                                                           | ted:<br>By: I                                                                                       | 11/10/2019<br>11/10/2019<br>MB<br>YB                                                                                                                                                                    |                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|--------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                                                 | l and Mo<br>e and Le                          |                                                  | •            | Christi<br>3.2 m                                                        | -                                                                                                                | - Track Mounted Inclination: -90°<br>LC Bearing:                                                                                                                                 | RL Surfa<br>Datum:                                                                                                              | ace: 97.0<br>AHD                                                                                    |                                                                                                                                                                                                         | rator: BG Drilling                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | Drill                                                                                           | ing Info                                      | ormat                                            | ion          |                                                                         |                                                                                                                  | Rock Substance                                                                                                                                                                   |                                                                                                                                 |                                                                                                     | F                                                                                                                                                                                                       | Rock Mass Defects                                                                                                                                                                                                                                  |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water                                  | RQD (%)                                                                                         | Samples and<br>Field Tests                    | WPT (Lugeons)                                    | RL<br>(m)    | Depth<br>(m)                                                            | Graphic Log                                                                                                      | Material Description<br>ROCK NAME: particle/grain characteristics,<br>colour, fabric/texture, inclusions or minor<br>components, moisture, mineral composition, alterat          | Weathering                                                                                                                      | O - Diametral                                                                                       | Defect<br>Spacing<br>(mm)                                                                                                                                                                               | Defect Descriptions / Comments<br>Description, alpha/beta, infilling<br>or coating, shape, roughness,<br>thickness, other                                                                                                                          |
| : PSM 2.01 2015-04-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                                 |                                               |                                                  | 95.0<br>96.0 | -<br>-<br>-<br>1<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                  | Continued from non-cored borehole sheet<br>NO CORE: 100 mm.                                                                                                                      |                                                                                                                                 |                                                                                                     |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |
| and Map Tool   Lib: PSM 3.02.1 2019-03-06 Pŋ: PSM 2.01 2015-04-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | 63                                                                                              | Is(50)<br>d=0.01<br>a=0.1<br>MPa              |                                                  | <br>94.0     |                                                                         |                                                                                                                  | SILTSTONE: dark grey with pale grey and orange<br>banding, developed bedding fabric, indistinct thinly<br>laminated bedding.                                                     |                                                                                                                                 |                                                                                                     |                                                                                                                                                                                                         | Heavily fractured<br>→ JT, 45°, S, Healed Joint<br>→ BP, 0°, CL, PR, S, <1 mm<br>→ BP, 3°, FE SN, PR, S<br>→ BP, 3°, FE SN, PR, S<br>→ BP, 5°, FE SN, PR, S<br>→ BP, 0°, FE SN, PR, S                                                              |
| PSM AU CORE BH PSM3750 GINT LOGS.GPJ > 23/10/2019 16:30 10.00.00 Datgel Ferce and M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Not Observed                           | 68.4                                                                                            | ls(50)<br>d=0.1<br>a=0.1<br>MPa               |                                                  | <br>93.0     | -<br>-<br>-<br>4                                                        |                                                                                                                  | Bedding fabric becomes poorly developed.                                                                                                                                         |                                                                                                                                 |                                                                                                     |                                                                                                                                                                                                         | <sup>L</sup> BP, 0°, FE SN, PR, S<br>- SM, CL, S, 5 mm<br>- SM, CL, S, 50 mm<br>- SM, CL, S, 20 mm<br>- BP, 0°, FE SN, IR, S<br>¬ JT, 70°, CL, S<br>- JT, 70°, CL, S<br>- BP, 0°, FE SN, IR, S<br>- BP, 0°, FE SN, IR, S<br>- BP, 0°, FE SN, PR, S |
| PSM3750 GINT LOGS.GPJ < <drawingfi< th=""><th></th><th></th><th>Is(50)<br/>d=0.2<br/>a=0.1<br/>MPa</th><th></th><th></th><th></th><th></th><th>LAMINITE: dark grey with pale grey banding, 80%<br/>siltstone, 20% fine grained sandstone, well develope<br/>bedding fabric, with dinstinct thinly laminated beddir</th><th></th><th></th><th></th><th>BP, 0°, FE SN, PR, S<br/>SM, CL, S, 3 mm<br/>BP, 0°, FE SN, PR, S<br/>JT, 55°, FE SN, PR, S<br/>SM, 0°, CL, S, 2 mm<br/>BP, 0°, FE SN, PR, S<br/>SM, 0°, CL, S, 2 mm<br/>BP, 0°, FE SN, PR, S</th></drawingfi<> |                                        |                                                                                                 | Is(50)<br>d=0.2<br>a=0.1<br>MPa               |                                                  |              |                                                                         |                                                                                                                  | LAMINITE: dark grey with pale grey banding, 80%<br>siltstone, 20% fine grained sandstone, well develope<br>bedding fabric, with dinstinct thinly laminated beddir                |                                                                                                                                 |                                                                                                     |                                                                                                                                                                                                         | BP, 0°, FE SN, PR, S<br>SM, CL, S, 3 mm<br>BP, 0°, FE SN, PR, S<br>JT, 55°, FE SN, PR, S<br>SM, 0°, CL, S, 2 mm<br>BP, 0°, FE SN, PR, S<br>SM, 0°, CL, S, 2 mm<br>BP, 0°, FE SN, PR, S                                                             |
| A 3.02.2 LIB.GLB Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AD<br>WE<br>HQ<br>PQ<br>SP<br>PT<br>WF | /T - Aug<br>/V - Aug<br>3 - Wa<br>3 - Win<br>3 - Win<br>3 - Win<br>T - Star<br>- Pus<br>PT - Wa | eline core (6<br>eline core (8<br>ndard penet | bit<br>63.5 mr<br>85.0 mr<br>ration te<br>e test | n)<br>est    | Graj                                                                    | <ul> <li>Inflov</li> <li>Parti</li> <li>Com</li> <li>Core</li> <li>Core</li> <li>mater</li> <li>No co</li> </ul> | al Loss MW - Moderately Weather<br>plete Loss FR - Fresh<br>og/Core Loss Strength<br>vL - Very Low<br>M - Medium<br>H - High<br>re recovery VH - Very High<br>FH - Evtremet Vich | ed FT - FT<br>SS - S<br>red SZ - S<br>BP - B<br>SM - S<br>IS - In<br>JT - J<br>CO - C<br>CZ - C<br>VN - V<br>FZ - FT<br>BSH - B | hear Surface<br>hear Zone<br>edding parting<br>eam<br>filled Seam<br>joint<br>ontact<br>rushed Zone | Infilling/Coai<br>CN - Clean<br>SN - Stain<br>VN - Veneer<br>CO - Coating<br>RF - Rock fr<br>G - Gravel<br>S - Sand<br>Z - Silt<br>CA - Calcite<br>CL - Clay<br>FE - Iron<br>QZ - Quartz<br>X - Carborn | SL - Slickensided<br>POL - Polished<br>S - Smooth<br>RF - Rough<br>VR - Very Rough<br><b>Shape</b><br>PR - Planar<br>CU - Curved<br>UN - Undulating<br>ST - Stepped<br>IR - Imegular                                                               |

| Ρ | S | M  |
|---|---|----|
| Ŧ |   | ** |

Borehole ID

**BH36** 

| Cored Borebole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Project No · PSM'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page 3 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N<br>wood Education Precinct<br>wood Primary School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commenced: 11/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )/2019<br>)/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Christie Rig - Track Mounted Inclination: -90°<br>3.2 m - NMI C Bearing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RL Surface: 97.00 m<br>Datum: AHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Operator: BG Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rock Mass Defects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O - Diametral S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Defect Descriptions / Comments<br>Description, alpha/beta, infilling<br>or coating, shape, roughness,<br>thickness, other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7 - The second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Project Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server Serve |
| Hole Terminated at 8.23 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FT - Fault         CI           SS - Shear Surface         SI           SZ - Shear Zone         VI           BP - Bedding parting         CI           SM - Seam         RI           IS - Infilled Seam         G           JT - Joint         S           CO - Contact         Z           CZ - Crushed Zone         C/           VN - Vein         CI                                                                                                                                                                                                                                                                                                                                                                                                                                      | I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2 m - NMLC     Bearing:       Rock Substance       Material Description       Depth     Openation       1     Depth       2     Depth       3     Depth       3     Depth       3     Depth       4     Depth | N       Commenced:       11/10         wood Education Precinct       Completed:       11/10         Log Ome Ed280820 on N       M8         Christle Rig - Track Mounted       Inclination:       -90°         RL Surface:       97.00 m         3.2 m - NMLC       Bearing:       Datum:       AHD         Image: Strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of t                                                                                                                                                                                                                                                                 |





| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                        | Notes                                                                                            |
|------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                          | 0 – 0.09 m           | ASPHALT; 90 mm thick.                                                                                                       |                                                                                                  |
|                                          | 0.09 – 0.5 m         | CLAY with gravel; high plasticity, grey and dark<br>brown, sub-angular gravel, up to 20 mm, moist<br>and stiff consistency. | Inferred FILL<br>CBR sample<br>collected at 0.02<br>– 1.5 m.                                     |
| BH37<br>(RL 99.0 m)                      | 0.5 – 2.3 m          | CLAY; high plasticity, orange-brown and grey,<br>moist, stiff consistency, some weathered siltstone<br>fragments observed.  | Inferred<br>Residual Soil<br>SPT at 0.5 m:<br>4, 5, 6, N = 11<br>SPT at 1.5 m<br>4, 7, 8, N = 15 |
|                                          | 2.3 – 4.0 m          | SILTSTONE; grey and red-brown, extremely to highly weathered, very low strength.                                            | Inferred<br>Bedrock<br>Rock<br>description<br>based on drill<br>cuttings.                        |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                   |                                                                                                  |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                                                         | Notes                                                                     |
|------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                          | 0 – 0.18 m           | CONCRETE; 180 mm thick.                                                                                                                                                      |                                                                           |
|                                          | 0.18 – 0.7 m         | Sandy CLAY with gravel; medium plasticity, pale<br>brown, coarse grained sand, sub-angular gravel,<br>up to 10 mm, moist and very loose consistency.                         | Inferred FILL<br>SPT at 0.5 m:<br>1, 0, 2, N = 2                          |
| BH38<br>(RL 98.5 m)                      | 0.7 – 1.6 m          | CLAY with sand and trace gravel; high plasticity,<br>dark brown and grey, medium to coarse grained<br>sand, sub-angular gravel, up to 10 mm, moist and<br>stiff consistency. | Inferred FILL<br>SPT at 1.5 m<br>3, 5, 6, N = 11                          |
| (RE 96.5 III)                            | 1.6 – 2.3 m          | CLAY; high plasticity, orange-brown and grey,<br>moist, stiff consistency, roots present, weathered<br>siltstone fragments observed.                                         | Inferred<br>Residual Soil                                                 |
|                                          | 2.3 – 4.0 m          | SILTSTONE; red-brown and grey, highly to extremely weathered, very low strength.                                                                                             | Inferred<br>Bedrock<br>Rock<br>description<br>based on drill<br>cuttings. |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                                                    |                                                                           |

| Borehole ID<br>(Estimated<br>Surface RL) | Approximate<br>Depth | Material Encountered                                                                                                                           | Notes                                              |
|------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                          | 0 – 0.02 m           | ASPHALT; 20 mm thick.                                                                                                                          |                                                    |
|                                          |                      |                                                                                                                                                | Inferred FILL                                      |
|                                          | 0.02 – 1.6 m         | Sandy gravelly CLAY; low plasticity, dark brown<br>and grey, coarse grained sand, angular gravel, up<br>to 20 mm, moist and stiff consistency. | CBR sample<br>collected at 0.5<br>– 1.5 m.         |
| ВН39                                     | 0.02 - 1.0 11        | Some shale fill cobbles, up to 90 mm, observed at 1.0 m.                                                                                       | SPT at 0.5 m<br>5, 4, 6, N = 10.                   |
| (RL 97.0 m)                              |                      |                                                                                                                                                | SPT at 1.5 m                                       |
|                                          |                      |                                                                                                                                                | 7, 12, Refusal.                                    |
|                                          |                      |                                                                                                                                                | Inferred<br>Bedrock                                |
|                                          | 1.6 – 4.0 m          | SILSTONE; orange-brown and grey, highly to extremely weathered, very low strength.                                                             | Rock<br>description<br>based on drill<br>cuttings. |
|                                          | 4.0 m                | Hole terminated at 4.0 m.                                                                                                                      |                                                    |

Appendix B Point Load Test Results





## Pells Sullivan Meynink

## POINT LOAD STRENGTH INDEX TEST RESULTS

| Job No.                     | PSM373                   | 0-006R     |              |             |           |           |                             |                                                             |                           |           |           |           |                         |                                                                             | Sheet   | 1      | of     | 2                 |
|-----------------------------|--------------------------|------------|--------------|-------------|-----------|-----------|-----------------------------|-------------------------------------------------------------|---------------------------|-----------|-----------|-----------|-------------------------|-----------------------------------------------------------------------------|---------|--------|--------|-------------------|
| Project                     | Chatswo                  | od Educati | ion Preci    | nct         |           |           |                             |                                                             |                           |           |           |           |                         |                                                                             |         |        |        |                   |
| Test Method<br>Test Machine | Purposes,<br>GSA 6500    |            |              | •           |           | •         | neering                     | Sampling Technique<br>Storage History<br>Moisture Condition | NLMC<br>North F<br>Natura |           | fice indo | or core   | area                    | Sampling Date 23/01 to 12/10<br>Testing Date 23/01 to 12/10<br>Tested By MB |         |        |        |                   |
| Calibration Date            | e 3/12/2012 Loading Rate |            |              |             |           |           |                             |                                                             |                           |           |           |           |                         |                                                                             |         |        |        |                   |
|                             |                          |            | Danth        | Diametral T |           |           |                             | ests                                                        |                           | lock, a   | mp Tests  |           |                         | AS 1726                                                                     |         |        |        |                   |
| Rock T                      | уре                      | Location   | Depth<br>(m) | D<br>(mm)   | L<br>(mm) | P<br>(kN) | I <sub>s(50)</sub><br>(MPa) | Failure Mode                                                | W<br>(mm)                 | D<br>(mm) | L<br>(mm) | P<br>(kN) | І <sub>s</sub><br>(MPa) | l <sub>s(50)</sub><br>(MPa)                                                 | Failu   | ure Mo | ode    | Strength<br>Class |
| Laminite                    |                          | BH06       | 6.00         | 50          | 81        | 0.1       | 0.1                         | Parallel to bedding                                         | 50                        | 43        |           | 1.5       | 0.5                     | 0.5                                                                         | Through | n subs | stance | VL/M              |
| Laminite                    |                          | BH06       | 6.90         | 50          | 69        | 1.5       | 0.6                         | Parallel to bedding                                         | 50                        | 36        |           | 3         | 1.3                     | 1.3                                                                         | Through | n subs | stance | M/H               |
| Laminite                    |                          | BH06       | 7.79         | 50          | 90        | 0.2       | 0.1                         | Parallel to bedding                                         | 50                        | 41        |           | 3.3       | 1.3                     | 1.3                                                                         | Through |        |        | VL / H            |
| Laminite                    |                          | BH07       | 7.56         | 50          | 56        | 1.9       | 0.7                         | Parallel to bedding                                         | 50                        | 29        |           | 0.1       | 0.1                     | 0.1                                                                         | Through |        |        | VL/M              |
| Laminite                    |                          | BH07       | 8.39         | 50          | 99        | 3         | 1.2                         | Parallel to bedding                                         | 50                        | 46        |           | 2.4       | 0.8                     | 0.9                                                                         | Through | n subs | stance | M/H               |
| Laminite                    |                          | BH07       | 9.34         | 50          | 56        | 1.2       | 0.5                         | Parallel to bedding                                         | 50                        | 28        |           | 2.2       | 1.2                     | 1.2                                                                         | Through | n subs | stance | M/H               |
| Siltstone                   |                          | BH18       | 6.28         | 50          | 90        | 0.1       | 0                           | Parallel to bedding                                         | 50                        | 42        |           | 0.5       | 0.2                     | 0.2                                                                         | Through | n subs | stance | VL/L              |
| Siltstone                   |                          | BH18       | 7.21         | 50          | 92        | 0         | 0                           | Parallel to bedding                                         | 50                        | 39        |           | 0.3       | 0.1                     | 0.1                                                                         | Through |        |        | VL/L              |
| Siltstone                   |                          | BH18       | 8.38         | 50          | 72        | 0.5       | 0.2                         | Parallel to bedding                                         | 50                        | 38        |           | 1.3       | 0.6                     | 0.5                                                                         | Through |        |        | L/M               |
| Siltstone                   |                          | BH18       | 9.30         | 50          | 83        | 1.1       | 0.4                         | Parallel to bedding                                         | 50                        | 33        |           | 0.8       | 0.4                     | 0.4                                                                         | Through |        |        | М                 |
| Siltstone                   |                          | BH19       | 3.13         | 50          | 66        | 0.6       | 0.2                         | Parallel to bedding                                         | 50                        | 28        |           | 0.7       | 0.4                     | 0.3                                                                         | Through |        |        | L/M               |
| Siltstone                   |                          | BH19       | 4.58         | 50          | 89        | 0         | 0                           | Parallel to bedding                                         | 50                        | 42        |           | 0.6       | 0.2                     | 0.2                                                                         | Through |        |        | VL/L              |
| Siltstone                   |                          | BH19       | 5.23         | 50          | 67        | 0.1       | 0                           | Parallel to bedding                                         | 50                        | 31        |           | 0.3       | 0.1                     | 0.1                                                                         | Through |        |        | VL/L              |
| Siltstone                   |                          | BH19       | 6.67         | 50          | 90        | 0.8       | 0.3                         | Parallel to bedding                                         | 50                        | 26        |           | 0.8       | 0.5                     | 0.4                                                                         | Through |        |        | М                 |
| Siltstone                   |                          | BH19       | 7.55         | 50          | 80        | 0.8       | 0.3                         | Parallel to bedding                                         | 50                        | 32        |           | 0.4       | 0.2                     | 0.2                                                                         | Through |        |        | L/M               |
| Laminite                    |                          | BH26       | 2.41         | 50          | 60        | 0.2       | 0.1                         | Along defect                                                | 50                        | 30        |           | 1.5       | 0.8                     | 0.7                                                                         | Through |        |        | VL / M            |
| Laminite                    |                          | BH26       | 3.32         | 50          | 60        | 0.6       | 0.3                         | Along defect                                                | 50                        | 25        |           | 0.8       | 0.5                     | 0.4                                                                         | Through |        |        | L/M               |
| Laminite                    |                          | BH26       | 4.43         | 50          | 68        | 0.2       | 0.1                         | Along defect                                                | 50                        | 34        |           | 0.9       | 0.4                     | 0.4                                                                         | Through |        |        | VL/M              |
| Laminite                    |                          | BH26       | 5.35         | 50          | 55        | 0.3       | 0.1                         | Along defect                                                | 50                        | 32        |           | 1.3       | 0.6                     | 0.6                                                                         | Through |        |        | L/M               |
| Laminite                    |                          | BH26       | 6.35         | 50          | 80        | 0.2       | 0.1                         | Along defect                                                | 50                        | 45        |           | 0.9       | 0.3                     | 0.3                                                                         | Through |        |        | VL/M              |
| Siltstone                   |                          | BH26       | 7.12         | 50          | 84        | 0.2       | 0.1                         | Along defect                                                | 50                        | 19        |           | 0.7       | 0.6                     | 0.5                                                                         | Through | n subs | stance | VL/M              |
| Siltstone                   |                          | BH26       | 8.09         | 50          | 57        | 2.4       | 1                           | Along defect                                                | 50                        | 37        |           | 1.1       | 0.5                     | 0.4                                                                         | Through | n subs | stance | М                 |
| Siltstone                   |                          | BH28       | 3.90         | 50          | 57        | 0.1       | 0.1                         | Along defect                                                | 50                        | 35        |           | 0.2       | 0.1                     | 0.1                                                                         | Through | n subs | stance | VL                |
| Siltstone                   |                          | BH28       | 4.78         | 50          | 75        | 1.6       | 0.7                         | Parallel to bedding                                         | 50                        | 33        |           | 2.5       | 1.2                     | 1.1                                                                         | Through | n subs | stance | M/H               |
| Siltstone                   |                          | BH28       | 5.36         | 50          | 51        | 0.1       | 0                           | Along defect                                                | 50                        | 27        |           | 0.1       | 0.1                     | 0.1                                                                         | Through | n subs | stance | VL                |
| Ву:                         | MB                       |            |              | Check       | ed:       | BS        |                             |                                                             |                           |           |           |           |                         |                                                                             | Date:   |        | 12/10/ | 2019              |



## Pells Sullivan Meynink

## POINT LOAD STRENGTH INDEX TEST RESULTS

| Job No.                     | PSM373    | 0-006R                        |           |             |           |           |                             |                                                             |                                                            |           |           |           |                         |                             | Sheet        | 2      | of                                                                          | 2      |  |  |  |
|-----------------------------|-----------|-------------------------------|-----------|-------------|-----------|-----------|-----------------------------|-------------------------------------------------------------|------------------------------------------------------------|-----------|-----------|-----------|-------------------------|-----------------------------|--------------|--------|-----------------------------------------------------------------------------|--------|--|--|--|
| Project                     | Chatswo   | ood Educati                   | ion Preci | nct         |           |           |                             |                                                             |                                                            |           |           |           |                         |                             |              |        |                                                                             |        |  |  |  |
| Test Method<br>Test Machine |           | 4.1 - 1993 M<br>, Determinati |           |             |           |           | neering                     | Sampling Technique<br>Storage History<br>Moisture Condition | Storage History North Ryde office indoor core storage area |           |           |           |                         |                             |              |        | Sampling Date 23/01 to 12/10<br>Testing Date 23/01 to 12/10<br>Tested By MB |        |  |  |  |
| Calibration Date            |           |                               |           |             |           |           |                             | -                                                           | Natura                                                     |           | Testeu E  |           |                         |                             |              |        |                                                                             |        |  |  |  |
| Calibration Date            | 5/12/2012 | -                             |           |             |           | D:-       |                             | Loading Rate                                                | < 30 Se                                                    | econds    | A: - L D  | 1 1       |                         |                             | 〒            |        |                                                                             | AS 172 |  |  |  |
| Rock T                      | wno       | Location                      | Depth     | Diametral T |           |           |                             | esis                                                        |                                                            |           | mp Tests  |           |                         | Strength                    |              |        |                                                                             |        |  |  |  |
| NUCK I                      | уре       | LUCATION                      | (m)       | D<br>(mm)   | L<br>(mm) | P<br>(kN) | I <sub>s(50)</sub><br>(MPa) | Failure Mode                                                | W<br>(mm)                                                  | D<br>(mm) | L<br>(mm) | P<br>(kN) | I <sub>s</sub><br>(MPa) | I <sub>s(50)</sub><br>(MPa) | Failure Mode |        | Class                                                                       |        |  |  |  |
| Siltstone                   |           | BH28                          | 6.84      | 50          | 50        | 0.8       | 0.3                         | Along defect                                                | 50                                                         | 43        |           | 0.1       | 0                       | 0                           | Throug       | h subs | stance                                                                      | VL/L   |  |  |  |
| Siltstone                   |           | BH28                          | 7.56      | 50          | 62        | 0.1       | 0.1                         | Along defect                                                | 50                                                         | 23        |           | 0.2       | 0.1                     | 0.1                         | Through      |        |                                                                             | VL/L   |  |  |  |
| Siltstone                   |           | BH28                          | 8.80      | 50          | 53        | 0         | 0                           | Along defect                                                | 50                                                         | 37        |           | 0.1       | 0.1                     | 0.1                         | Through      |        |                                                                             | VL     |  |  |  |
| Laminite                    |           | BH28                          | 9.45      | 50          | 79        | 0.6       | 0.3                         | Along defect                                                | 50                                                         | 35        |           | 0.7       | 0.3                     | 0.3                         | Through      |        |                                                                             | L      |  |  |  |
| Laminite                    |           | BH28                          | 10.00     | 50          | 100       | 2.1       | 0.9                         | Along defect                                                | 50                                                         | 32        |           | 1.1       | 0.6                     | 0.5                         | Throug       |        |                                                                             | М      |  |  |  |
| Laminite                    |           | BH28                          | 11.22     | 50          | 57        | 4.4       | 1.8                         | Parallel to bedding                                         | 50                                                         | 41        |           | 6.9       | 2.6                     | 2.7                         | Throug       |        |                                                                             | Н      |  |  |  |
| Siltstone                   |           | BH33                          | 3.56      | 50          | 93        | 0.2       | 0.1                         | Parallel to bedding                                         | 50                                                         | 37        |           | 0.1       | 0                       | 0                           | Throug       |        |                                                                             | VL     |  |  |  |
| Laminite                    |           | BH33                          | 4.55      | 50          | 93        | 0.3       | 0.1                         | Parallel to bedding                                         | 50                                                         | 28        |           | 2.5       | 1.4                     | 1.3                         | Throug       |        |                                                                             | L/H    |  |  |  |
| Laminite                    |           | BH33                          | 5.55      | 50          | 65        | 0.4       | 0.2                         | Parallel to bedding                                         | 50                                                         | 37        |           | 1.8       | 0.8                     | 0.8                         | Through      | h subs | stance                                                                      | L/M    |  |  |  |
| Laminite                    |           | BH33                          | 6.48      | 50          | 81        | 0.7       | 0.3                         | Parallel to bedding                                         | 50                                                         | 36        |           | 4.9       | 2.1                     | 2.1                         | Throug       | h subs | stance                                                                      | L/H    |  |  |  |
| Laminite                    |           | BH33                          | 7.42      | 50          | 70        | 1.4       | 0.6                         | Parallel to bedding                                         | 50                                                         | 30        |           | 5.4       | 2.8                     | 2.7                         | Through      | h subs | stance                                                                      | M/H    |  |  |  |
| Laminite                    |           | BH33                          | 8.00      | 50          | 80        | 1.8       | 0.7                         | Parallel to bedding                                         | 50                                                         | 39        |           | 4.2       | 1.7                     | 1.7                         | Throug       | h subs | stance                                                                      | M/H    |  |  |  |
| Siltstone                   |           | BH36                          | 2.40      | 50          | 90        | 0         | 0                           | Parallel to bedding                                         | 50                                                         | 35        |           | 0.2       | 0.1                     | 0.1                         | Through      | h subs | stance                                                                      | VL     |  |  |  |
| Siltstone                   |           | BH36                          | 3.43      | 50          | 80        | 0.2       | 0.1                         | Parallel to bedding                                         | 50                                                         | 30        |           | 0.2       | 0.1                     | 0.1                         | Throug       | h subs | stance                                                                      | VL     |  |  |  |
| Laminite                    |           | BH36                          | 4.61      | 50          | 59        | 0.4       | 0.2                         | Parallel to bedding                                         | 50                                                         | 27        |           | 0.3       | 0.2                     | 0.1                         | Through      | h subs | stance                                                                      | L      |  |  |  |
| Laminite                    |           | BH36                          | 5.00      | 50          | 70        | 0.3       | 0.1                         | Parallel to bedding                                         | 50                                                         | 17        |           | 0.4       | 0.3                     | 0.3                         | Through      | h subs | stance                                                                      | L      |  |  |  |
| Laminite                    |           | BH36                          | 6.01      | 50          | 70        | 1.2       | 0.5                         | Parallel to bedding                                         | 50                                                         | 30        |           | 0.8       | 0.4                     | 0.4                         | Through      | h subs | stance                                                                      | М      |  |  |  |
| Laminite                    |           | BH36                          | 7.00      | 50          | 62        | 1         | 0.4                         | Parallel to bedding                                         | 50                                                         | 29        |           | 1.3       | 0.7                     | 0.7                         | Throug       | h subs | stance                                                                      | М      |  |  |  |
| Laminite                    |           | BH36                          | 8.05      | 50          | 53        | 0.8       | 0.3                         | Parallel to bedding                                         | 50                                                         | 26        |           | 3.6       | 2.2                     | 2                           | Throug       | h subs | stance                                                                      | M/H    |  |  |  |
|                             |           |                               |           |             |           |           |                             |                                                             |                                                            |           |           |           |                         |                             |              |        |                                                                             |        |  |  |  |
| By:                         | МВ        |                               |           | Check       | ed:       | BS        |                             |                                                             |                                                            |           |           |           |                         |                             | Date:        |        | 12/10/                                                                      | /2019  |  |  |  |

Appendix C CBR testing results



115 Wicks Road Macquarie Park, NSW 2113 PO Box 976 North Ryde, Bc 1670 Telephone: 02 9888 5000 Facsimile: 02 9888 5001 Email: dtreweek@jkgroup.net.au



## FOUR DAY SOAKED CALIFORNIA BEARING RATIO TEST REPORT

| Client:<br>PSM Job N                    | Pells Sullivan Meynink<br>o.: PSM3730 |             |             |             |             | Ref No:<br>Report:<br>Report Date:<br>Page 1 of 1 | L4246E<br>1<br>6/02/2019              |
|-----------------------------------------|---------------------------------------|-------------|-------------|-------------|-------------|---------------------------------------------------|---------------------------------------|
| BOREHOLE NUM                            | 1BER                                  | BH 2        | BH Middle   | BH 5        |             | BH 10                                             | · · · · · · · · · · · · · · · · · · · |
| DEPTH (m)                               |                                       | 0.10 - 0.30 | 0.10 - 0.20 | 0.10 - 0.20 | 0.10 - 0.20 | 0.10 - 0.20                                       |                                       |
| Surcharge (kg)                          |                                       | 4.5         | 4.5         | 4.5         | 4.5         | 4.5                                               |                                       |
| Maximum Dry Dei                         | nsity (t/m³)                          | 1.83 STD    | 1.73 STD    | 1.65 STD    | 1.59 STD    | 2.05 STD                                          |                                       |
| Optimum Moisture Content (%)            |                                       | 13.4        | 15.6        | 17.5        | 18.0        | 19.4                                              |                                       |
| Moulded Dry Density (t/m <sup>3</sup> ) |                                       | 1.79        | 1.69        | 1.62        | 1.57        | 2.00                                              |                                       |
| Sample Density Ratio (%)                |                                       | 98          | 98          | 98          | 99          | 98                                                |                                       |
| Sample Moisture                         |                                       | 103         | 98          | 100         | 91          | 96                                                |                                       |
| Moisture Contents                       | 6                                     |             |             |             |             |                                                   |                                       |
| Insitu (%)                              |                                       | 10.7        | 9.9         | 11.4        | 8.4         | 8.3                                               |                                       |
| Moulded (%)                             | ·                                     | 13.9        | 15.2        | 17.4        | 16.4        | 18.7                                              |                                       |
| After soaking                           | T                                     |             |             |             |             |                                                   |                                       |
| After Test, Top 30mm(%)                 |                                       | 19.6        | 21.7        | 24.9        | 23.9        | 21.9                                              |                                       |
| Remaining Depth (%)                     |                                       | 16.3        | 17.0        | 20.2        | 20.1        | 19.5                                              |                                       |
|                                         | on 19mm Sieve (%)                     | 10*         | 1*          | 2*          | 1*          | 1*                                                |                                       |
| Swell (%)                               |                                       | 0.5         | 1.0         | 0.5         | 0.0         | 0.5                                               |                                       |
| C.B.R. value:                           | @2.5mm penetration                    | 9           | 4.5         |             |             |                                                   |                                       |
|                                         | @5.0mm penetration                    |             |             | 6           | 7           | 5                                                 |                                       |

NOTES: Sampled and supplied by client.

• Refer to appropriate Borehole logs for soil descriptions

• Test Methods : AS 1289 6.1.1, 5.1.1 & 2.1.1.

Date of receipt of sample: 25/01/2019.

• \* Denotes not used in test sample.

NATA

NATA Accredited Laboratory Number: 1327 Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except in full.

All services provided by STS are subject to our standard terms and conditions. A copy is available on request.

Approved Signatory / Date (D. Treweek) 6/2/19

115 Wicks Road Macquarie Park, NSW 2113 PO Box 976 North Ryde, Bc 1670 **Telephone:** 02 9888 5000 **Facsimile:** 02 9888 5001



## FOUR DAY SOAKED CALIFORNIA BEARING RATIO TEST REPORT

| Client: | Pells Sullivan Meynink | Ref No:      | L4251E     |
|---------|------------------------|--------------|------------|
| PSM Job | No.: PSM3730           | Report:      | 1          |
|         |                        | Report Date: | 27/02/2019 |
|         |                        | Page 1 of 1  |            |

| BOREHOLE NUMBER                         | BH 18       | BH 19       | BH 21       |
|-----------------------------------------|-------------|-------------|-------------|
| DEPTH (m)                               | 0.20 - 1.50 | 0.20 - 1.50 | 0.20 - 1.50 |
| Surcharge (kg)                          | 4.5         | 4.5         | 4.5         |
| Maximum Dry Density (t/m <sup>3</sup> ) | 1.74 STD    | 1.79 STD    | 1.69 STD    |
| Optimum Moisture Content (%)            | 12.9        | 12.9        | 20.0        |
| Moulded Dry Density (t/m <sup>3</sup> ) | 1.72        | 1.76        | 1.65        |
| Sample Density Ratio (%)                | 99          | 98          | 98          |
| Sample Moisture Ratio (%)               | 104         | 104         | 103         |
| Moisture Contents                       |             |             |             |
| Insitu (%)                              | 10.8        | 12.4        | 17.4        |
| Moulded (%)                             | 13.4        | 13.4        | 20.5        |
| After soaking and                       |             |             |             |
| After Test, Top 30mm(%)                 | 23.7        | 22.5        | 24.7        |
| Remaining Depth (%)                     | 20.6        | 19.4        | 21.4        |
| Material Retained on 19mm Sieve (%)     | 0           | 0           | 0           |
| Swell (%)                               | 3.0         | 1.5         | 1.5         |
| C.B.R. value: @2.5mm penetration        | 2.5         | 2.0         | 4.0         |

## NOTES:

· Refer to appropriate Borehole logs for soil descriptions

- Test Methods : AS 1289 6.1.1, 5.1.1 & 2.1.1.
- Date of receipt of sample: 18/02/2019.
- · Sampled and supplied by client.



Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except In full.

Authorised Signature / Date (D. Treweek) 27/2/19



## FOUR DAY SOAKED CALIFORNIA BEARING RATIO TEST REPORT

Client: Pells Sullivan Meynink Ref No: L4356E PSM Job No.: PSM3730 Report: 1 **Report Date:** 23/10/2019 Page 1 of 1

| BOREHOLE NUMBER                         | BH 29        | BH 30       | BH 37       | BH 39       |  |
|-----------------------------------------|--------------|-------------|-------------|-------------|--|
| DEPTH (m)                               | 0.095 - 1.00 | 0.02 - 1.00 | 0.50 - 1.50 | 0.50 - 1.50 |  |
| Surcharge (kg)                          | 4.5          | 4.5         | 4.5         | 4.5         |  |
| Maximum Dry Density (t/m³)              | 1.76 STD     | 1.73 STD    | 1.52 STD    | 1.62 STD    |  |
| Optimum Moisture Content (%)            | 16.5         | 16.3        | 23.4        | 21.8        |  |
| Moulded Dry Density (t/m <sup>3</sup> ) | 1.73         | 1.69        | 1.49        | 1.59        |  |
| Sample Density Ratio (%)                | 98           | 98          | 98          | 98          |  |
| Sample Moisture Ratio (%)               | 97           | 101         | 98          | 99          |  |
| Moisture Contents                       |              |             |             |             |  |
| Insitu (%)                              | 20.1         | 20.7        | 27.0        | 24.8        |  |
| Moulded (%)                             | 16.0         | 16.5        | 23.0        | 21.6        |  |
| After soaking and                       |              |             |             |             |  |
| After Test, Top 30mm(%)                 | 24.0         | 23.8        | 30.9        | 26.3        |  |
| Remaining Depth (%)                     | 21.0         | 20.8        | 27.9        | 24.0        |  |
| Material Retained on 19mm Sieve (%)     | 0            | 0           | 0           | 1*          |  |
| Swell (%)                               | 3.0          | 1.5         | 0.5         | 0.5         |  |
| C.B.R. value: @2.5mm penetration        | 1.5          | 2.0         | 2.0         |             |  |
| @5.0mm penetration                      |              |             |             | 4.0         |  |

NOTES: Sampled and supplied by client. Samples tested as received.

Refer to appropriate Borehole logs for soil descriptions

• Test Methods : AS 1289 6.1.1, 5.1.1 & 2.1.1.

• Date of receipt of sample: 14/10/2019.

\* Denotes not used in test sample.
 Accredited for compliance with ISO/IEC 17025 - Testing.

This document shall not be reproduced except

In full without approval of the laboratory. Results relate only to the items tested or sampled.

NATA Accredited Laboratory Number:1327

NAT

All services provided by STS are subject to our standard terms and conditions. A copy is available on request.

Approved Signatory / Dat (D. Treweek) 23/10

Appendix D Atterberg Limit Test Results



Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW 2168

**Geotechnical . Environmental . Laboratories** 

| Client:                                       | PSM                                                   |                                                                                               |                                           | Job No.:                                  | GT3023                                    |
|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Project:                                      | Materia                                               | al Testing                                                                                    |                                           | Report No.:                               | GTR3023-L3                                |
| Location:                                     | Chatsv                                                | vood                                                                                          |                                           | Test Date:                                | 05-Feb-19                                 |
| Contact:                                      | Yun Ba                                                | ai                                                                                            |                                           | Client Ref No:                            | PSM3730                                   |
| Sample Location                               |                                                       | BH02 (1.5m)                                                                                   | BH04 (1.0m)                               | BH05 (1.0m)                               | BH07 (1.7m)                               |
| Sample Number                                 |                                                       | L2                                                                                            | L3                                        | L4                                        | L5                                        |
| Test Procedure                                |                                                       | AS1289 3.1.2,3.2.1,3.3.1,                                                                     | 3.4.1, 2.1.1                              |                                           |                                           |
| ATTERBERG LIMITS                              |                                                       |                                                                                               |                                           |                                           |                                           |
| Liquid Limit                                  | %                                                     | 35                                                                                            | 31                                        | 44                                        | 37                                        |
| Plastic Limit                                 | %                                                     | 19                                                                                            | 17                                        | 21                                        | 19                                        |
| Plasticity Index                              | %                                                     | 16                                                                                            | 14                                        | 23                                        | 18                                        |
| Linear Shrinkage                              | %                                                     | ND                                                                                            | ND                                        | ND                                        | ND                                        |
| Curling/ Crumbling/ Cracking                  |                                                       | None                                                                                          | None                                      | None                                      | None                                      |
| Sample History                                |                                                       | Low Temperature Oven<br>Dried, Dry Sieved                                                     | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved |
| Sample Description                            |                                                       | Brown Silty Clay                                                                              | Grey Brown Sandy<br>Gravelly Clay         | Light Brown Gravelly<br>Clay (Shale)      | Light Brown Silty Clay                    |
|                                               |                                                       |                                                                                               |                                           |                                           |                                           |
| Commonto                                      |                                                       | Someling Matheads Oraces                                                                      |                                           |                                           |                                           |
| Comments:                                     |                                                       | Sampling Method: Sample<br>Date Sampled: Sample su                                            |                                           |                                           |                                           |
|                                               | dited Lab                                             | oratory No. 14343                                                                             |                                           | ntros                                     |                                           |
| Accredited for<br>Accredited for<br>TECHNICAL | or compliant for compliant for complexity of the test | ance with ISO/IEC 17025-Tests<br>s, calibrations and/or measu<br>ceable to Australian/Nationa | irements in                               | Mahamood Firoz                            |                                           |
|                                               | .ווג מוכ נומ                                          | CCODE LO AUSTI AIIAII/ NALIUIIA                                                               |                                           | Approved Signatory Date of issue          | 6/02/2019                                 |

Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW 2168

**Geotechnical . Environmental . Laboratories** 

| Client:                      | PSM                      |                                                                                             |                                           | Job No.:                                  | GT3023                                    |
|------------------------------|--------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Project:                     | Materia                  | al Testing                                                                                  |                                           | Report No.:                               | GTR3023-L4                                |
| Location:                    | Chatsv                   | vood                                                                                        |                                           | Test Date:                                | 05-Feb-19                                 |
| Contact:                     | Yun Ba                   | ai                                                                                          |                                           | Client Ref No:                            | PSM3730                                   |
| Sample Location              |                          | BH8 (1.5m)                                                                                  | BH09 (1.0m)                               | BH11 (0.2 - 0.5m)                         | BH12 (1.0m)                               |
| Sample Number                |                          | L6                                                                                          | L7                                        | L8                                        | L9                                        |
| Test Procedure               | Т                        | AS1289 3.1.2,3.2.1,3.3.1,                                                                   | 3.4.1, 2.1.1                              |                                           |                                           |
| ATTERBERG LIMITS             |                          |                                                                                             |                                           |                                           |                                           |
| Liquid Limit                 | %                        | 56                                                                                          | 55                                        | 52                                        | 41                                        |
| Plastic Limit                | %                        | 26                                                                                          | 23                                        | 22                                        | 20                                        |
| Plasticity Index             | %                        | 30                                                                                          | 32                                        | 30                                        | 21                                        |
| Linear Shrinkage             | %                        | ND                                                                                          | ND                                        | ND                                        | ND                                        |
| Curling/ Crumbling/ Cracking |                          | None                                                                                        | None                                      | None                                      | None                                      |
| Sample History               |                          | Low Temperature Oven<br>Dried, Dry Sieved                                                   | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved |
| Sample Description           |                          | Brown Silty Clay                                                                            | Brown Silty Clay                          | Grey Brown Silty Clay                     | Grey Brown Gravelly<br>Clay (Shale)       |
|                              |                          |                                                                                             |                                           |                                           |                                           |
|                              |                          |                                                                                             |                                           |                                           |                                           |
| Comments:                    |                          | Sampling Method: Sample<br>Date Sampled: Sample s                                           |                                           |                                           |                                           |
|                              | dited Lab                | oratory No. 14343                                                                           |                                           | ntros                                     |                                           |
| Accredited for<br>TECHNICAL  | or compli<br>of the test | ance with ISO/IEC 17025-Tes<br>s, calibrations and/or measu<br>ceable to Australian/Nationa | rements in                                | Mahamood Firoz                            |                                           |
|                              | מוכ מוכ נום              |                                                                                             |                                           | Approved Signatory<br>Date of issue       | 6/02/2019                                 |

Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW 2168

**Geotechnical . Environmental . Laboratories** 

| PSM                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Job No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GT3023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Materia                  | al Testing                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Report No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GTR3023-L5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chatsv                   | vood                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05-Feb-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Yun Ba                   | ai                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Client Ref No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PSM3730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | BH14 (2.1m)                                              | BH16 (1.0m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | L10                                                      | L11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _                        | AS1289 3.1.2,3.2.1,3.3.1,3                               | 3.4.1, 2.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| %                        | 33                                                       | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| %                        | 19                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| %                        | 14                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| %                        | ND                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | None                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | Low Temperature Oven<br>Dried, Dry Sieved                | Low Temperature Oven<br>Dried, Dry Sieved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | Grey Gravelly Silty<br>Clay                              | Orange Brown Silty<br>Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NEros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| or compli<br>of the test | ance with ISO/IEC 17025-Tes s, calibrations and/or measu | rements in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | مسرر<br>Mahamood Firoz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nt are tra               | ceable to Australian/Nationa                             | i Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Approved Signatory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/02/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          | Materia<br>Chatsw<br>Yun Ba<br>%<br>%<br>%<br>%<br>%     | Material Testing<br>Chatswood<br>Yun Bai<br>BH14 (2.1m)<br>L10<br>AS1289 3.1.2,3.2.1,3.3.1,3<br>AS1289 AS12,3.2.1,3.3.1,3<br>AS1289 AS1289 AS12,3.2.1,3.3.1,3<br>AS1289 AS1289 AS12,3.2.1,3.3.1,3<br>AS1289 AS1289 | Material Testing         Chatswood         Yun Bai       BH14 (2.1m)       BH16 (1.0m)         L10       L11       A11         AS1289 3.1.2.3.2.1,3.3.1,3.4.1, 2.1.1       AS1289 3.1.2,3.2.1,3.3.1,3.4.1, 2.1.1       AS1289 3.1.2,3.2.1,3.3.1,3.4.1, 2.1.1         %       33       48         %       19       22         %       19       22         %       ND       ND         %       ND       ND         %       ND       ND         %       NOne       None         %       None       None         %       Clay       Orange Brown Silty<br>Clay         Grey Gravelly Silty       Orange Brown Silty<br>Clay       Clay | Material Testing<br>Chatswot       Report No.:<br>Test Date:         Yun Bai       Client Ref No:         BH14 (2.1m)       BH16 (1.0m)         L10       L11<br>ASI289 3.1.2.3.2.1.3.3.1.3.4.1, 2.1.1         %       33       48         %       19       22         %       14       26         %       ND       ND         %       ND       ND         %       Grey Gravelly Silty       Orange Brown Silty<br>Clay       Clay         bit       Sampling Method: Sample supplied by Client<br>Date Sample: Sample supplied by Client       Journal Sample: Sample supplied by Client         dited Laboratory No. 13433<br>or compliance with ISO/IEC 17025-Testing<br>the tests, calibrations and/or measurements in       Journal Sample: Sample supplied by Client Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample: Sample |

Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Email: lab@groundtech.com.au

**Geotechnical . Environmental . Laboratories** 

| Client:          | PSM     |                            |              | Job No.:       | GT3023             |
|------------------|---------|----------------------------|--------------|----------------|--------------------|
| Project:         | Materia | al Testing                 |              | Report No.:    | GTR3023-L7         |
| Location:        | Chats   | wood                       |              | Test Date:     | 22-Feb-19          |
| Contact:         | Matias  | Braga                      |              | Client Ref No: | PSM3730            |
| Sample Location  |         | BH18 (1.5m)                | BH19 (0.5m)  | BH20 (0.5m)    | BH22 (0.5 to 1.0m) |
| Sample Number    |         | L15                        | L16          | L17            | L18                |
| Test Procedure   |         | AS1289 3.1.2,3.2.1,3.3.1,3 | 3.4.1, 2.1.1 |                |                    |
| ATTERBERG LIMITS |         |                            |              |                |                    |
| Liquid Limit     | %       | 46                         | 42           | 41             | 43                 |
| Plastic Limit    | %       | 20                         | 20           | 20             | 21                 |
| Plasticity Index | %       | 26                         | 22           | 21             | 22                 |
| Linear Shrinkage | %       | ND                         | ND           | ND             | ND                 |
|                  |         |                            |              |                |                    |

| Curling/ Crumbling/ Cracking    | None                                      | None                                      | None                                      | None                                      |
|---------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Sample History                  | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved | Low Temperature Oven<br>Dried, Dry Sieved |
| Sample Description              | Brown Clay                                | Brown Clay                                | Brown Clay                                | Grey Brown Clay                           |
|                                 |                                           |                                           |                                           |                                           |
|                                 |                                           |                                           |                                           |                                           |
|                                 |                                           |                                           |                                           |                                           |
| Comments:                       | Sampling Method: Sample                   | supplied by Client                        |                                           |                                           |
|                                 | Date Sampled: Sample su                   | pplied by Client                          |                                           |                                           |
|                                 | ted Laboratory No. 14343                  | ting                                      | Mahamood Firoz                            |                                           |
| ACCREDITED FOR The results of t | TECHNICAL                                 |                                           |                                           |                                           |
|                                 |                                           |                                           | Date of issue                             | 26/02/2019                                |

Ground Technologies Pty Ltd ABN 25 089 213 294 19 Bernera Road, Prestons NSW 2170 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Email: lab@groundtech.com.au

**Geotechnical . Environmental . Laboratories** 

| Client:          | PSM     |                                       | Job No.:       | GT3023     |
|------------------|---------|---------------------------------------|----------------|------------|
| Project:         | Materia | al Testing                            | Report No.:    | GTR3023-L8 |
| Location:        | Chatsv  | wood                                  | Test Date:     | 22-Feb-19  |
| Contact:         | Matias  | Braga                                 | Client Ref No: | PSM3730    |
| Sample Location  |         | BH23 (0.5 to 1.0m)                    |                |            |
| Sample Number    |         | L19                                   |                |            |
| Test Procedure   |         | AS1289 3.1.2,3.2.1,3.3.1,3.4.1, 2.1.1 |                |            |
| ATTERBERG LIMITS |         |                                       |                |            |
| Liquid Limit     | %       | 66                                    |                |            |
| Plastic Limit    | %       | 23                                    |                |            |
| Plasticity Index | %       | 43                                    |                |            |
| Linear Shrinkage | %       | ND                                    |                |            |
|                  |         |                                       |                |            |

| Curling/ Crumbling/ Cracking                      | None                                                                                                              |                                             |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Sample History                                    | Low Temperature Oven<br>Dried, Dry Sieved                                                                         |                                             |
| Sample Description                                | Brown Clay                                                                                                        |                                             |
|                                                   |                                                                                                                   |                                             |
|                                                   |                                                                                                                   |                                             |
|                                                   |                                                                                                                   |                                             |
| Comments:                                         | Sampling Method: Sample supplied by Client                                                                        |                                             |
|                                                   | Date Sampled: Sample supplied by Client                                                                           |                                             |
| Accredited for<br>ACCREDITED FOR The results of t | ed Laboratory No. 14343<br>compliance with ISO/IEC 17025-Testing<br>he tests, calibrations and/or measurements in | MERO<br>Mahamood Firoz                      |
| <b>TECHNICAL</b><br>COMPETENCE this document      | are traceable to Australian/National Standards                                                                    | Approved Signatory Date of issue 26/02/2019 |

Appendix E Environmental testing results





## **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1902686                                      | Page                    | : 1 of 4                                              |
|-------------------------|------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : YUN BAI                                      | Contact                 | : Customer Services ES                                |
| Address                 | : G3, 56 DELHI ROAD                            | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|                         | NORTH RYDE NSW, AUSTRALIA 2113                 |                         |                                                       |
| Telephone               | : +61 02 9812 5000                             | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : Chatswood High                               | Date Samples Received   | : 25-Jan-2019 15:47                                   |
| Order number            | : PSM3730                                      | Date Analysis Commenced | : 30-Jan-2019                                         |
| C-O-C number            | :                                              | Issue Date              | : 08-Feb-2019 16:53                                   |
| Sampler                 | : Matias Braga                                 |                         | ICC-MRA NATA                                          |
| Site                    | :                                              |                         |                                                       |
| Quote number            | : EN/333                                       |                         | Accreditation No. 825                                 |
| No. of samples received | : 10                                           |                         | Accredited for compliance with                        |
| No. of samples analysed | : 10                                           |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Ankit Joshi      | Inorganic Chemist     | Sydney Inorganics, Smithfield, NSW |
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |
| Dian Dao         |                       | Sydney Inorganics, Smithfield, NSW |
| Ivan Taylor      | Analyst               | Sydney Inorganics, Smithfield, NSW |
|                  |                       |                                    |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

\* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

# Page : 3 of 4 Work Order : ES1902686 Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD Project : Chatswood High



## Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |             | Clie | ent sample ID     | BH01 - 2.0m       | BH03 - 2.0m       | BH05 - 0.2m       | BH07 - 2.5m       | BH08 - 2.5m   |
|-------------------------------------|-------------|------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
| Client sampling date / time         |             |      | 23-Jan-2019 08:07 | 23-Jan-2019 09:46 | 23-Jan-2019 13:25 | 23-Jan-2019 07:45 | 23-Jan-2019 11:03 |               |
| Compound                            | CAS Number  | LOR  | Unit              | ES1902686-001     | ES1902686-002     | ES1902686-003     | ES1902686-004     | ES1902686-005 |
|                                     |             |      |                   | Result            | Result            | Result            | Result            | Result        |
| EA002: pH 1:5 (Soils)               |             |      |                   |                   |                   |                   |                   |               |
| pH Value                            |             | 0.1  | pH Unit           | 4.8               | 7.8               | 4.7               | 5.1               | 5.8           |
| EA010: Conductivity (1:5)           |             |      |                   |                   |                   |                   |                   |               |
| Electrical Conductivity @ 25°C      |             | 1    | µS/cm             | 92                | 180               | 75                | 48                | 19            |
| EA055: Moisture Content (Dried @ 10 | 5-110°C)    |      |                   |                   |                   |                   |                   |               |
| Moisture Content                    |             | 1.0  | %                 | 7.2               | 11.6              | 16.7              | 7.3               | 6.0           |
| ED006: Exchangeable Cations on Alk  | aline Soils |      |                   |                   |                   |                   |                   |               |
| Exchangeable Calcium                |             | 0.2  | meq/100g          |                   | 12.8              |                   |                   |               |
| Exchangeable Magnesium              |             | 0.2  | meq/100g          |                   | 1.9               |                   |                   |               |
| Exchangeable Potassium              |             | 0.2  | meq/100g          |                   | 0.3               |                   |                   |               |
| Exchangeable Sodium                 |             | 0.2  | meq/100g          |                   | 0.5               |                   |                   |               |
| Cation Exchange Capacity            |             | 0.2  | meq/100g          |                   | 15.5              |                   |                   |               |
| Exchangeable Sodium Percent         |             | 0.2  | %                 |                   | 3.2               |                   |                   |               |
| ED007: Exchangeable Cations         |             |      |                   |                   |                   |                   |                   |               |
| Exchangeable Calcium                |             | 0.1  | meq/100g          | 1.3               |                   | 1.9               | 1.0               | <0.1          |
| Exchangeable Magnesium              |             | 0.1  | meq/100g          | 1.2               |                   | 0.8               | 1.0               | 0.9           |
| Exchangeable Potassium              |             | 0.1  | meq/100g          | 0.3               |                   | 0.2               | 0.3               | 0.3           |
| Exchangeable Sodium                 |             | 0.1  | meq/100g          | 0.4               |                   | 0.2               | 0.2               | 0.2           |
| Cation Exchange Capacity            |             | 0.1  | meq/100g          | 3.2               |                   | 3.5               | 2.5               | 1.5           |
| Exchangeable Sodium Percent         |             | 0.1  | %                 | 11.4              |                   | 7.9               | 6.8               | 14.8          |
| ED040S : Soluble Sulfate by ICPAES  |             |      |                   |                   |                   |                   |                   |               |
| Sulfate as SO4 2-                   | 14808-79-8  | 10   | mg/kg             | 70                | 200               | 100               | 60                | 20            |
| ED045G: Chloride by Discrete Analys | er          |      |                   |                   |                   |                   |                   |               |
| Chloride                            | 16887-00-6  | 10   | mg/kg             | 70                | 10                | 40                | 10                | <10           |

# Page : 4 of 4 Work Order : ES1902686 Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD Project : Chatswood High



## Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |            | Cli        | ent sample ID   | BH12 - 0.3-0.4m   | BH09 - 0.5m       | BH11 - 6.0m       | BH14 - 0.5-1.0m   | BH16 - 2.5m       |
|-------------------------------------|------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Clie       | ent sampli | ing date / time | 23-Jan-2019 15:18 | 23-Jan-2019 12:26 | 23-Jan-2019 13:30 | 23-Jan-2019 08:30 | 23-Jan-2019 11:30 |
| Compound                            | CAS Number | LOR        | Unit            | ES1902686-006     | ES1902686-007     | ES1902686-008     | ES1902686-009     | ES1902686-010     |
|                                     |            |            |                 | Result            | Result            | Result            | Result            | Result            |
| EA002: pH 1:5 (Soils)               |            |            |                 |                   |                   |                   |                   |                   |
| pH Value                            |            | 0.1        | pH Unit         | 4.9               | 6.7               | 6.0               | 4.9               | 4.9               |
| EA010: Conductivity (1:5)           |            |            |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C      |            | 1          | μS/cm           | 83                | 208               | 51                | 119               | 106               |
| EA055: Moisture Content (Dried @ 10 | 05-110°C)  |            |                 |                   |                   |                   |                   |                   |
| Moisture Content                    |            | 1.0        | %               | 13.5              | 23.6              | 32.6              | 24.5              | 5.8               |
| ED007: Exchangeable Cations         |            |            |                 |                   |                   |                   |                   |                   |
| Exchangeable Calcium                |            | 0.1        | meq/100g        | 2.5               | 9.8               | <0.1              | 1.3               | <0.1              |
| Exchangeable Magnesium              |            | 0.1        | meq/100g        | 1.8               | 2.2               | 1.8               | 1.1               | 0.6               |
| Exchangeable Potassium              |            | 0.1        | meq/100g        | 0.3               | 0.3               | 0.4               | 1.0               | 0.2               |
| Exchangeable Sodium                 |            | 0.1        | meq/100g        | 0.4               | 0.3               | 0.8               | 0.3               | 0.6               |
| Cation Exchange Capacity            |            | 0.1        | meq/100g        | 5.0               | 12.5              | 3.1               | 3.8               | 1.5               |
| Exchangeable Sodium Percent         |            | 0.1        | %               | 7.9               | 2.3               | 26.4              | 9.3               | 41.8              |
| ED040S : Soluble Sulfate by ICPAES  |            |            |                 |                   |                   |                   |                   |                   |
| Sulfate as SO4 2-                   | 14808-79-8 | 10         | mg/kg           | 110               | 340               | 70                | 100               | 100               |
| ED045G: Chloride by Discrete Analys | ser        |            |                 |                   |                   |                   |                   |                   |
| Chloride                            | 16887-00-6 | 10         | mg/kg           | 60                | 20                | 40                | 110               | 90                |



## **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1905009                                            | Page                    | : 1 of 2                                              |
|-------------------------|------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD       | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : YUN BAI                                            | Contact                 | : Customer Services ES                                |
| Address                 |                                                      | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | NORTH RYDE NSW, AUSTRALIA 2113<br>: +61 02 9812 5000 | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : Chatswood Primary School                           | Date Samples Received   | : 18-Feb-2019 15:20                                   |
| Order number            | :                                                    | Date Analysis Commenced | : 18-Feb-2019                                         |
| C-O-C number            | :                                                    | Issue Date              | : 21-Feb-2019 12:23                                   |
| Sampler                 | : MATIAS BRAGA                                       |                         | IC-MRA NATA                                           |
| Site                    | :                                                    |                         |                                                       |
| Quote number            | : EN/333                                             |                         | Accreditation No. 825                                 |
| No. of samples received | : 5                                                  |                         | Accredited for compliance with                        |
| No. of samples analysed | : 5                                                  |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories | Position          | Accreditation Category             |
|-------------|-------------------|------------------------------------|
| Ankit Joshi | Inorganic Chemist | Sydney Inorganics, Smithfield, NSW |
| Dian Dao    |                   | Sydney Inorganics, Smithfield, NSW |
| Ivan Taylor | Analyst           | Sydney Inorganics, Smithfield, NSW |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI - Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

#### **Analytical Results**

| Gub-Matrix: SOIL<br>(Matrix: SOIL)  |            | Cli         | ent sample ID   | BH18 - 1.0m       | BH19 - 2.6m       | BH20 - 7.0m       | BH21 - 0.5m       | BH22 - 1.5m       |
|-------------------------------------|------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Ci         | ient sampli | ing date / time | 16-Feb-2019 07:40 | 16-Feb-2019 12:30 | 17-Feb-2019 08:30 | 17-Feb-2019 08:40 | 17-Feb-2019 10:09 |
| Compound                            | CAS Number | LOR         | Unit            | ES1905009-001     | ES1905009-002     | ES1905009-003     | ES1905009-004     | ES1905009-005     |
|                                     |            |             |                 | Result            | Result            | Result            | Result            | Result            |
| EA002: pH 1:5 (Soils)               |            |             |                 |                   |                   |                   |                   |                   |
| pH Value                            |            | 0.1         | pH Unit         | 5.3               | 5.6               | 6.3               | 5.5               | 5.0               |
| EA010: Conductivity (1:5)           |            |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C      |            | 1           | µS/cm           | 90                | 17                | 25                | 47                | 58                |
| EA055: Moisture Content (Dried @ 10 | )5-110°C)  |             |                 |                   |                   |                   |                   |                   |
| Moisture Content                    |            | 0.1         | %               | 18.3              | 9.2               | 7.4               | 17.0              | 10.1              |
| ED007: Exchangeable Cations         |            |             |                 |                   |                   |                   |                   |                   |
| Exchangeable Calcium                |            | 0.1         | meq/100g        | 15.0              | <0.1              | 4.4               | 0.8               | 1.6               |
| Exchangeable Magnesium              |            | 0.1         | meq/100g        | 1.4               | 1.3               | 4.5               | 3.1               | 2.1               |
| Exchangeable Potassium              |            | 0.1         | meq/100g        | 0.6               | 0.3               | 0.2               | 0.6               | 0.5               |
| Exchangeable Sodium                 |            | 0.1         | meq/100g        | 0.5               | 0.9               | 0.7               | 1.2               | 0.3               |
| Cation Exchange Capacity            |            | 0.1         | meq/100g        | 17.4              | 2.6               | 9.8               | 5.7               | 4.4               |
| Exchangeable Sodium Percent         |            | 0.1         | %               | 2.6               | 33.7              | 6.9               | 21.6              | 6.4               |
| ED040S : Soluble Sulfate by ICPAES  |            |             |                 |                   |                   |                   |                   |                   |
| Sulfate as SO4 2-                   | 14808-79-8 | 10          | mg/kg           | 140               | 20                | 20                | 70                | 50                |
| ED045G: Chloride by Discrete Analys | ser        |             |                 |                   |                   |                   |                   |                   |
| Chloride                            | 16887-00-6 | 10          | mg/kg           | 20                | 10                | <10               | 20                | <10               |

Appendix F JBS&G Environmental Assessment Report



Appendix F1 Chatswood High School





Chatswood High School Chatswood Education Precinct

Detailed Site Investigation

24 Centennial Avenue, Chatswood NSW

1 March 2019 55579 – 120512 (Rev A) JBS&G Australia Pty Ltd

Chatswood High School Chatswood Education Precinct Detailed Site Investigation

> 24 Centennial Avenue, Chatswood NSW

1 March 2019 55579 – 120512 (Rev A) JBS&G Australia Pty Ltd



## **Table of Contents**

| Abbre | eviatio  | ns          | vi                                                       |  |  |  |  |  |  |  |
|-------|----------|-------------|----------------------------------------------------------|--|--|--|--|--|--|--|
| Ехесι | itive Si | ummary      |                                                          |  |  |  |  |  |  |  |
| 1.    | Intro    | duction     |                                                          |  |  |  |  |  |  |  |
|       | 1.1      | Backgrou    | und1                                                     |  |  |  |  |  |  |  |
|       | 1.2      | Objectiv    | bjectives1                                               |  |  |  |  |  |  |  |
|       | 1.3      | Scope of    | Scope of Works1                                          |  |  |  |  |  |  |  |
| 2.    | Site C   | Conditions  | and Surrounding Environment3                             |  |  |  |  |  |  |  |
|       | 2.1      | Site Iden   | tification3                                              |  |  |  |  |  |  |  |
|       | 2.2      | Site Dese   | cription3                                                |  |  |  |  |  |  |  |
|       | 2.3      | Surround    | ding Land Use3                                           |  |  |  |  |  |  |  |
|       | 2.4      | Environr    | nental Setting4                                          |  |  |  |  |  |  |  |
|       |          | 2.4.1       | Topography4                                              |  |  |  |  |  |  |  |
|       |          | 2.4.2       | Geology & Soil4                                          |  |  |  |  |  |  |  |
|       |          | 2.4.3       | Acid Sulfate Soils4                                      |  |  |  |  |  |  |  |
|       |          | 2.4.4       | Hydrology4                                               |  |  |  |  |  |  |  |
|       |          | 2.4.5       | Hydrogeology5                                            |  |  |  |  |  |  |  |
| 3.    | Site ⊦   | listory     |                                                          |  |  |  |  |  |  |  |
|       | 3.1      | EPA Per-    | and Poly- Fluoroalkyl Substances (PFAS) Register6        |  |  |  |  |  |  |  |
|       | 3.2      | NSW Fai     | NSW Fair Trading Loose Fill Asbestos Insulation Register |  |  |  |  |  |  |  |
|       | 3.3      | Summar      | y of Site History6                                       |  |  |  |  |  |  |  |
| 4.    | Previ    | ous Invest  | tigations7                                               |  |  |  |  |  |  |  |
|       | 4.1      | Prelimin    | ary Site (Contamination) Investigation (DP 2018)7        |  |  |  |  |  |  |  |
| 5.    | Conce    | eptual Site | e Model8                                                 |  |  |  |  |  |  |  |
|       | 5.1      | Potentia    | l Areas of Environmental Concern8                        |  |  |  |  |  |  |  |
|       | 5.2      | Potentia    | lly Contaminated Media8                                  |  |  |  |  |  |  |  |
|       | 5.3      | Potentia    | l for Migration9                                         |  |  |  |  |  |  |  |
|       | 5.4      | Potentia    | l Exposure Pathways9                                     |  |  |  |  |  |  |  |
|       | 5.5      | Preferen    | tial Pathways9                                           |  |  |  |  |  |  |  |
| 6.    | Samp     | ling and A  | Analytical Plan11                                        |  |  |  |  |  |  |  |
|       | 6.1      | Data Qu     | ality Objectives11                                       |  |  |  |  |  |  |  |
|       |          | 6.1.1       | State the Problem11                                      |  |  |  |  |  |  |  |
|       |          | 6.1.2       | Identify the Decision11                                  |  |  |  |  |  |  |  |
|       |          | 6.1.3       | Identify Inputs to the Decision11                        |  |  |  |  |  |  |  |
|       |          | 6.1.4       | Define the Study Boundaries12                            |  |  |  |  |  |  |  |
|       |          | 6.1.5       | Develop a Decision Rule12                                |  |  |  |  |  |  |  |



|        | 6.1.6                                                                                                                | Specific Limits on Decision Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 6.2    | Optimise                                                                                                             | e the Design of Obtaining Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                           |
|        | 6.2.1                                                                                                                | Sampling Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                           |
|        | 6.2.2                                                                                                                | Laboratory Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                           |
| Asses  | sment Cri                                                                                                            | iteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                                                           |
| 7.1    | Regulato                                                                                                             | ory and Technical Guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                           |
| 7.2    | Assessm                                                                                                              | ent Criteria – Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                           |
| Quali  | ty Assurai                                                                                                           | nce and Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |
| 8.1    | QA/QC C                                                                                                              | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                           |
| Resul  | ts                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                                           |
| 9.1    | Observat                                                                                                             | tions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                                           |
| 9.2    | Analytica                                                                                                            | al Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                           |
|        | 9.2.1                                                                                                                | Heavy Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                           |
|        | 9.2.2                                                                                                                | PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                           |
|        | 9.2.3                                                                                                                | TRH/BTEX and VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                           |
|        | 9.2.4                                                                                                                | OCPs and PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                           |
|        | 9.2.1                                                                                                                | Asbestos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                           |
| Site C | haracteri                                                                                                            | sation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                           |
| 10.1   | Potentia                                                                                                             | I Risks to Future Onsite Receptors                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                                           |
| 10.2   | Backgrou                                                                                                             | und Soil Concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                           |
| 10.3   | Chemica                                                                                                              | l Mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                           |
| 10.4   | Aestheti                                                                                                             | c Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                           |
| 10.5   | Potentia                                                                                                             | l Migration of Contaminants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                           |
| 10.6   | Site Man                                                                                                             | nagement Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22                                                           |
| Concl  | usions                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                           |
| Limita | ations                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                           |
|        | Asses<br>7.1<br>7.2<br>Quali<br>8.1<br>9.1<br>9.2<br>Site C<br>10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Concl | <ul> <li>6.2 Optimise</li> <li>6.2.1</li> <li>6.2.2</li> <li>Assessment Cr</li> <li>7.1 Regulato</li> <li>7.2 Assessm</li> <li>Quality Assurat</li> <li>8.1 QA/QC O</li> <li>Results</li> <li>9.1 Observa</li> <li>9.2 Analytica</li> <li>9.2.1</li> <li>9.2.2</li> <li>9.2.3</li> <li>9.2.4</li> <li>9.2.1</li> <li>Site Characteri</li> <li>10.1 Potentia</li> <li>10.2 Backgrou</li> <li>10.3 Chemica</li> <li>10.4 Aestheti</li> <li>10.5 Potentia</li> <li>10.6 Site Mar</li> <li>Conclusions</li> </ul> | <ul> <li>6.2 Optimise the Design of Obtaining Data</li></ul> |

## List of Tables

Table A – Soil Analytical Results DP (2018)

## List of Figures

| Figure 1 | Site Location                           |
|----------|-----------------------------------------|
| Figure 2 | Site Layout                             |
| Figure 3 | Soil Sampling Locations                 |
| Figure 4 | Soil Exceedances (DP 2018 & JBS&G 2019) |



## Appendices

- Appendix A Photographic Log
- Appendix B PFAS Register
- Appendix C Loose-Fill Asbestos Insulation Register
- Appendix D Borelogs
- Appendix E PID Calibration and Decontamination Field Forms
- Appendix F QAQC Assessment
- Appendix G Statistical Assessment of B(a)P
- Appendix H Laboratory Documentation



## Abbreviations

| Term     | Definition                                                           |  |  |  |  |  |
|----------|----------------------------------------------------------------------|--|--|--|--|--|
| ACM      | Asbestos Containing Materials                                        |  |  |  |  |  |
| AF/FA    | Asbestos fines and friable asbestos                                  |  |  |  |  |  |
| AEC      | Areas of Environmental Concern                                       |  |  |  |  |  |
| AHD      | Australian Height Datum                                              |  |  |  |  |  |
| ASRIS    | ustralian Height Datum<br>ustralian Soil Resource Information System |  |  |  |  |  |
| ASS      | Acid Sulfate Soils                                                   |  |  |  |  |  |
| BTEXN    | Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene              |  |  |  |  |  |
| CLM Act  | NSW Contaminated Land Management Act 1997                            |  |  |  |  |  |
| COC      | Chain of Custody                                                     |  |  |  |  |  |
| COPC     | Contaminants of Potential Concern                                    |  |  |  |  |  |
| CSM      | Conceptual Site Model                                                |  |  |  |  |  |
| DBYD     | Dial Before You Dig                                                  |  |  |  |  |  |
| DP       | Deposited Plan                                                       |  |  |  |  |  |
| DQI      | Data Quality Indicators                                              |  |  |  |  |  |
| DQO      | Data Quality Objectives                                              |  |  |  |  |  |
| DSI      | Detailed Site Investigation                                          |  |  |  |  |  |
| EIL      | Ecological Investigation Levels                                      |  |  |  |  |  |
| EPA      | NSW Environment Protection Authority                                 |  |  |  |  |  |
| ESA      | Environmental Site Assessment                                        |  |  |  |  |  |
| ESLs     | Ecological Screening Levels                                          |  |  |  |  |  |
| ha       | Hectare                                                              |  |  |  |  |  |
| HILS     | Health Investigation Levels                                          |  |  |  |  |  |
| HSLs     | Health Screening Levels                                              |  |  |  |  |  |
| JBS&G    | JBS&G Australia Pty Ltd                                              |  |  |  |  |  |
| JRA      | Job Risk Assessment                                                  |  |  |  |  |  |
| LEP      | Local Environment Plan                                               |  |  |  |  |  |
| LOR      | Limit of Reporting                                                   |  |  |  |  |  |
| NATA     | National Accreditation Testing Authority                             |  |  |  |  |  |
| OCP      | Organochlorine Pesticides                                            |  |  |  |  |  |
| OPP      | Organophosphorous Pesticides                                         |  |  |  |  |  |
| PAH      | Polycyclic Aromatic Hydrocarbons                                     |  |  |  |  |  |
| РСВ      | Polychlorinated Biphenyls                                            |  |  |  |  |  |
| PID      | Photoionisation Detector                                             |  |  |  |  |  |
| POEO Act | NSW Protection of the Environment Operations Act 1997                |  |  |  |  |  |
| PSI      | Preliminary Site Investigation                                       |  |  |  |  |  |
| QA/QC    | Quality Assurance/Quality Control                                    |  |  |  |  |  |
| RPD      | Relative Percentage Difference                                       |  |  |  |  |  |
| SAQP     | Sampling Analytical and Quality Plan                                 |  |  |  |  |  |
| SWMS     | Safe Work Method Statement                                           |  |  |  |  |  |
| TRH      | Total Recoverable Hydrocarbons                                       |  |  |  |  |  |
| UCL      | Upper Confidence Limit                                               |  |  |  |  |  |
| VOC      | Volatile Organic Compounds                                           |  |  |  |  |  |



## **Executive Summary**

JBS&G Australia Pty Ltd (JBS&G) was engaged by Pells Sullivan Meynink (PSM, the client), on behalf of Johnstaff, to complete a Detailed Site Investigation (DSI) for the Chatswood High School site, located at 24-58 Centennial Avenue, Chatswood, NSW (the site). The site is legally identified as Lot 1 in DP 725204, Lots 20, 21, 22, 23 in Section 6 DP2273, Lots 18, 19, 20, 21 in Section 7 DP2273, and Lots 16, 17, 18, 19, 20 in Section 8 DP2273. The site covers an area of approximately 5.9 ha. The site location and site layout are shown in **Figures 1** and **2**, respectively.

The site, along with Chatswood Public School, forms the broader Chatswood Education Precinct. The Chatswood Education Precinct forms part of the NSW Government's investment in primary and secondary education to meet the increasing demand for educational facilities. It is understood by JBS&G that the site (Chatswood High School) will be upgraded and combine kindergarten to year 6 and years 7 to 9, whilst the Chatswood Public School site will be repurposed for use as a senior campus for years 10 to 12.

In order to facilitate the further design and planning approvals for redevelopment works, Detailed Site Investigations (DSI) are required to be completed across the Chatswood Education Precinct to assess the suitability of the site for future use as an educational facility. The DSI documented herein relates to the current Chatswood High School site and is required pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) for the State Significant Development (SSD) application number SSD 9483. Specifically, the DSI seeks to address SEARs Key Issue 13 Contamination, being, to assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with *State Environmental Planning Policy 55 – Remediation of Land* (SEPP 55).

The objectives of this DSI are to characterise potential contamination at the site, and to draw conclusions regarding the suitability of the land for use as a primary and secondary school, or, to make recommendations to enable such conclusions.

Data utilised for the assessment of site suitability as documented herein were collected over a fiveday period from the 21<sup>st</sup> to 25<sup>th</sup> January. JBS&G undertook an intrusive investigation which advanced 30 soil boreholes across the site utilising a combination of judgemental and systematic sampling regimes consistent with EPA (1995) guidelines. Analytical results were assessed alongside those of fifteen sample locations available in a previously completed preliminary site assessment (PSI) presented by Douglas Partners (DP 2018<sup>1</sup>).

All locations with the exception of BH25 were observed to contain fill materials between the ground surface (or below hardstand) to a maximum depth of 2.2 m below ground surface (m bgs) (BH15) and generally comprised a dark brown gravelly silty sand with gravel inclusions. Some locations exhibited minor inclusions of concrete, brick, glass, ash and metal fragments. No hydrocarbon odours or staining were observed at any of the sample locations or during site inspections. Inspection of fill materials did not identify fragments of suspected asbestos containing materials (ACM). One fragment of asbestos containing material (ACM) was identified on the ground surface approximately 5 m west of BH13. This fragment was collected and dispatched to the laboratory for analysis. No other fragments of ACM were observed during the investigation.

The natural material underlying fill materials typically comprised a grey - brown (with brown and yellow mottling) silty clay overlying a grey weathered laminated shale.

The site's analytical data set was compared against the most conservative land use scenario, pursuant to the *National Environmental Protection Measure (NEPM)* (NEPC 2013) – residential with

Report on Preliminary Site (Contamination) Investigation with Limited Sampling: Proposed Redevelopment Chatswood Public School, High School and Public School "Bush Campus", Chatswood, Douglas Partners 2018 (DP 2018)



accessible soils, which is equally protective of human and ecological health for preschool and primary school land use scenarios.

The analytical data indicated that materials from the site were below the applicable health based criteria, with only at two locations reported in excess of the adopted site criteria - as reported in DP (2018) – BH11-0-0.1 (5.6 mg/kg) and BH13-0-0.1 (3.2 mg/kg). JBS&G note that both of these locations are in areas of the site that are covered by asphalt on the ground surface and is likely to be the source of elevated PAHs within these samples. As noted in NEPC (2013), where B(a)P exists in bitumen it is relatively immobile an does not represent a significant health risk. Furthermore, statistical analysis of the site's data set, pursuant to NEPC (2013), indicated that the 95% upper confidence limit (UCL) of the mean was below the adopted land use criteria and therefore the reported concentration was assessed as not presenting an unacceptable risk to future users of the site.

In relation to ecological considerations, concentrations of COPCs were generally reported below the adopted ecological criteria (ESLs/EILs), with the exception of the heavy metals nickel and zinc, reported in excess of the EIL at 6 and 9 locations, respectively, petroleum hydrocarbons at three locations, and B(a)P at four locations.

A review of the encountered soils which were largely reworked natural materials and noting the site's geological setting indicate that the reported concentrations of the heavy metals of nickel and zinc are likely attributed to the parent material of the site's soils, likely to be shales from the Wianamatta Group that are naturally enriched in nickel and zinc.

In relation to the reported concentrations of B(a)P and TRH reported in excess of the adopted ecological screening levels, observations made during the completion of field works indicated vegetation in proximity to sampling locations that reported elevated levels of these compounds, and across the site in general, appeared to healthy, with no visual indicators of vegetative stress, indicating that soil processes responsible for ecological health did not appear to be inhibited. Furthermore, NEPC (2013) notes that high molecular weight PAHs such as B(a)P are not readily taken up by plants, and as such are unlikely to pose an unacceptable risk to plant growth.

Based on the scope of works undertaken, and in accordance with the limitations in **Section 12**, JBS&G consider that the site is suitable for the development and intended use as a primary and secondary school facility.

JBS&G recommend the formulation of an Unexpected Finds Protocol (UFP) for the site to address any unexpected finds that may be encountered during redevelopment of the site.



## 1. Introduction

## 1.1 Background

JBS&G Australia Pty Ltd (JBS&G) was engaged by Pells Sullivan Meynink (PSM, the client), on behalf of John Staff, to complete a Detailed Site Investigation (DSI) for the Chatswood High School site, located at 24-58 Centennial Avenue, Chatswood, NSW (the site). The site is legally identified as Lot 1 in DP 725204, Lots 20, 21, 22, 23 in Section 6 DP2273, Lots 18, 19, 20, 21 in Section 7 DP2273, and Lots 16, 17, 18, 19, 20 in Section 8 DP2273. The site covers an area of approximately 5.9 ha. The site location and site layout are shown in **Figures 1** and **2**, respectively.

The site, along with Chatswood Public School, forms the broader Chatswood Education Precinct. The Chatswood Education Precinct forms part of the NSW Government's investment in primary and secondary education to meet the increasing demand for educational facilities. It is understood by JBS&G that the site (Chatswood High School) will be upgraded and combine kindergarten to year 6 and years 7 to 9, whilst the Chatswood Public School site, subject of a separate DSI report, will be repurposed for use as a senior campus for years 10 to 12.

In order to facilitate the further design and planning approvals for redevelopment works, Detailed Site Investigations (DSI) are required to be completed across the Chatswood Education Precinct to assess the suitability of the site for future use as an educational facility. The report documented herein relates to the current Chatswood High School site and will assess site suitability, as required pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) for the State Significant Development (SSD) application number SSD 9483, specifically relating to SEARs Key Issue 13 Contamination, being, to:

• Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55.

A Preliminary Site Investigation with limited soil sampling was undertaken at the site by Douglas Partners in 2018 (DP 2018<sup>2</sup>), the findings of which recommend a detailed investigation to assess the suitability of the site for the proposed land uses. The DSI presented herein has been developed in accordance with guidelines made or approved by the NSW Environment Protection Authority (EPA), including the National Environmental Protection Council (NEPC) (2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM), and relevant Australian Standards.

## 1.2 Objectives

The objectives of this DSI are to characterise potential contamination at the site, and to draw conclusions regarding the suitability of the site for the proposed land use, or, to make recommendations to enable such conclusions.

## 1.3 Scope of Works

The scope of works for the assessment included:

- A desktop review of available site history information, including:
  - Review of previously completed environmental assessment and geotechnical reports relating to the site and surrounding area, as provided by the client;
- A detailed site inspection to identify potential AECs;

<sup>&</sup>lt;sup>2</sup> Report on Preliminary Site (Contamination) Investigation with Limited Sampling: Proposed Redevelopment Chatswood Public School, High School and Public School "Bush Campus", Chatswood, Douglas Partners 2018 (DP 2018)



- Development and documentation of a conceptual site model (CSM) based on the available information;
- Development and documentation of the SAQP, with data quality objectives (DQOs) for the DSI in accordance with relevant EPA guidelines;
- Implementation of an intrusive investigation program based on the SAQP presented in this report;
- Analysis of collected soil samples at two NATA accredited laboratories: Eurofins MGT and Envirolab;
- Comparison of collected data against NSW EPA published / endorsed investigation criteria to facilitate an assessment of land use suitability; and
- Preparation of a DSI report in general accordance with relevant EPA guidelines.



## 2. Site Conditions and Surrounding Environment

### 2.1 Site Identification

The location of the site is shown in **Figure 1**, and the current layout is shown in **Figure 2**. The site details are summarised in **Table 2.1**.

#### Table 2.1: Site Details

|                                           | Lot 1, DP 725204                                     |  |  |  |  |  |
|-------------------------------------------|------------------------------------------------------|--|--|--|--|--|
| Lot / DP Number                           | Lots 20, 21, 22, 23 Section 6, DP2273                |  |  |  |  |  |
| Lot / DP Number                           | Lots 18, 19, 20, 21 Section 7, DP2273                |  |  |  |  |  |
|                                           | Lots 16, 17, 18, 19, 20 Section 8, DP2273            |  |  |  |  |  |
| Street Address                            | 24 – 58 Centennial Avenue, Chatswood                 |  |  |  |  |  |
| Local Government Authority                | Willoughby City Council                              |  |  |  |  |  |
|                                           | Approximate centre of site:                          |  |  |  |  |  |
| Site Area                                 | 331070.397 E                                         |  |  |  |  |  |
|                                           | 6258544.008 N (GDA94-MGA56)                          |  |  |  |  |  |
| Current Zoning                            | SP2 Infrastructure (Educational Establishment)       |  |  |  |  |  |
|                                           | E2 Environmental Conservation (south western corner) |  |  |  |  |  |
| Geographic Coordinates                    | Approximately 5.1 ha                                 |  |  |  |  |  |
| Previous Land Use                         | High school                                          |  |  |  |  |  |
| Current Land Use                          | High school                                          |  |  |  |  |  |
| Potential Future Use and Permissible Uses | Primary and high school                              |  |  |  |  |  |

#### 2.2 Site Description

A detailed site inspection was undertaken on 9 January 2019, and field works were completed on 21, 22, 23,24 and 25 January 2019, by two of JBS&G's trained and experienced field scientists. Site observations are discussed below, and a photographic log is included as **Appendix A**.

The site comprises a rectangular parcel of land of approximately 5.1 hectares, measuring approximately 230 m x 280 m. The site is secured at its perimeter with fencing and multiple access points to the site are provided via locked gates. Two access points are located on the eastern boundary (Oliver Road and Freeman Road), on the northern and north-western boundary of the site (Centennial Avenue), and on the southern boundary of the site via Eddy Road. Vehicular access is also provided via an entrance located south-west of the site on De Villiers Avenue which leads to a car park located in the southwestern portion of the site. The site generally slopes in a south/south westerly direction, from Centennial Avenue towards Eddy Road.

The site is generally split into two halves, with the northern half of the site containing a majority of buildings and hardstand areas of the site. The southern half of the site largely comprises recreational areas, including a synthetically turfed sports field, basketball courts, an asphalt carpark and a corridor of dense vegetation at the southern boundary of the site – Eddy Rd.

Concrete and asphalt hardstand covered all ground surfaces between the various buildings and demountables within the northern portion of the site, with purpose-built planter boxes present throughout containing soils, mulch, and plants. The site layout is shown in **Figure 2**.

#### 2.3 Surrounding Land Use

Surrounding land-uses at the time of site inspection are described following:

- North Centennial Avenue forms the northern boundary of the site with residential dwellings present further north;
- South Eddy Road forms the southern boundary of the site, with residential dwellings
  present further south. JBS&G note that a review of aerial photography indicates that a Caltex
  Service Station is located approximately 400 m south east of the site on the corner of
  Pacific Highway and Moriarty Road;



- East high density residential dwellings of up to 6 storeys share the eastern boundary of the site. Further to the east exists the Pacific Highway; and
- West The western boundary of the site was formed by Dardanelles Road, adjacent to residential dwellings. Ferndale Park and Swaines Creek are located further west.

#### 2.4 Environmental Setting

#### 2.4.1 Topography

A review of topographical information available on SIX Maps indicated the site's relief is approximately 20m – with the elevation of the northern boundary approximately 95 m Australian Height Datum (m AHD), and approximately 75 m AHD at the southern boundary.

The site appears to have undergone cut and fill activities based on observations made during the site inspection.

#### 2.4.2 Geology & Soil

A review of the Soil Landscapes of the Sydney 1:100,000 Geological Series Sheet 9130 Sheet (1983<sup>3</sup>) indicates the site and surrounds are underlain by the Mesozoic Ashfield Shale of the Wianamatta Group, comprising dark grey to black marine-deposited shale.

Reference to the online ESPADE tool hosted by the NSW Office of Environment and Heritage (OEH 2018<sup>4</sup>) indicated the site is underlain by the Blacktown Soil Landscape Group. These soils comprise shallow to moderately deep (<100 cm) red and brown podzolic soils in well-drained areas, and deep (150-300 cm) yellow podzolic soils and soloths on lower slopes and poorly drained areas. Limitations of this group include moderately reactive highly plastic subsoil, low soil fertility and poor soil drainage.

DP (2018) identified fill material of various consistency and origin in boreholes advanced at the site. A large portion of filling encountered was variably compacted predominantly silty clay material with carious inclusions, which was observed to have "similar classification to the natural clay present at the site and in some instances was hard to distinguish from natural clays" (DP 2018). Natural silty clays were observed overlying shale bedrock at a majority of locations (DP 2018).

#### 2.4.3 Acid Sulfate Soils

A review of the *Acid Sulfate Soil Risk Map for Botany Bay*<sup>5</sup> indicates that the site is located in an area of no-known occurrences of ASS.

Based on observations made during the intrusive investigation across the site, sediments typical of potential and actual ASS were not observed (i.e. absence of grey, organic rich, hydrogen sulphide odour etc) in the lithological profile.

The Section 10.7 Planning Certificate (presented in DP, 2018) indicates that the site does not have the likelihood of occurrence of acid sulfate soils. This is consistent with the site's topographical and geological setting.

#### 2.4.4 Hydrology

Precipitation to fall onto buildings and paved areas will flow into engineered drainage lines and the local stormwater system. Rainfall will potentially penetrate the soft ground (e.g. garden beds, unpaved areas across the school grounds) and migrate as shallow/perched groundwater towards Swaines Creek, and/or to stormwater infrastructure. It is anticipated that surface run-off will flow to

<sup>&</sup>lt;sup>3</sup> Soil Landscapes of the Sydney 1:100,000 Sheet (9130) Edition 2 (DECCW 2009)

<sup>&</sup>lt;sup>4</sup> ESAPDE, NSW Office of Environment and Heritage, http://www.environment.nsw.gov.au/eSpade2Webapp, 4 February 2018 (OEH 2018)

<sup>&</sup>lt;sup>5</sup> Acid Sulfate Soil Risk Map – Botany Bay, Edition 2, 1997. 1:25 000 Ref: 91 30S3. NSW DLWC



engineered stormwater infrastructure and towards the nearby Swaines Creek, located approximately 450 m west of the site.

#### 2.4.5 Hydrogeology

A search for registered groundwater borehole information was undertaken on Water NSW<sup>6</sup> website indicated seventeen groundwater bores within 500 m of the site (**Table 2.2**). Summary pages of groundwater bore information provided by Water NSW is presented in **Appendix B**. Fourteen of the groundwater bore summary pages provided by Water NSW did not provide information regarding standing water level (SWL) or lithological logs. As such they have not been included in this summary.

Based on the reported geology and surrounding topography it is anticipated the direction of groundwater flow is towards the west towards the Lane Cove River.

Groundwater at the site is not expected to occur within bedrock, with perched groundwater existing at interfaces of soils and underlying bedrock.

| Bore ID  | Depth<br>(mbgs) | SWL<br>(mbgs) | Distance<br>from site<br>(m) | Date<br>Installed | Use                         | Lithology                                                                                                                                   |
|----------|-----------------|---------------|------------------------------|-------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| GW029731 | 21.6            | Unknown       | 480 E                        | 01/04/1967        | Recreation<br>(Groundwater) | Clay to 6.7 m, shale to 17.98, sandstone to 21.6 m.                                                                                         |
| GW107757 | 162.6           | 25.6          | 490 E                        | 29/07/2005        | Recreation<br>(Groundwater) | Fill to 1.4 m, clay to 5.1 m, shale to 5.1 m, clay to 16.7 m, sandstone to 65.7 m, shale to 66.7 m, sandstone with shale lenses to 162.6 m. |
| GW111773 | 5.5             | Unknown       | 500 SE                       | 16/03/2012        | Monitoring                  | Concrete to 0.2 m, fill to 0.8 m, clay to 6 m.                                                                                              |

<sup>&</sup>lt;sup>6</sup> Water NSW website accessed 16/01/2019, https://realtimedata.waternsw.com.au/



## 3. Site History

The site history has been documented in DP (2018). JBS&G's review of the site history have identified additional searches that are relevant and applicable to understanding the historical and environmental setting.

## 3.1 EPA Per- and Poly- Fluoroalkyl Substances (PFAS) Register

A search of the EPA's PFAS register indicated that there were no records pertaining to the site. A record of the search is presented in **Appendix C**.

## 3.2 NSW Fair Trading Loose Fill Asbestos Insulation Register

A search of the NSW Fair Trading loose fill asbestos insulation register indicated that there were no records pertaining to the site. A record of the search is presented in **Appendix D**.

## 3.3 Summary of Site History

Based on a review of available historical records, the site appears to have been utilised for a dwelling and estate in private ownership prior to the redevelopment of the site as Chatswood High School. The site appears to have undergone redevelopment at various stages since the 1950s and is likely to have undergone cut and fill activities during these periods, as reported in DP (2018) and confirmed by observations made during the current investigation.

Based on the historical site uses, JBS&G do not consider that there are significant risks for widespread impacts across the site. Based on the range of sources and the general consistency of the historical information, it is considered that the historical assessment has an acceptable level of accuracy with respect to the potentially contaminating activities historically occurring at the site.



## 4. Previous Investigations

#### 4.1 Preliminary Site (Contamination) Investigation (DP 2018)

Douglas Partners (DP) completed a preliminary environmental site assessment (ESA; referred to as Preliminary Site Investigation (PSI) in this report) of the Chatswood High School site in addition to assessment of the nearby Chatswood Public School. The investigation entailed a desktop review of publicly available documents pertaining to the site history, and preliminary intrusive sampling associated with the geotechnical investigation.

A review of the site's history indicated that the site was part of a residential estate before being redeveloped into a high school in the 1950s.

DP (2018) identified the following AECs at the site:

- Filling potential for filling (likely from cut and fill) activities for the purpose of levelling the site for development. Associated contaminants of potential concern (COPC) identified were TRH, BTEX, PAHs, PCBs, OCPs, OPPs, phenols and asbestos;
- Building material potentially contaminating materials that will result from demolition of buildings previously at the site. COPCs identified were asbestos, synthetic mineral fibres (SMF), PCBs, PAHs and coal tar;
- Soils and contaminants associated with surrounding land uses such as Chatswood Toyota. Associated COPCs identified were metals, TRH, BTEX, PAHs, PCBs, OCPs, OPPs, VOCs, phenols and asbestos.

DP (2018) undertook a limited intrusive assessment that was completed via solid flight auger and hand auger at 12 locations across the site. DP (2018) adopted the most conservative human and ecological health assessment criteria, including; health investigation level (HIL) A for non-petroleum chemical contaminants, health screening levels (HSLs) A and B for vapour intrusion, HSL A for direct contact, and management limits for TPH.

Fill materials were encountered from 0.15 m bgs to 2.1 m bgs and was variably compacted predominantly silty clay material with carious inclusions, which was observed to have "similar classification to the natural clay present at the site and in some instances was hard to distinguish from natural clays" (DP 2018). Elevated concentrations of zinc (one sample), nickel (one sample), benzo(a)pyrene (two samples), TRH >C<sub>16</sub>-C<sub>34</sub>(F3) (three samples), and BaP TEQ (one sample) were detected at isolated locations, all encountered within surface or near-surface fill material. Only one result exceeded health-based criteria (BaP TEQ at BH11 0-0.1m), in an area where asphalt may have been present. DP (2018) suggests that there is a low risk of gross or widespread contamination at the site, with some elevated metals and hydrocarbons relating to inclusions of ash and asphalt in fill. The other elevated concentrations exceeded ecological criteria only.

No groundwater was encountered at any location during the sampling event.

The report concluded that exceedances of adopted site criteria were observed and as such, remediation may be required pending results from subsequent detailed site investigations (DSIs).



## 5. Conceptual Site Model

Based on the desktop review and observations from the site inspection, the following conceptual site model (CSM) has been developed for the site.

#### 5.1 Potential Areas of Environmental Concern

Based on the objectives of the assessment, desktop review and observations made during the site inspection, AECs and associated COPCs were identified at the site, as noted in **Table 5.1**.

| Area of Environmental Concern (AEC)                                                                                                                                                                                         | Potentially<br>Affected Media | Contaminant of Potential Concern (COPC)                                                                                                                                                                 | Risk Profile |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Fill Materials<br>Imported and/or reworked fill<br>materials used to create site levels<br>(comprising material of unknown<br>character and/or origin)                                                                      | Soil                          | Heavy metals, total recoverable hydrocarbons (TRH),<br>benzene, toluene, ethylbenzene and xylenes (BTEX),<br>PAHs, polychlorinated biphenyls (PCB),<br>organochlorine pesticides (OCP), and<br>asbestos | Moderate     |
| Former Site Structures<br>The demolition of former structures at<br>the site prior to and during the various<br>stages of redevelopment may have<br>resulted in cross-contamination to<br>underlying and surrounding soils. | Soil                          | Heavy metals, TRH/BTEX, PAHs, PCBs, asbestos                                                                                                                                                            | Low          |

#### 5.2 Potentially Contaminated Media

Potentially contaminated media comprise:

- Fill Materials; and
- Underlying Natural Soils.

Review of site historical information, DP (2018) and findings from the site inspection indicate that the site has historically unlikely to have involved significant contaminating historical uses. The review identified the potential for cut and fill activities to have occurred at the site. Fill materials may contain COPCs at concentrations that exceed the applicable human and ecological assessment criteria and therefore may present an unacceptable risk to human and ecological receptors for the future use of the site.

The historical review of the site layout identified several historical structures which were demolished as part of the site's redevelopment in the 1950s. Noting the age of the site's structures (ongoing since 1950s), construction of buildings at the site may have utilised hazardous building materials. JBS&G consider it unlikely that contamination to the underlying soils from these materials has occurred noting that the structures have not undergone significant refurbishment since construction.

A review of the site history did not identify point sources and/or liquid contaminants at the site that are likely to pose a significant risk for the migration of contamination to underlying natural materials and groundwater.

JBS&G consider the potential for contamination to the underlying natural lithologies/geology to be a function of the primary contamination in soil. Noting the historical and current site uses, JBS&G do not consider primary contamination in soils are likely to be in concentrations that would result in significant contamination to underlying strata.



Noting contaminants likely to exist at the site are in solid form and unlikely to be significantly leachable, contaminants within fill material and other surface soils, and the historical uses of the site, vertical migration through the fill profile into the underlying natural soils and groundwater is unlikely to have occurred.

### 5.3 Potential for Migration

Contaminants generally migrate from site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The propensity for contaminants to migrate is dependent on:

- The nature of the contaminants (solid/liquid/gas and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site area history review and previous investigation are generally in a solid form (e.g. heavy metals, asbestos, etc.).

Although the site is partially unsealed, dense grass and shrub cover and the predominantly paved nature of the site reduces the potential for windblown dust migration of contamination from the site, should contamination exist in surface soils.

There is a low potential for vertical migration of surface waters where hardstand pavements exhibit extensive cracking and / or along joints, and in areas of soft ground cover. Additionally, there is low potential for vertical contaminant migration from soils to shallow (perched) groundwater, if present, via infiltration. As noted above, the potential for contaminant migration to deeper groundwater is unlikely.

## 5.4 Potential Exposure Pathways

Potential human receptors of environmental impact include future site users (school students, users of open spaces), visitors and construction/maintenance contractors engaged to work at the site who may potentially be exposed to COPCs through inhalation, direct contact and/or ingestion (children) of impacted soils.

Exposure to windblown dusts may pose a potential risk to sensitive human receptors however these are also considered unlikely given the predominantly vegetated site surfaces.

During redevelopment of the site, potential human receptors will include:

- Inhalation of potential COPC dust and migrating upwards from fill material of unknown origins; and/ or
- Potential dermal and oral contact to impacted soils as present at shallow depths and/ or accessible by future service excavations across the extent of the site; and/ or
- Surface water runoff.

The site contains areas covered by vegetation, presenting ongoing potential ecological receptors, although no vegetation stress relating to potential contamination from known AECs was observed during site inspection. Flora on site are potential receptors of shallow soil contamination if present. Possible off-site ecological receptors include potential surface water receptors (i.e. Swains Creek to the southwest of the site).

## 5.5 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPC as either liquids or gasses.



Man-made preferential pathways may be present at the site, associated with areas of disturbed natural/fill material, service easements and stormwater/retention basins on site.

Natural preferential pathways are likely limited to natural lithological boundaries, such as between porous soils and weathered/residual bedrock, where infiltrating groundwater is vertically confined and begins to migrate laterally, and surface water drainage features.



### 6. Sampling and Analytical Plan

#### 6.1 Data Quality Objectives

Data quality objectives (DQOs) are statements that define the confidence required in conclusions drawn for data produced for a project, and which must be set to realistically define and measure the quality of data needed.

DQOs have been developed for this DSI, as discussed in the following sections.

#### 6.1.1 State the Problem

The site is proposed to be redeveloped for a mixed primary and high school campus providing facilities for students between the years of Kindergarten to Year 10. As such, an assessment is required to characterise potential contamination at the site, and to assess whether potential contamination from historical activities at the site may pose an unacceptable risk to future receptors for the proposed mixed primary and high school campus, or, to make recommendations to enable such conclusions to be made.

#### 6.1.2 Identify the Decision

The decisions below generally follow the EPA (2017<sup>7</sup>) decision making process for assessing urban redevelopment sites:

- 1. Are there any unacceptable risks to likely future on-site receptors?
- 2. Are there any issues relating to background soil concentrations that exceed appropriate site soil criteria?
- 3. Are there any impacts of chemical mixtures?
- 4. Are there any aesthetic issues at the site?
- 5. Is there any evidence of, or potential for, migration of contaminants from the site?
- 6. Is a site management strategy required?

#### 6.1.3 Identify Inputs to the Decision

Inputs identified to provide sufficient data to make the decisions nominated above include:

- Historical site information and inspection of the site to identify and/or confirm potential AECs and COPCs at the site;
- The collection and interpretation of environmental data through collection and analysis of soil;
- Laboratory analysis of samples of potentially contaminated media for COPC; and
- Confirmation that data generated by sample analyses were of sufficient quality to allow reliable comparison to assessment criteria as undertaken by assessment of quality assurance / quality control (QA/QC).

Specifically, sufficient data needs to be collected from each of the identified potentially impacted media (e.g. fill material and natural soils) at the site relating to the in the identified AECs and associated COPC.

<sup>&</sup>lt;sup>7</sup> Guidelines for the NSW Site Auditor Scheme (3<sup>rd</sup> Edition). NSW Environment Protection Authority, October 2017, EPA 2017;



#### 6.1.4 Define the Study Boundaries

The study boundaries are limited to cadastral site boundaries as shown on Figure 2.

The vertical extent of the soil investigation was to a maximum depth of 2.8 m bgs.

Due to the project objectives, seasonality was not assessed as part of this investigation. Data are therefore representative of the timing and duration of the current investigation and DP (2018).

#### 6.1.5 Develop a Decision Rule

Analytical data was assessed against NSW EPA endorsed criteria, presented in Section 7.

Statistical analyses of the data was undertaken, where required, in accordance with relevant guidance documents. The following statistical criteria was adopted:

- The upper 95% confidence limit on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion;
- No single analyte concentration shall exceed 250% of the adopted criterion; and
- The standard deviation of the results must be less than 50% of the criterion.

The decision rules adopted to answer the decisions identified in **Section 6.1.2** are summarised in **Table 6.1**.

| Decisions Required to be Made                                                           | Decision Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Are there any unacceptable risks to on-                                              | Analytical data will be compared against EPA endorsed criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. Are there any unacceptable risks to on-<br>site future receptors?                    | Analytical data will be compared against EPA endorsed criteria.<br>Statistical analysis of the data will be completed, where necessary, in<br>accordance with relevant guidance documents, as appropriate, to facilitate<br>the decisions. The criteria in <b>Section 6</b> were adopted with respect to soil.<br>Either: the reported concentrations were all below the Site criteria;<br>Or: no single analyte concentration exceeded 250 % of the adopted site<br>criterion; and the standard deviation of the results was less than 50 % of the<br>Site criterion;<br>And: the 95 % UCL of the average concentration for each analyte was below<br>the adopted site criterion.<br>If the statistical criteria stated above were satisfied, the answer to the<br>decision was <b>No</b> . |
|                                                                                         | If the statistical criteria were not satisfied, the answer to the decision was<br>Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2. Are there any issues relating to the local                                           | If COPC concentrations in soils exceeded published background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| area background soil concentrations that                                                | concentrations (NEPC 2013), the answer to the decision is <b>Yes</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| exceed appropriate soil criteria?                                                       | Otherwise the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. Are there any chemical mixtures?                                                     | Were there more than one group of contaminants present which increase the risk of harm?<br>If there is, the answer to the decision is <b>Yes</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                         | Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4. Are there any aesthetic issues?                                                      | If there were any asbestos containing material (ACM) fragments on the ground surface, any unacceptable odours or soil discolouration, or excessive extraneous/foreign/waste materials, the answer to the decision is <b>Yes</b> . Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5. Is there any evidence of, or potential for, migration of contaminants from the site? | Based on assessment results, is there any evidence of, or the potential for, migration of unacceptable contaminant concentrations to migrate from the site?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         | If yes, the answer to the decisions is <b>Yes</b> .<br>Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6. Is a site management strategy required?                                              | Is the answer to any of the above decisions Yes?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| o. is a site management strategy required?                                              | If yes, a site management strategy is required.<br>If no, a site management strategy is not required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Table 6.1 Summary of Decision Rules



#### 6.1.6 Specific Limits on Decision Errors

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA, NEPC (2013), appropriate indicators of data quality (DQIs used to assess QA/QC) and standard JBS&G procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for completeness, comparability, representativeness, precision and accuracy.

The pre-determined Data Quality Indicators (DQIs) established for the project are discussed below in relation to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters), and are shown in **Table 6.2**.

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that are generated during this study is a measure of the closeness of the analytical results obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analyses against reference standards.
- **Representativeness** –expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- **Comparability** expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- **Sensitivity** expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted criteria.

If any of the DQIs are not met, further assessment of the data set is required to determine whether the non-conformance has significant effects on the usefulness of the data. Corrective action to correct an adverse impact on the reliability of the dataset may include, but is not limited to, the request of further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of the data.



#### Table 6.2: Summary of Data Quality Indicators

| Data Quality Indicators                                                                              | Frequency           | Data Quality Criteria                     |
|------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|
| Precision                                                                                            |                     |                                           |
| Duplicates (intra-laboratory)                                                                        | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Triplicates (inter-laboratory)                                                                       | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Laboratory Duplicates                                                                                | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Accuracy                                                                                             |                     |                                           |
| Surrogate spikes                                                                                     | All organic samples | 70-130% recovery                          |
|                                                                                                      | Phenols             | 30-130% recovery                          |
| Laboratory control samples                                                                           | 1 per lab batch     | 70-130% recovery                          |
| Matrix spikes                                                                                        | 1 per lab batch     | 70-130% recovery (phenols 30-130%)        |
| Representativeness                                                                                   |                     |                                           |
| Sampling appropriate for media and analytes                                                          | All samples         | _2                                        |
| Samples extracted and analysed within holding times.                                                 | -                   | Organics (14 days), inorganics (6 months) |
| Laboratory Blanks                                                                                    | 1 per lab batch     | <lor< td=""></lor<>                       |
| Trip blanks                                                                                          | 1 per lab batch     | <lor< td=""></lor<>                       |
| Trip spike                                                                                           | 1 per lab batch     | 70-130% recovery                          |
| Storage blank                                                                                        | 1 per lab batch     | <lor< td=""></lor<>                       |
| Rinsate sample                                                                                       | 1 per sampling      | <lor< td=""></lor<>                       |
|                                                                                                      | event/media         |                                           |
| Comparability                                                                                        |                     |                                           |
| Standard operating procedures for sample collection & handling                                       | All Samples         | All Samples                               |
| Standard analytical methods used for all analyses                                                    | All Samples         | NATA accreditation                        |
| Consistent field conditions, sampling staff and laboratory analysis                                  | All Samples         | All samples <sup>2</sup>                  |
| Limits of reporting appropriate and consistent                                                       | All Samples         | All samples <sup>2</sup>                  |
| Completeness                                                                                         |                     |                                           |
| Sample description and Chain of Custody (COCs)                                                       | All Samples         | All samples <sup>2</sup>                  |
| completed and appropriate                                                                            |                     |                                           |
| Appropriate documentation                                                                            | All Samples         | All samples <sup>2</sup>                  |
| Satisfactory frequency and result for QC samples                                                     |                     | 95% compliance                            |
| Data from critical samples is considered valid                                                       | -                   | Critical samples valid                    |
| Sensitivity                                                                                          |                     |                                           |
| Analytical methods and limits of recovery appropriate for media and adopted site assessment criteria | All samples         | LOR<= site assessment criteria            |
| •                                                                                                    |                     | •                                         |

<sup>1</sup> If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment was made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

<sup>2</sup> A qualitative assessment of compliance with standard procedures and appropriate sample collection methods was completed during the DQI compliance assessment.

#### 6.2 Optimise the Design of Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in EPA (1995<sup>8</sup>), including judgemental, random, systematic and stratified sampling patterns.

#### **Soil Investigation**

For a site of approximately 5.1 ha, Table A of NSW EPA (2012) recommend a minimum of 55 soil sampling locations. However, noting DP (2018) suggests that there is a low risk of gross or widespread contamination at the site, with some elevated metals and hydrocarbons relating to inclusions of ash and asphalt in fill, and the potential for asbestos. No point sources such as underground storage tanks (USTs) were reported. Filling reported appears to be predominantly consistent with reworking of excavated surficial natural soil/rock materials in some areas, rather

<sup>&</sup>lt;sup>8</sup> Contaminated Sites: Sampling Design Guidelines. NSW EPA 1995 (EPA 1995)



than importation. Review of historical aerial imagery provided by DP (2018) indicate that the site is unlikely to have been subject to high-risk contaminating activities.

As such, JBS&G undertook a comprehensive soil investigation at the site which involved the advancement of 30 boreholes utilising a combination of judgemental and systematic sampling regimes. The sample locations advanced by JBS&G were in addition to the 15 previously advanced by Douglas Partners, reported in DP (2018). JBS&G note that this is slightly less than Table A of NSW EPA (1995), however considering the site's historical an environmental setting, this is considered suitably robust to draw conclusions regarding the site's suitability.

Systematic sampling locations were generally advanced across the accessible site area, with the exception of the newly installed sports field (synthetic turf area in south eastern portion of the site) to assess more widespread soil contamination.

Soil sampling locations, including those from DP (2018), are shown in Figure 3.

#### 6.2.1 Sampling Methodology

#### 6.2.1.1 Soil Sampling Methodology

Soil sampling was completed utilising an excavator equipped with an auger or via manual excavation utilising a hand auger.

Soil samples were generally collected at surface (0-0.15 m) or directly underneath hardstand pavement, 0.5 m and then at 0.5 m intervals to a maximum depth of 2.8 m bgs (BH15) or a minimum of 0.5 m into natural material (or prior refusal), whichever was the shallower. Where physical evidence of potential contamination was identified during the works, sampling locations were extended to vertically delineate contamination, where practicable. Following shallow refusal at 0.3 m bgs, BH02 was reattempted (BH02a) within proximity. During the collection of soil samples at all locations, features such as seepage, discolouration, staining, odours and other indicators of contamination, if present, were noted on borelogs, provided in **Appendix D**.

Collected samples were immediately transferred to laboratory supplied sample jars and bags. The sample jars were then transferred to a chilled ice box for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory. Based upon field observations, selected samples were analysed in accordance with the laboratory schedule (**Table 6.2**).

JBS&G note that not all soil samples collected were analysed. All samples will remain at the primary laboratory for a period of two months from the date of sampling. This will allow future analysis to be completed in the event that further information is required to characterise site conditions, provided that proposed analytes remain within technical holding times.

#### 6.2.1.2 Field PID Screening

During site works, sufficient sample material was collected to allow for field testing using a photoionisation detector (PID) and laboratory analyses to assess the potential presence of VOCs including petroleum hydrocarbons. Samples obtained for PID screening were placed in a sealed plastic bag for approximately 2 minutes to equilibrate, prior to a PID being attached to the bag. Readings were then monitored for a period of approximately 30 seconds or until values stabilised and the stabilise/highest reading recorded on field logs. The PID was calibrated prior to the commencement of field works and then check readings were completed on a daily basis during the field program using suitable calibration gas (isobutylene – 100 ppm). Field calibration forms are provided in **Appendix E**. PID results are provided in the logs in **Appendix D**.

#### 6.2.1.3 Duplicate and Triplicate Sample Preparation

At selected sample points, sufficient soil was collected to provide primary, blind (duplicate intralaboratory), and split (triplicate inter-laboratory) replicate samples. In order to minimise the loss of



potential volatiles, soil samples were not homogenised. Each sample was labelled with primary, duplicate or triplicate sample identification before being placed in the same chilled esky for transport to the laboratory.

#### 6.2.1.4 Equipment Decontamination

Where sampling equipment was required to be reused, i.e. augers, appropriate decontamination procedures, including brushing and rinsing augers, if required, in accordance with standard JBS&G operating procedures were adhered to. Decontamination forms are provided in **Appendix E**.

New nitrile gloves were utilised for the collection of each soil sample to avoid cross contamination between samples and locations.

#### 6.2.2 Laboratory Analysis

JBS&G contracted Eurofins | MGT Australia (Eurofins) at Lane Cove, NSW, as the primary laboratory for the required analyses. Envirolab Services Pty Ltd (Envirolab) in Chatswood, NSW, were contracted for analysis of triplicate samples. Eurofins and Envirolab are NATA registered for the required analyses. In addition, the laboratory was required to meet JBS&G internal QA/QC requirements. Laboratory analysis of samples was conducted as summarised in **Table 6.2**.

#### Table 6.1: Sampling and Analytical Program

| Sample Type | Number of Sample Locations | Analyses (excluding QA/QC)                     |
|-------------|----------------------------|------------------------------------------------|
| Soil        | 30 boreholes               | Asbestos in soil (500 mL per NEPM): 30 samples |
|             |                            | Metals (x8) and PAHs: 30 samples               |
|             |                            | TRH, BTEX: 5 samples                           |
|             |                            | OCPs: 5 samples                                |
|             |                            | PCBs: 5 samples                                |

In addition to the above primary analyses, to address the DQIs, field duplicate and triplicate soil samples were analysed at a rate of at least 1/20 primary samples. A rinsate sample was collected from non-disposable soil sampling equipment, and trip blank and trip spike samples will be submitted with each batch of samples.



#### 7. Assessment Criteria

#### 7.1 Regulatory and Technical Guidelines

The investigation was undertaken with consideration to aspects of the following guidelines, as relevant:

- National Environment Protection (Assessment of Site Contamination) Measure 2013 (as amended 2013). National Environment Protection Council (NEPC 2013);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW EPA, 1997 (OEH 2011);
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 3<sup>rd</sup> Edition. NSW EPA, 2017 (EPA 2017); and
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997. NSW EPA 2015 (EPA 2015).

#### 7.2 Assessment Criteria – Soil

The NEPC (2013) NEPM provides risk-based investigation and screening levels for selected organic and inorganic chemicals in soils. Different levels are provided for a variety of exposure settings including residential, open-space / parks / recreational and commercial / industrial land uses.

It is understood that the site is proposed to be redeveloped to incorporate educational facilities for primary and high school aged students. In accordance with the applicable land uses outlined in NEPC (2013) and the respective risk assessment assumptions utilised in their formulation, analytical data from previous (DP 2018) investigations and the current investigation will be compared against the following human health and ecological investigation and screening levels (HILs/HSLs and EILs/ESLs):

- HIL-A and HSL-A: Residential with accessible soils (includes preschools and primary schools);
- EIL & ESL urban residential and public open space (coarse soil); and
- In addition to the above, aesthetic considerations as per NEPC (2013) will be considered during the current investigation.



### 8. Quality Assurance and Quality Control

Detailed discussion of the QAQC assessment of the dataset is included in Appendix F.

#### 8.1 QA/QC Conclusion

The field sampling and handling procedures across the site produced QA/QC results which indicate that data collected is of an acceptable quality for the DSI objectives.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil data are of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.



#### 9. Results

Soil sampling locations are shown on **Figure 3** and a summary of soil analytical data with comparison to the adopted site criteria is presented in **Table A**. Detailed laboratory reports and chain of custody documentation is provided in **Appendix H**. Borehole logs are presented in **Appendix D**.

#### 9.1 Observations

A photographic log documenting key observations made during the current investigation is provided in **Appendix A**.

A total of 30 soil sampling locations were advanced across the site by JBS&G. All locations except BH25 were observed to contain fill materials between the ground surface (or below hardstand) to a maximum depth of 2.2 m bgs (BH15). Fill materials generally comprised a grey or brown gravelly silty sand with gravel inclusions and some minor inclusions of concrete, brick, glass, ash, geofabric and metal fragments.

No hydrocarbon odours or staining was observed at any of the sample locations or during site inspections. This was corroborated by measurements of volatile compounds as measured utilising a PID, with low concentrations of volatile compounds between 0.6 ppm (BH02) and 9.8 ppm (BH04).

Inspection of fill materials did not identify fragments of suspected asbestos containing materials (ACM). JBS&G did however, identify a fragment of ACM on the ground surface in proximity (circa 5m) to BH15. Laboratory analysis confirmed the fragment to contain chrysotile and amosite asbestos fibres. The fragment of ACM was collected by JBS&G and dispatched forto the laboratory for analysis. No other visible ACM was observed during the investigation

Natural material underlying the site typically comprised a grey - brown (with brown and yellow mottling) silty clay overlying a grey weathered laminated shale.

It is further noted that no indicators of potential acid sulphate soils were observed during intrusive works at the site.

#### 9.2 Analytical Results

Full copies of the laboratory documentation are provided in **Attachment L**. Summarised laboratory results from JBS&G 2019 are presented in **Table A**. Analytical data from DP (2018) are presented in the **Table** section of this report and have been included in the sections below for completeness.

#### 9.2.1 Heavy Metals

All individual heavy metals concentrations were reported at levels less than the adopted site assessment criteria for human health.

In relation to ecological criteria, the following exceedances are reported:

- EIL Urban Residential: Nickel limit of 30 mg/kg
  - BH03\_0.4-0.5 97 mg/kg;
  - BH18\_0.7-0.8 41 mg/kg;
  - BH29\_0-0.15 (Primary) 44 mg/kg (highest of duplicate pairs);
  - BH8 / 0-0.1 m (DP 2018) 46 mg/kg;
- EIL Urban Residential: Zinc limit of 70 mg/kg
  - BH01\_0-0.15 88 mg/kg;
  - BH02A\_0-0.15 71 mg/kg;
  - BH08\_0-0.15 100 mg/kg;



- BH10\_1-1.1 690 mg/kg;
- BH11\_0-0.15 150 mg/kg;
- BH12\_0.4-0.5 77 mg/kg;
- BH14\_0-0.15 70 mg/kg;
- BH21\_0-0.15 160 mg/kg; and
- BH1 / 0.5-0.6 m (DP 2018) 490 mg/kg.

#### 9.2.2 PAHs

Total PAH and Benzo(a)pyrene (B(a)P) TEQ values for analysed samples were reported at concentrations less than the adopted assessment criteria, with the following exceptions:

- HIL A Residential with accessible soil: B(a)P TEQ limit of 3 mg/kg
  - BH11 / 0.0-0.1 m (DP 2018) 5.6 mg/kg
  - BH13 / 0.0-0.1 located within Chatswood Public School Bush Campus (DP 2018) 3.2 mg/kg and 3.4 mg/kg
- ESL Urban Residential and Public Open Space, Coarse Soil: B(a)P limit of 0.7 mg/kg
  - BH01\_0-0.15 1 mg/kg
  - BH4 / 0-0.1 m (DP 2018) 0.73 mg/kg
  - BH11 / 0.0-0.1 m (DP 2018) 3.9 mg/kg
  - BH13 / 0.0-0.1 located within Chatswood Public School Bush Campus (DP 2018) 2.2 mg.kg and 2.3 mg/kg

#### 9.2.3 TRH/BTEX and VOCs

Concentrations of all TRH, BTEX and VOCs were reported below the adopted site assessment criteria in analysed soil samples with the following exceptions:

- ESL Urban Residential and Public Open Space, Coarse Soil TRH >C16-C34 (F3) limit of 300 mg/kg:
  - BH10-0.05-0.15 (duplicate) 440 mg/kg;
  - BH8 / 0-0.1 m (DP2018) 600 mg/kg
  - BH9 / 0.2-0.3 m (DP2018) 550 mg/kg
  - BH12 / 0-0.1 m (DP2018) 530 mg/kg

#### 9.2.4 OCPs and PCBs

Concentrations of OCP and PCB compounds were reported below the adopted health and ecological assessment criteria for all analysed soil samples.

#### 9.2.1 Asbestos

No Asbestos Fines or Fibrous Asbestos (AF/FA) were reported above the health-based assessment criterial or laboratory limit of detection for all samples submitted for analysis.

One fragment of ACM collected from the ground surface in proximity to BH13 (BH13-FRAG) was confirmed to contain chrysotile and amosite asbestos fibres. This fragment was removed for analysis. No other fragments of ACM were observed in proximity to the collected sample. In addition, no other fragments of ACM were observed within fill materials or on the ground surface during the completion of the field works.



### **10.** Site Characterisation

Based on the decision-making process for assessing urban redevelopment sites detailed in EPA (2017) and discussed in **Section 6.1.2**, the decisions required to be made are discussed below.

#### 10.1 Potential Risks to Future Onsite Receptors

The following discussion relates to the site's data set, and includes analytical data collected from DP (2018), in addition to analytical data collected by JBS&G, as documented herein.

The assessment of site suitability is generally undertaken with consideration to the risks various compounds in the environment potentially pose to human and ecological health under one or more land use scenarios. A Tier 1 assessment of potential risk is undertaken by comparison with generic land use criteria such as published by NEPC (2013).

In consideration of the site's data set, potentially unacceptable risks to the health of human receptors at the site under the most conservative land use, pursuant to NEPC (2013), were constrained to PAHs, specifically, carcinogenic PAHS as B(a)P TEQ, reported in excess of the adopted site criterion at two locations, as discussed below.

Concentrations of carcinogenic PAHs (B(a)P TEQ) were reported marginally in excess of the applicable human-health land use criteria of 3 mg/kg (HIL A) at two locations, as reported in DP (2018) – BH11-0-0.1 (5.6 mg/kg) and BH13-0-0.1 (3.2 mg/kg). JBS&G note that both of these locations are in areas of the site that are covered by asphalt on the ground surface and is likely to be the source of elevated PAHs within these samples. As noted in NEPC (2013), where B(a)P exists in bitumen it is relatively immobile an does not represent a significant health risk. In accordance with provisions in NEPC (2013), statistical assessment of Tier 1 soil exceedances is permitted to assess the potential risk of the site's soils as a whole, to future receptors of the site. As such, the site data set for fill material was statistically assessed utilising the 95% upper confidence limit (UCL) for carcinogenic PAHs as B(a)P TEQ. Qualifications for the utilisation of statistical assessment are provided below:

- All samples utilised for the statistical assessment were derived from fill material which exhibited similar characteristics;
- No data point used in the statistical assessment was greater than 250 % of the HIL-A criterion for carcinogenic PAHs (3 mg/kg);
- The number of samples used in the assessment was 48 (n=48);
- The maximum value was 5.6 mg/kg and the minimum value was LOR (0.605 mg/kg half LOR); and
- The standard deviation was 0.815, less than 50 % of the HIL-A criterion.

As such, the data set was considered suitable for statistical assessment. The 95% UCL for fill material at the site was assessed as 1 mg/kg, below the HIL-A criterion of 3 mg/kg. As such, JBS&G consider that the reported concentrations of carcinogenic PAHs as B(a)P TEQ at BH11-0-0.1 and BH13-0-0.1 do not represent an unacceptable risk to human health for the proposed future use of the site. The statistical calculations are provided in **Appendix G**.

JBS&G note that one fragment of ACM was identified in proximity to BH13 which was confirmed by the laboratory to contain chrysotile and amosite asbestos. This fragment was removed to facilitate analysis and no other ACM was observed on the site surface.

Risks to ecological health are often considered in respect to the risks various compounds within the environment pose to ecological health under a given land use scenario and exist for the protection of soil processes, plant species and organisms that inhabit or contact soils.



In relation to the site's data set, concentrations of COPCs were generally reported below the adopted ecological criteria (ESLs/EILs), with the exception of the heavy metals of nickel and zinc, reported in excess of the EIL at 6 and 9 locations, respectively, petroleum hydrocarbons at three locations, and B(a)P at four locations, as presented in **Section 9**.

A review of the site's geological setting (**Section 2**) and soil/geological profiles encountered during the completion of the DSI indicate that the reported concentrations of the heavy metals of nickel and zinc are likely attributed to the parent material of the site's soils, likely to be shales from the Wianamatta Group that are naturally enriched in nickel and zinc.

In relation to the reported concentrations of B(a)P and TRH reported in excess of the adopted ecological screening levels, observations made during the completion of field works indicated that vegetation in proximity to sampling locations that reported elevated levels of these compounds, and across the site in general, appeared to healthy, with no visual indicators of vegetative stress, indicating that soil processes responsible for ecological health did not appear to be inhibited. Furthermore, NEPC (2013) notes that high molecular weight PAHs such as B(a)P are not readily taken up by plants, and as such are unlikely to pose an unacceptable risk to plant growth.

#### 10.2 Background Soil Concentrations

Soil samples collected from natural material indicated metal concentrations were below the background metal concentrations provided in Olszowy et. al. (1995) and were below the adopted site criteria (**Section 7**) (for natural materials only).

#### 10.3 Chemical Mixtures

There were no potential chemical mixtures identified during the investigation that may pose an unacceptable contamination risk at the site with respect to future site users.

#### 10.4 Aesthetic Issues

Little to no anthropogenic material was noted on the ground surface across the site that would present an aesthetic issue for the future use of the site. JBS&G note that the single fragment of ACM that was identified in proximity to BH13 was removed for laboratory analysis thereby removing the aesthetic risk presented. Minor inclusions of anthropogenic materials were identified within some fill materials across the site during intrusive sampling at the site, however due to the small sizes, composition and concentration within sols, these are not considered represent an unacceptable aesthetic risk for the intended land use. No unacceptable staining or odourous materials were observed.

#### **10.5** Potential Migration of Contaminants

The potential for migration of contaminants offsite is considered low given the nature, magnitude, distribution and depth of identified contamination (ecological only).

#### 10.6 Site Management Strategy

With consideration to the site conditions as reported herein, JBS&G consider that the site does not present unacceptable risks to human and ecological health that require further management and/or remediation to make the site suitable for ongoing use as an educational facility (senior) and future use as a mixed primary and high school. Typical unexpected find protocols can be implemented during future maintenance/development works involving ground disturbance to deal with any unidentified contamination.



### 11. Conclusions

Based on the scope of works undertaken, and in accordance with the limitations in **Section 12**, JBS&G consider that the site does not present any unacceptable risks to human and ecological health, pursuant to NEPC (2013), and is considered suitable for use as a primary and secondary school facility.

JBS&G recommend the formulation of an Unexpected Finds Protocol (UFP) for the site to address any unexpected finds that may be encountered during the redevelopment of the site.



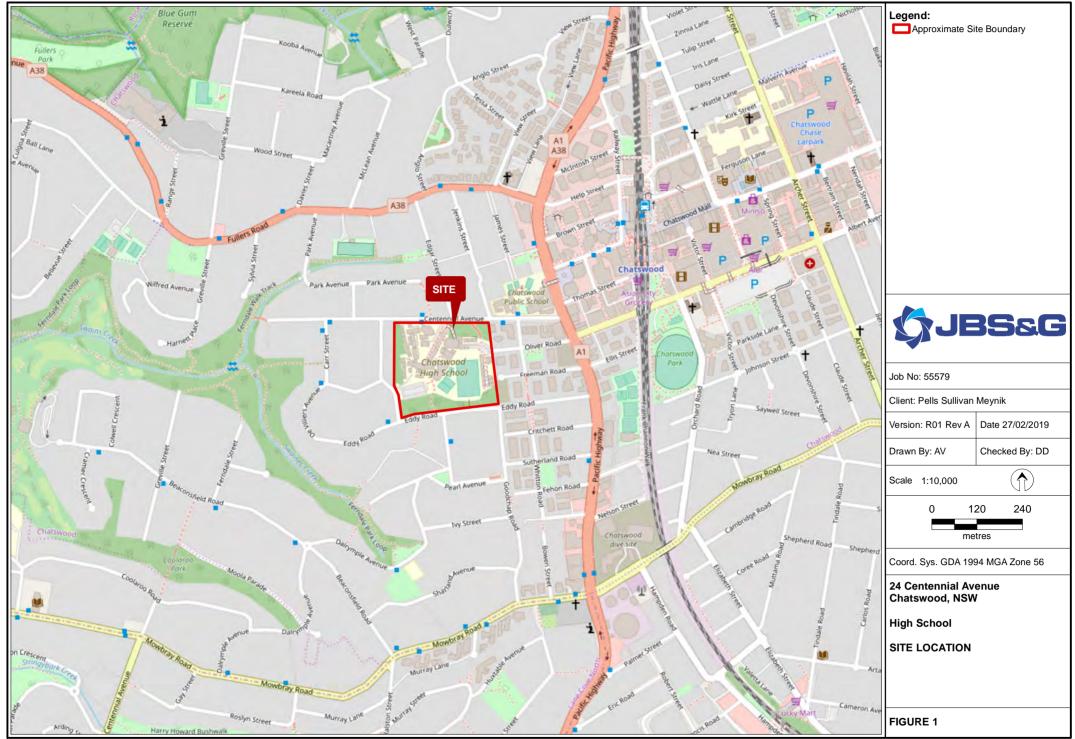
#### 12. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquires.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.


Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.



Figures



File Name: \\JBSG-NSW-FS01\Company Data\Projects\Pells Sullivan Meynink\55579 Chatswood Education Precint\GIS\Maps\R01 Rev A\55579\_01\_SiteLoc.mxd Reference: © OpenStreetMap (and) contributors, CC-BY-SA





File Name: \\JBSG-NSW-FS01\Company Data\Projects\Pells Sullivan Meynink\55579 Chatswood Education Precint\GIS\Maps\R01 Rev A\55579\_03\_SampleLoc.mxd Reference: Nearmap - nearmap.com.au - Imagery 27-12-2018



Tables

| () JBS&G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 1                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Polycyc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | clic Arc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | matic H                                                            | Hydroca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                                                                      |                                                               | TP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hs (NEF                                            | PC 199                                                                                                 | 19)                                                                                                                                                                                      |                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRHs (                                                               | NEPC 2                                                       |                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arsenic (Total)                                                                            | Cadmium                                          | Chromium (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury (Inorganic)                  | Nickel                                                     | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anthracene                                                          | Benz (a) anthracene                                       | Benzo(a)pyrene                                        | Benzo(a)pyrene TEQ (lower bound)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzo(a)pyrene TEQ (medium bound)*                                 | Benzo(a)pyrene TEQ (upper bound)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(k)fluoranthene                                               | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dibenz(a,h)an thracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carcinogenic PAHs as B(a)P TEQ                                                   | Fluor an thene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                     | -                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PAHS (LOTAI)                                                                                                                                            | Pyrene<br>Total Positive PAHs                                                                                                                                                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C15-C28 Fraction                                   |                                                                                                        |                                                                                                                                                                                          | CLU-C50 Fraction (10tal)                                                   |                                         | ×C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >C34-C40 Fraction                                                    | >C10-C40 Fraction (Total)                                    | >C10-C16 less Naphthalene (F2)                                 | C6-C10 Fraction                                                                                | C6-C10 less BTEX (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/k                                                                                       |                                                  | kg mg/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    | mg/kg m<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         | g/kg mg/<br>).1 0.0                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                        |                                                                                                                                                                                          |                                                                            | /kg m                                   | ıg/kg n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng/kg i<br>100                                                       |                                                              | mg/kg<br>50                                                    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PM 2013 EIL - Urban Residential (generic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *1 60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 30#                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1                                                                 | 0.1                                                       |                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1 0                                                        |                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                         | .1 0.0                                                                                                                                                                                                               | 5 20                                                          | 5 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                 |                                                                                                        |                                                                                                                                                                                          |                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      | 50                                                           | 50                                                             | 20                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PM 2013 ESL Urban Residential and Public Open Space, Co<br>PM 2013 HSL Asbestos in Soil - Bonded ACM - Residential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            | il .                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | -                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                   |                                                           | 0.7#5                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | -                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                                                                                                                       |                                                                                                                                                                                                                      | +                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                  | -                                                                                                      |                                                                                                                                                                                          |                                                                            | 3                                       | 00#5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2800#5                                                               | -                                                            | 120#6                                                          |                                                                                                | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PM 2013 HSL Asbestos in Soil - FA & AF - HSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                          | • •                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 2 400                                                      | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                           |                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #14                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #15                                                                                                                                                     |                                                                                                                                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                        |                                                                                                                                                                                          |                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                              |                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EPM 2013 Soli HELA<br>EPM 2013 Soli HSLA & HSLB for Vapour Intrusion - Sand 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 <sup>#</sup><br>to <1m                                                                 |                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 <sup>#11</sup> 40 <sup>#1</sup>    | 400                                                        | 7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                           |                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3#14                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0*15                                                                                                                                                    |                                                                                                                                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                        |                                                                                                                                                                                          |                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                              | 110 <sup>#17</sup>                                             |                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sampled_Date-Time Lab_Report_Numb           01_0_0.15         21/01/2019         637804           02A_0_0.15         24/01/2019         637804           03D_0_0_0.15         24/01/2019         637804           03D_0_0_0.15         21/01/2019         637804           040_0_0_0.0.15         21/01/2019         637804           040_0_0_0.0.15         21/01/2019         637804           040_0_0_0.10         21/01/2019         637804           060_0_0.10         22/01/2019         637804           060_0_0.10         22/01/2019         637804           010_0_0.15         21/01/2019         637804           010_0_0.15         21/01/2019         637804           011_0_0.15         21/01/2019         637804           011_0_0.15         21/01/2019         637804           011_0_0.15         21/01/2019         637804           011_0_0.15         22/01/2019         637804           011_0_0.15         22/01/2019         637804           012_0_0.40.5         22/01/2019         637804           012_0_0.40.5         22/01/2019         637804           012_0_0.40.5         22/01/2019         637804           02_0_0.12         22/01/2019 <t< td=""><td><math display="block"> \begin{array}{c} 5.11\\ 5.3\\ 5.3\\ 2.8\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9</math></td><td>&lt;0.</td>         &lt;0.</t<> | $ \begin{array}{c} 5.11\\ 5.3\\ 5.3\\ 2.8\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9$ | <0.                                              | 4         144           4         144           87.7         4           4         87.7           4         48.7           4         48.7           4         48.7           4         48.7           4         324           4         324           4         124           16         127           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124           4         124 | 366         367           122         233           233         232           111         111           111         111           111         111           111         111           111         111           111         111           111         114           112         112           112         112           113         114           114         114           114         114           114         114           114         114           114         114           114         114           114         114           122         202           200         110           110         110           110         110           111         114           114         114           114         114           114         114           110         110           111         110           112         110           114         114           114         114           114 | 5         3           2         1           2         4           2         1           2         4           3         2           1         6           3         2           1         6           3         2           3         2           3         4           2         2           5         11           3         4           2         2           5         3           4         2           2         6           7         1           4         3           2         6           6         3           3         6           6         2           3         4           2         2           6         2           2         3           4         2           2         3           4         2           2         3           4         2           3         3           3         3 | 3         <0.                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$      | 71           64           444           44           44           44           27           27           38           6690           777           722           22           -           71           71           22           -           70           71           72           22           -           70           71           70           71           70           71           71           72           72           72           72           72           72           70           70           713           75           755           755           75           75           75           71           71           72           72           73           730           759 | (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0)         (0)           (0) | 5         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           6         40.5.5           7         40.5.5           6         40.5.5           6         40.5.5           7         40.5.5           8         40.5.5           9         40.5.5           9         40.5.5           9         40.5.5           9         40.5.5 <td>&lt;0.5.5</td> <0.5.5 | <0.5.5                                                              | <0.5                                                      | <0.5                                                  | 0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5           0.5 | 0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | 1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       1.2     -       -     -       -     -       -     -       -     -       -     - | 0.0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5         9           0.5 | cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5.           cd.5.         cd.5. | <0.5                                                               | e0.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5           40.5 | color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color         i           color |                                                                                  | 0.8.         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         -           40.5         - | cols         cc/cc/cc/cc/cc/cc/cc/cc/cc/cc/cc/cc/cc/         | 0.5.         <                                                                                              | 0.00         1           0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00            0.00 | .6.         .6.           .5.            .5.5            .5.5            .5.5            .5.5            .5.5            .5.5            .5.5         < | .8.8                                                                                                                                                                                                                 |                                                               | .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         . |                                                    | 0 < 1<br>0 < 1<br>0 < 1<br>0 < 1<br>0 < 1<br>0 < 1<br>0<br>0 1<br>0 1<br>0 1<br>0 1<br>0 1<br>0 1<br>0 |                                                                                                                                                                                          |                                                                            |                                         | -         -           -         -           100         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         - |                                                                      |                                                              | <50                                                            | <200<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         · |
| AC20190124RC_01     637848       tatistical Summary     637848       Jumber of Results     Jumber of Results       Jumber of Results     Jumber of Results       Jainimum Concentration     Jainimum Concentration       Jainimum Detect     Jainimum Concentration       Jaakimum Concentration     Jainimum Concentration       Jaakimum Concentration     Jainimum Concentration       Jaakimum Concentration     Jainimum Concentration       Jaakimum Detect     Jainimum Concentration       Jaakimum Detect     Jainimum Concentration       Jumber of Guideline Exceedances     Jainimum Concentration       Jumber of Guideline Exceedances     Jainimum Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36<br>34<br>2.1<br>2.1<br>17<br>17<br>7.4<br>6.45                                          | 30<br>1<br><0.<br>1<br>1<br>1<br>0.2<br>5<br>0.1 | 36<br>35<br>4 <5<br>8.7<br>87<br>2 20<br>2 14.5<br>3 16<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36<br>36<br>8.6<br>42<br>42<br>20<br>5 18<br>8<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5         3           5         3           6         1           5         1           2         11           2         11           0         3           3         27           2         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6         2           1         <0.1 | 36<br>26<br>1 4<br>97<br>97<br>4 13<br>5 6.75<br>5 18<br>5 | 36<br>34<br><5<br>5.2<br>690<br>690<br>666<br>42<br>113<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>0<br><0.<br>NE<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36<br>0<br>1 <0.1<br>5 <0.5<br>0 ND<br>3 0.23<br>5 0.25<br>6 0.05<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36<br>0<br><0.1<br>ND<br><0.5<br>ND<br>0.23<br>0.25<br>5 0.056<br>0 | 36<br>4<br>0.1<br>1.3<br>1.3<br>0.27<br>0.25<br>0.18<br>0 | 36<br>4<br>0.1<br>1<br>1<br>0.26<br>0.25<br>0.13<br>1 | 36<br>1<br><0.5<br>1.3<br>1.3<br>1.3<br>0.28<br>0.25<br>0.18<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36<br>33<br><0.5<br>0.6<br>1.6<br>1.6<br>0.6<br>0.6<br>0.2<br>0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33<br>1<br>0.5<br>0.6<br>0.6<br>0.26<br>0.25<br>0<br>0.061<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36<br>3<br><0.1<br>0.1<br>0.5<br>0.5<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33<br>1<br><0.5<br>0.8<br>0.8<br>0.8<br>0.27<br>0.25<br>0.096<br>0 | 36<br>4<br>0.1<br>1.6<br>1.6<br>0.28<br>0.25<br>0.23<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36<br>0<br><0.1<br>ND<br>0.5<br>ND<br>0.23<br>0.25<br>0.056<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36<br>4<br>0.1665<br>0.1665<br>1.566<br>1.566<br>0.6<br>0.605<br>0.2<br>0.2<br>0 | 36       5       0.2       2.8       0.33       0.25       0.43       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36         3           0         2           c0.1         <0 | 6<br>1<br>.1<br>.1<br>23<br>(25<br>0<br>52<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 36         3           2         3           30.1            30.1         1           30.5         1           30.5         1           30.2         1           30.24         0           30.25         0           30.42         0                                                                                                                                                                                                                                                                                                          | 13 2<br>2<br>0.5 0<br>1.7 3<br>1.7 3<br>64 0<br>25 0<br>2 0<br>0                                                                                        | 36         3           5         3           0.2         0.8           0.1         1.1           3.1         1.1           .35         1.1           .35         1.1           .48         0.3           0         0 | 0<br>3 <2<br>3 NI<br>5 <4<br>5 NI<br>2 12<br>3 10<br>4 3<br>0 | 1 11<br>0 0<br>00 <200<br>D ND<br>00 <500<br>D ND<br>2 14<br>0 100<br>3 7<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>3<br>100<br>150<br>150<br>59<br>25<br>50<br>0 | L 1<br>0 <<br>0 1<br>0 4<br>0 4<br>9 1<br>5 5<br>5 5<br>0 1                                            | 4         3           50 </td 10         13           10         56           10         56           17         13           50         2           49         14           0         0 | 8 1<br>3 (<br>50 <5<br>30 N<br>60 <5<br>60 N<br>34 2<br>5 2<br>92 (<br>0 ( | 1 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 | 11<br>4<br>100<br>120<br>440<br>137<br>50<br>145<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>3<br><100<br>130<br>500<br>130<br>500<br>130<br>50<br>162<br>0 | 11<br>4<br><50<br>220<br>880<br>880<br>226<br>50<br>323<br>0 | 111<br>0<br><50<br>ND<br><50<br>ND<br>25<br>25<br>25<br>0<br>0 | 11<br>0<br><20<br>ND<br><40<br>ND<br>12<br>10<br>3<br>0                                        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

 Data Comments

 #1 No asbestos detected at the reporting limit of 0.001% w/w.\*Synthetic mineral fibre detected. Organic fibre detected. No respirable fibres detected.

 #2 No asbestos detected at the reporting limit of 0.001% w/w.\*Organic fibre detected. No respirable fibres detected.

 #3 ESDAT Combined with Non-Detect Multiplier of 0.5.

 #4 ESDAT Combined with Non-Detect Multiplier of 0.5.

 #5 Chrysotile and amosite asbestos detected.

 #6 Synthetic mineral fibres detected.

 #7 No respirable fibres detected.

 #8 Dorganic fibres detected.

 #9 Dorganic fibres detected.

 #9 Dorganic fibres detected.

 #9 Dorganic fibres detected.

 #9 Dorganic fibres detected.

 #10 114x40x3

 #11 Nil



| 0.1 (<br>50 <sup>#5</sup> 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1<br>0.1<br>0.1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a           a           mg/kg           0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3 (105 <sup>#5</sup> )<br>105 <sup>#5</sup><br>40<br>40<br><0.3 (105)                                                                                                                                                                                                                                   | 0.1 0.1<br>170                                        |                                                        |                                                         |                                                         |                                                         |                                                         |                                                         | g mg/kg m<br>5 0.05 0<br>180                                 | )<br>Bieldrin<br>BDT+DDE+DDD (Sum of Total)             | (kg mg/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g mg/kg n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Endosulfan beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dosultan suphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Idehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r Epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Biphenyls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlorinated Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ox. Sample Mass<br>stos from ACM in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | os from FA & AF in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACM<br>Asbestos in ACM<br>FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Asbestos in FA<br>AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Asbestos in AF<br>Asbestos in FA & AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ture 103oC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a Pesticides EPAVic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1 (<br>50 <sup>#5</sup> 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 | 0.1 0.1<br>0 <sup>45</sup> 85 <sup>45</sup><br>160 <sup>4</sup><br>55 160<br>0.1 <0.1<br><br>0.2 <0.2<br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ig         ig           ig         mg/kg           0         0           13         0           14         <0.1           15         -           16         -           17         -           18         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>mg/kg<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg         m           nos         m           105 <sup>#5</sup> m           105 <sup>#5</sup> m           40         m           <0.3         m           <0.3         m           <0.3         m           <0.4         m           <0.5         m           <0.3         m           <0.3         m | 0.1 0.1<br>170                                        |                                                        | ga<br>ba<br>// Aldrin + Dieldrin (Sum                   | g mg/kg i                                               |                                                         |                                                         |                                                         | 5 0.05 0                                                     | mailing Dieldrin<br>mailing DDT+DDE+DDD (Sum            | /kg mg/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g mg/kg n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Idehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r obenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | os from FA & AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACM<br>Asbestos in ACM<br>FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Asbestos in FA<br>AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Asbestos in AF<br>Asbestos in FA &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rure 1U3OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a Pestici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1 (<br>50 <sup>#5</sup> 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 7<br>0.5 | 0.1 0.1<br>0 <sup>45</sup> 85 <sup>45</sup><br>160 <sup>4</sup><br>55 160<br>0.1 <0.1<br><br>0.2 <0.2<br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1<br>0.1<br>0.1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3 (105 <sup>#5</sup> )<br>105 <sup>#5</sup><br>40<br>40<br><0.3 (105)                                                                                                                                                                                                                                   | 0.1 0.1<br>170                                        |                                                        |                                                         |                                                         |                                                         |                                                         |                                                         | 5 0.05 0                                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | drin a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | drin ket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ptachlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ptachlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ethoxych                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oclor 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oclor 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oclor 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | octor 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | octor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oclor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bs (To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sxachlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bestc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | as as as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | se se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l aistra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ganochlorint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <pre>50<sup>#5</sup> 7 0.5 0.5 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 <0.1<br><br><br>0.2 <0.2<br><br><br><br><br><br><br><br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105 <sup>#5</sup> 105 <sup>#5</sup> 40 <0.3                                                                                                                                                                                                                                                               | 170 170 170 170 170 170 170 170 170 170               |                                                        | 5 0.05                                                  |                                                         | 0.1 0                                                   | .05 0.1                                                 | 1 0.05                                                  |                                                              | 0.05 0.0                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₽<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dd ISP<br>g %w/w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>₽</b><br>%w/w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g g g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ₹ <u>¥</u><br>%%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ð<br>mg/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>&lt;0.1 &lt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160*           55         160           0.1         <0.1           -         -           -         -           0.2         <0.2           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.3 <                                                                                                                                                                                                                                                                                                    | <0.5                                                  |                                                        | 6                                                       |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .05 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .1 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <0.1 <<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1         <0.1           -         -           -         -           0.2         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l <0.1<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.3                                                                                                                                                                                                                                                                                                      | <0.5                                                  |                                                        | 6                                                       |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01#7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <0.1 <<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1         <0.1           -         -           -         -           0.2         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l <0.1<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.3                                                                                                                                                                                                                                                                                                      | <0.5                                                  |                                                        |                                                         |                                                         |                                                         | 50                                                      | )                                                       |                                                              | 24                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 <sup>#16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001#8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -<br><0.2 <<br>-<br>-<br><0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>0.2 <0.2<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                       |                                                        |                                                         |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -<br><0.2 <<br>-<br>-<br><0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>0.2 <0.2<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                       | _                                                      |                                                         |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -<br>-<br><0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br><0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           | <0.5 <0.                                              |                                                        | - 05 < 0.05                                             | - 5 < 0.05                                              | - <(                                                    |                                                         | - 1 < 0.0                                               | -<br>5 <0.05 <0                                              |                                                         | 05 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>5 <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - <0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>.05 <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 05 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 617 0<br>516 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -<br>-<br><0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.6                                                                                                                                                                                                                                                                                                      | <0.5                                                  | · ·                                                    | · ·                                                     | •                                                       | •                                                       | · ·                                                     |                                                         | · ·                                                          | · ·                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 629 0<br>484 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br><br>0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>  •  </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           | <0.5                                                  |                                                        | -                                                       |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 874 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | <0.5                                                  | · ·                                                    | -                                                       | · ·                                                     | •                                                       | · ·                                                     | -                                                       |                                                              | · ·                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 669 0<br>763 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.3 <                                                                                                                                                                                                                                                                                                    | <0.5                                                  |                                                        | •                                                       | ·                                                       | •                                                       |                                                         | -                                                       |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                           | <0.5 <0.                                              |                                                        | 05 <0.05                                                | 5 <0.05                                                 | - <(                                                    | .05 <0.                                                 | 1 <0.0                                                  | 5 <0.05 <0                                                   | D.05 <0.0                                               | 05 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .05 <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 669 0<br>715 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           | <0.5                                                  |                                                        | •                                                       | ·                                                       | •                                                       |                                                         | •                                                       | 1 ·                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 636 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | <0.5                                                  |                                                        | -                                                       |                                                         | •                                                       | · ·                                                     |                                                         |                                                              | · ·                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 599 0<br>669 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                         |                                                       |                                                        | •                                                       | ·                                                       | -                                                       |                                                         | •                                                       | 1.1                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           | <0.5                                                  |                                                        |                                                         | + -                                                     | -                                                       |                                                         |                                                         | $\left  \begin{array}{c} \cdot \\ \cdot \end{array} \right $ |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + • +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 621 0<br>493 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | <0.5 <0.                                              | .05 <0.0                                               | 05 <0.0                                                 | 5 <0.05                                                 | - <(                                                    | 0.05 <0.                                                | 1 <0.0                                                  | 5 <0.05 <0                                                   | 0.05 <0.                                                | 05 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .05 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.05 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .05 <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 753 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                       |                                                        |                                                         |                                                         | -                                                       |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | <0.5                                                  |                                                        | •                                                       | ·                                                       | -                                                       |                                                         | -                                                       | -                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 742 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                       | .05 <0.0                                               | - 0.05                                                  | - 5 <0.05                                               | - <(                                                    | 0.05 <0.                                                | 1 <0.0                                                  | - 5 <0.05 <0                                                 |                                                         | 05 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 5 <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .05 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .05 <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 05 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 708 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | <0.5                                                  |                                                        | •                                                       | •                                                       | •                                                       |                                                         | -                                                       | •                                                            |                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 489 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                       |                                                        |                                                         |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 798 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                       | .05 <0.0                                               | 0.05                                                    | 5 <0.05                                                 | - <0                                                    | 0.05 <0.                                                | 1 <0.0                                                  | 5 <0.05 <0                                                   | 0.05 <0.0                                               | 05 < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .05 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .05 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :0.05 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .05 <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 496 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 4                                                                                                                                                                                                                                                                                                       | <0.5                                                  |                                                        | -                                                       | •                                                       |                                                         |                                                         |                                                         | •                                                            |                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 790 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                       | · ·                                                    | -                                                       | · ·                                                     | -                                                       | · ·                                                     |                                                         | · ·                                                          | · ·                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · -<br>).1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 4                                                                                                                                                                                                                                                                                                       | <0.5                                                  |                                                        | · ·                                                     | · ·                                                     | ·                                                       |                                                         | ·                                                       | · ·                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 542 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |                                                       |                                                        |                                                         |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1 •                                                                                                                                                                                                                                                                                                      | <0.1 <0                                               | 0.1 <0.3                                               | 1 <0.2*                                                 | 9 <0.1                                                  | <0.1 <                                                  | 0.1 -                                                   |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.3                                                                                                                                                                                                                                                                                                      | <0.5 <0.                                              | .05 <0.0                                               | 0.05                                                    | 5 <0.05                                                 | - <(                                                    |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 668 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.1<br><0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.3                                                                                                                                                                                                                                                                                                      | <0.5 <0                                               | .05 <0.0                                               | 05 <0.0                                                 | 5 <0.05                                                 | - <(                                                    | 0.05 <0.                                                | 1 <0.0                                                  | 5 <0.05 <                                                    | 0.05 <0.                                                | 05 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .05 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.05 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .05 <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 635 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |                                                       |                                                        |                                                         |                                                         |                                                         |                                                         | -                                                       |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                       |                                                        |                                                         |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34 34<br>34 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.3                                                                                                                                                                                                                                                                                                      | <0.1 <0.                                              | .05 <0.0                                               | 0.05                                                    | 5 <0.05                                                 | <0.1 <0                                                 | 0.05 <0.                                                | 1 <0.0                                                  | 5 <0.05 <0                                                   | 0.05 <0.                                                | 05 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .05 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.05 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .05 <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )5 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.8 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 •                                                                                                                                                                                                                                                                                                      | <0.5 <0                                               | 0.1 <0.1                                               | 1 <0.2                                                  | <0.1                                                    | <0.1 <                                                  | 0.1 <0.                                                 |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br><0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 ND<br>887 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND ND 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .8 6.1<br>52 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br><0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                        | ND N                                                  | ID ND                                                  | ) ND                                                    | ND                                                      | ND 1                                                    | ND ND                                                   | D ND                                                    | ND I                                                         | ND NI                                                   | D ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 887 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.05 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .05 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15 (                                                                                                                                                                                                                                                                                                    | 0.25 0.0                                              | 0.02                                                   | 25 0.02                                                 | 5 0.025                                                 | 0.05 0.                                                 | 025 0.0                                                 | 5 0.02                                                  | 5 0.025 0.                                                   | .025 0.0                                                | 25 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 0.025 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 025 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 025 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.025 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.025 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 645 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |                                                       |                                                        |                                                         |                                                         |                                                         |                                                         |                                                         |                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                         | 0 (                                                   | 0 0                                                    | 0                                                       | 0                                                       | 0                                                       | 0 0                                                     | 0                                                       | 0                                                            | 0 0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                         | 0 0                                                   | 0 0                                                    | 0                                                       | 0                                                       | 0                                                       | 0 0                                                     | 0                                                       | 0                                                            | 0 0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1 <<br>1  1  1  1  1  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 | -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         - | -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           2         <1<< | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · | -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · | ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · | ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · | ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · | i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i | ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · | i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i | ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · | i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i | N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N | N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N | N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N | N         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V | N         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V | N         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V | N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N | v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v | i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | 1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1          1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1        1 <td>1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1          1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1         1           1           1           1           1           1           1           1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1        1        1</td> <td>1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td> <td>1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0        0        0        0      &lt;</td> <td>1         1         1         4         5         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6        6        6        6        6        6        6        &lt;</td> | 1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1          1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1         1           1           1           1           1           1           1           1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1        1        1 | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | 1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0        0        0        0      < | 1         1         1         4         5         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6        6        6        6        6        6        6        < |

#2 No asbestos detected at the reporting limit of 0.001% w/w. #3 ESDAT combined with Non-Detect Multiplier of 0.5. #4 ESDAT combined with Non-Detect Multiplier of 0.5. #5 Chrysotile and amosite asbestos detected. #6 Synthetic mineral fibres detected. #7 No respirable fibres detected. #8 Organic fibres detected. #9 ESDAT Combined. #10 114x40x3 #11 Nil

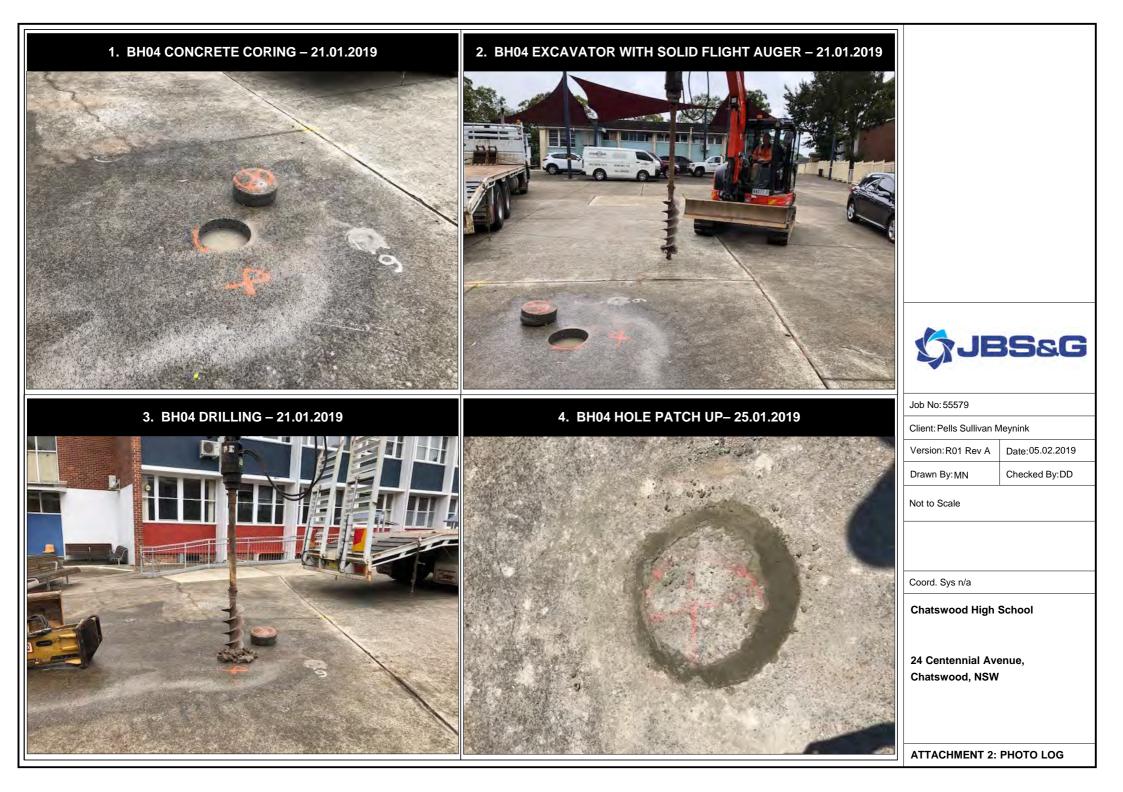


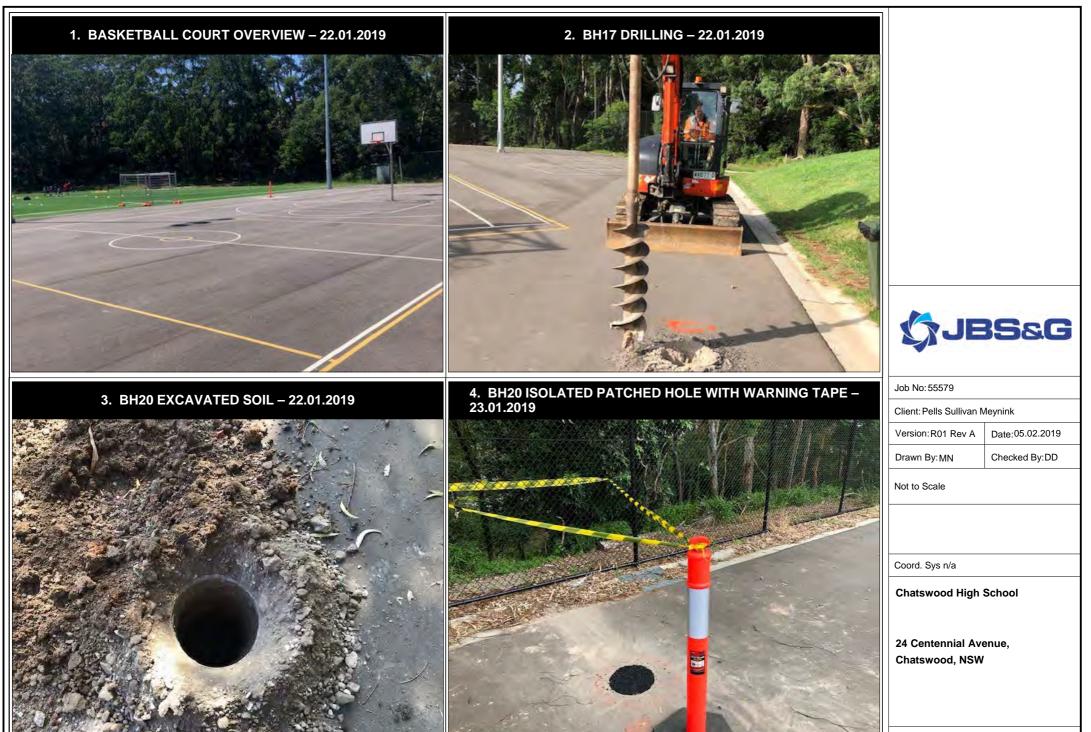
#### Table K1: Summary of Laboratory Results for Soil Analysis

| Table K1: Summary of Labor                                      | atory Result                      | s for Soil A         | nalysis     |               |                    | He               | eavy Metal       | s       |              |                |                |                    |            | P            | AH             |               |                 | TRH/       |                                                |
|-----------------------------------------------------------------|-----------------------------------|----------------------|-------------|---------------|--------------------|------------------|------------------|---------|--------------|----------------|----------------|--------------------|------------|--------------|----------------|---------------|-----------------|------------|------------------------------------------------|
| Sample                                                          | Soil Type<br>(C=coarse<br>F=fine) | Date<br>Sampled      | As          | Cd            | Cr <sup>c</sup>    | Cu               | Pb               | тссР Рь | Hg           | Ni             | Zn             | total <sup>d</sup> | TCLP total | ВаР ТЕQ      | ВаР            | TCLP BaP      | Naphthalene     | ° C        | C <sub>10</sub> - C <sub>36</sub> <sup>e</sup> |
| Soil Assessment Criteria (SA                                    |                                   | ac amondor           | mg/kg       | mg/kg         | mg/kg              | mg/kg            | mg/kg            | mg/L    | mg/kg        | mg/kg          | mg/kg          | mg/kg              | mg/L       | mg/kg        | mg/kg          | mg/L          | mg/kg           | mg/kg      | mg/kg                                          |
| Residential with Accessible S                                   | `                                 | as amended           | a 2013) (re | ter to report | body for de        | etalis)          |                  |         |              |                |                |                    |            |              |                |               |                 |            |                                                |
| HIL A                                                           |                                   |                      | 100         | 20            | 100 °              | 6,000            | 300              |         | 40           | 400            | 7,400          | 300                |            | 3            |                |               |                 |            |                                                |
| EIL/ ESL                                                        | coarse                            |                      | 100         | 20            | 250                | 110              | 1,100            |         |              | 35             | 250            |                    |            |              | 0.7            |               | 170             |            |                                                |
| EIL/ ESL                                                        | fine                              |                      | 100         |               | 640                | 110              | 1,100            |         |              | 270            | 290            |                    |            |              | 0.7            |               | 170             |            |                                                |
| Management Limit                                                | coarse                            |                      |             |               |                    |                  |                  |         |              |                |                |                    |            |              |                |               |                 |            |                                                |
| Management Limit<br>HSL A&B, vapour intrusion, 0-<              | fine                              |                      |             |               |                    |                  |                  |         |              |                |                |                    |            |              |                |               | 3               |            |                                                |
| HSL A&B, vapour intrusion, 0                                    |                                   |                      |             |               |                    |                  |                  |         |              |                |                |                    |            |              |                |               | 5               |            |                                                |
| HSL A, direct contact                                           | tini, olay                        |                      |             |               |                    |                  |                  |         |              |                |                |                    |            |              |                |               | 1,400           |            |                                                |
| Waste Classification Thresho                                    | olds                              |                      |             |               |                    |                  |                  |         |              |                |                |                    |            |              |                |               |                 |            |                                                |
| General Solid                                                   | C                                 | T1                   | 100         | 20            | 100                |                  | 100              |         | 4            | 40             |                | 200                |            |              | 0.8            |               |                 | 650        | 10,000                                         |
|                                                                 | SCC1/                             | TCLP1                | 500         | 100           | 1,900              |                  | 1,500            | 5       | 50           | 1,050          |                | 200                |            |              | 10             | 0.04          |                 | 650        | 10,000                                         |
| Restricted Solid                                                | C.                                |                      | 400         | 80            | 400                |                  | 400              |         | 16           | 160            |                | 800                |            |              | 3.2            |               |                 | 2,600      | 40,000                                         |
|                                                                 |                                   | TCLP2                | 2,000       | 400           | 7,600              |                  | 6,000            | 20      | 200          | 4,200          |                | 800                |            |              | 23             | 0.16          |                 | 2,600      | 40,000                                         |
| Published Background Rang                                       | es for Asses                      | sment of N           |             |               |                    |                  |                  |         |              |                |                |                    |            |              |                |               |                 |            |                                                |
| NEPC (1999)                                                     |                                   |                      | 1-50        | 1             | 5-1000             | 2-100            | 2-200            |         | 0.03         | 5-500          | 10-300         | 0.07 -             |            |              |                |               |                 |            |                                                |
| ANZECC (1992)<br>ANZECC (2000)                                  |                                   |                      | 0.2-30      | 0.04-2        | 0.5-110<br>2.5-673 | 1-190<br>0.4-412 | <2-200<br>2-81   |         | 0.001-0.1    | 2-400<br>1-517 | 2-180<br>1-263 | 0.95-5             |            |              |                |               |                 |            |                                                |
|                                                                 |                                   |                      | 1-55        | 0.010-0.78    | 2.3-073            | 0.4-412          | 2-01             |         |              | 1-317          | 1-203          |                    |            |              |                |               |                 |            |                                                |
| Laboratory Results                                              |                                   |                      |             |               |                    |                  |                  |         |              |                |                |                    |            |              |                |               |                 |            |                                                |
| High School                                                     | 1                                 |                      |             | 1             | 1                  |                  |                  | 1       | 1            | 1              | 1              | 1                  |            |              | 1              | 1             |                 |            |                                                |
| 1 / 0.5-0.6                                                     | filling-F                         | 22/01/18             | 6           | <0.4          | 12                 | 20               | 52               |         | <0.1         | 8              | 280            | <0.05              |            | <0.5         | < 0.05         |               | <0.1            | <25        | <250                                           |
| REPLICATE1-220118                                               | filling-F                         | 22/01/18             | 13          | <0.4          | 16                 | 27               | 58               |         | <0.1         | 13             | 490            | <0.5               |            | <0.5         | <0.5           |               | <0.5            |            |                                                |
| 2 / 0.1                                                         | silty clay?                       | 23/01/18             | 4           | <0.4          | 14                 | 13               | 70               |         | <0.1         | 3              | 86             | 0.2                |            | <0.5         | <0.05          |               | <0.1            | <25        | 195                                            |
| 3 / 0-0.1                                                       | silty clay?                       | 23/01/18             | 5           | <0.4          | 12                 | 14               | 18               |         | <0.1         | 3              | 15             | 0.51               |            | <0.5         | 0.09           |               | <0.1            | <25        | <250                                           |
| Replicate 6                                                     | silty clay?                       | 23/01/18             | 5           | <0.4          | 12                 | 15               | 33               |         | <0.1         | 4              | 28             | 2.6                |            | <0.5         | 0.2            |               | <0.1            | 05         | 050                                            |
| 4 / 0-0.1                                                       | filling-C                         | 22/01/18             | 9           | <0.4          | 11                 | 25               | 62               |         | 0.1          | 7              | 120            | 8                  |            | 1            | 0.73           |               | <0.1            | <25        | <250                                           |
| • /                                                             | filling-F                         | 22/01/18             | 7           | <0.4          | 14                 | 18               | 26               |         | <0.1         | 7              | 34             | < 0.05             |            | <0.5         | < 0.05         |               | <0.1            | <25        | <250                                           |
| 6 / 0.2-0.3<br>7 / 0-0.1                                        | silty clay<br>filling-C           | 22/01/18<br>23/01/18 | <4<br>7     | <0.4<br><0.4  | 5<br>28            | 8<br>36          | 16<br>38         |         | <0.1<br><0.1 | 1<br>25        | 3<br>83        | <0.05<br>0.1       |            | <0.5<br><0.5 | <0.05<br><0.05 |               | <0.1<br><0.1    | <25<br><25 | <250<br><250                                   |
| 7 / 0-0.1                                                       | -                                 | 23/01/18             | 7           | <0.4          | 12                 | 30               | 38<br>130        | 0.07    | <0.1         | 25<br>8        | 83             | <0.05              |            | <0.5         | <0.05          |               | <0.1            | <25<br><25 | <250                                           |
| 8 / 0-0.1                                                       | filling-F<br>filling-C            | 23/01/18             | <4          | <0.4          | 41                 | 51               | 15               | 0.07    | <0.1         |                | 59             | <0.05              |            | <0.5         | <0.05          |               | <0.1            | <25        | 770                                            |
| 8 / 0.7-0.8                                                     | filling-F                         | 23/01/18             | 8           | <0.4          | 10                 | 19               | 16               |         | <0.1         | 7              | 31             | < 0.2              |            | <0.5         | <0.05          |               | <0.1            | <25        | <250                                           |
| 9 / 0.2-0.3                                                     | filling-F                         | 22/01/18             | 12          | <0.4          | 8                  | 56               | 8                |         | <0.1         | 33             | 35             | < 0.05             |            | <0.5         | < 0.05         |               | <0.1            | <25        | 775                                            |
| 10 / 2-2.1                                                      | filling-F                         | 22/01/18             | 8           | <0.4          | 13                 | 21               | 24               |         | <0.1         | 9              | 53             | 0.3                |            | <0.5         | 0.06           |               | <0.1            | <25        | <250                                           |
| 11 / 0-0.1                                                      | filling-C                         | 23/01/18             | 6           | <0.4          | 11                 | 21               | 27               |         | <0.1         | 5              | 40             | 46                 | 0.004      | 5.6          | 3.9            | < 0.001       | <1 - 0.6        | <25        | 225                                            |
| 12 / 0-0.1                                                      | filling-C                         | 23/01/18             | <4          | <0.4          | 21                 | 35               | 11               |         | <0.1         | 25             | 34             | 4.1                |            | <0.5         | 0.3            |               | <0.1            | <25        | 835                                            |
| <b>Public School and Bush</b>                                   | Campus                            |                      |             |               |                    |                  |                  |         |              |                |                |                    |            |              |                |               |                 |            |                                                |
| 13 / 0.0-0.1                                                    | filling-C                         | 23/01/18             | 4           | <0.4          | 9                  | 45               | 95               |         | 0.4          | 7              | 97             | 23                 | NIL (+)VE  | 3.2          | 2.2            | <0.001        | <0.1            | <25        | 120                                            |
| Replicate 4                                                     | filling-C                         | 23/01/18             | 4           | <0.4          | 16                 | 34               | 88<br>52         |         | 0.4          | 11             | 83             | 27                 |            | 3.4          | 2.3            |               | 0.2             | -05        | -050                                           |
| 13 / 0.4-0.5<br>14 / 0.0-0.1                                    | filling-C<br>filling-F            | 23/01/18<br>23/01/18 | 5<br>5      | <0.4          | 18<br>10           | 35<br>23         | 52<br>29         |         | 0.2          | 9<br>4         | 82<br>64       | 6.1<br><0.05       |            | 1<br><0.5    | 0.64           |               | <0.1<br><0.1    | <25<br><25 | <250<br><250                                   |
| 15 / 0-0.1                                                      | filling-F                         | 19/01/18             | 5           | <0.4          | 9                  | 31               | 18               |         | <0.1         | 10             | 62             | < 0.05             |            | <0.5         | <0.05          |               | <0.1            | <25        | 120                                            |
| 16 / 0.0-0.1                                                    | filling-C                         | 24/01/18             | 6           | <0.4          | 8                  | 89               | 130              | 0.08    | <0.1         | 8              | 58             | 86                 | NIL (+)VE  | 16           | 11             | <0.001        | 0.3             | <25        | 570                                            |
| 17 / 0.3-0.4                                                    | silty clay?                       |                      | <4          | <0.4          | 20                 | 2                | 22               |         | <0.1         | 3              | 5              | 3.4                |            | 0.5          | 0.4            |               | <0.1            | <25        | <250                                           |
| 18         /         0.5           18         /         1.0-1.1 | filling-F<br>filling-F            | 23/01/18<br>23/01/18 | <4<br><4    | <0.4<br><0.4  | 30<br>13           | 39<br>16         | 31<br>25         |         | <0.1<br><0.1 | 34<br>5        | 44<br>14       | 470<br>620         | 0.08       | 44<br>56     | 30<br>38       | <0.001        | 8<br>9.2        | <25<br><25 | 1,440<br>1,800                                 |
| 18 / 1.5                                                        | filling-F                         | 23/01/18             | ~+          | <b>NU.4</b>   | 10                 | 10               | 20               |         | <u> </u>     | 5              | 14             | 190                | 0.00       | 17           | 12             | <u>\0.001</u> | <b>9.2</b><br>3 | <25        | 620                                            |
| 19 / 0-0.1                                                      | filling-C                         | 19/01/18             | <4          | <0.4          | 9                  | 20               | 62               |         | <0.1         | 5              | 80             | 22                 |            | 2.1          | 1.4            |               | <0.1            | <25        | <250                                           |
| 20 / 0.0-0.1                                                    | filling-C                         | 24/01/18             | <4          | <0.4          | 16                 | 28               | 24               |         | 0.1          | 19             | 48             | 0.94               |            | <0.5         | 0.08           |               | <0.1            | <25        | 1,470                                          |
| 21 / 0.0-0.1                                                    | filling-C                         | 24/01/18             | <4          | <0.4          | 35                 | 22               | 61               |         | <0.1         | 38             | 48             | 460                | 0.004      | 57           | 39             | <0.001        | 0.7             | <25        | 4,100                                          |
| 21 / 1-1.1<br>22 / 0.3-0.4                                      | silty clay?<br>filling-F          | 24/01/18             | <4          | <0.4          | 19                 | 12               | 66               |         | <0.1         | 6              | 30             | 14<br>15           |            | 1.7<br>2.8   | 1.2<br>1.8     |               | <0.1<br><0.1    | <25<br><25 | <250<br><250                                   |
| 23 / 0-0.1                                                      | filling-F                         | 19/01/18             | 5           | <0.4          | 10                 | 12               | 81               |         | <0.1         | 5              | 69             | 31                 |            | 3.4          | 2.3            |               | 0.1             | <25        | 110                                            |
| 24 / 0.3-0.4                                                    | filling-F                         | 24/01/18             | 4           | <0.4          | 13                 | 21               | 150              | 0.06    | 0.2          | 7              | 100            | 23                 | NIL (+)VE  | 3.5          | 2.3            | <0.001        | <0.1            | <25        | 440                                            |
| 25 / 0.2-0.3                                                    | filling-C                         | 24/01/18             | <4          | <0.4          | 4                  | 2                | 3                |         | <0.1         | 1              | 3              | < 0.05             |            | <0.5         | < 0.05         |               | <0.1            | <25        | <250                                           |
| 26 / 0.2-0.3                                                    | filling-C                         | 24/01/18             | 7           | <0.4          | 12                 | 16               | 26               |         | <0.1         | 6              | 48             | 4.6                |            | 0.6          | 0.4            |               | <0.1            | <25        | 280                                            |
| 27 / 0-0.3<br>28 / 0.4-0.45                                     | filling-C<br>filling-C            | 19/01/18<br>19/01/18 | 5<br><4     | 0.5<br><0.4   | 16<br>29           | 170<br>26        | <b>120</b><br>91 |         | 0.1          | 7<br>19        | 1,000<br>150   | 0.3<br>21          | NIL (+)VE  | <0.5<br>2.9  | 0.06           | <0.001        | <0.1<br>0.1     | <25<br><25 | 4,395<br>760                                   |
| REPLICATE1-190118                                               | filling-C                         | 19/01/18             | 3.6         | < 0.4         | 13                 | 20               | 85               |         | < 0.1        | 9.8            | 170            | 15.7               |            | 2.3          | 1.5            | -0.001        | < 0.5           | 120        | 100                                            |
|                                                                 |                                   |                      |             |               | , -                | 1                |                  | ,       |              |                |                |                    | • 1        | -            |                |               |                 |            |                                                |



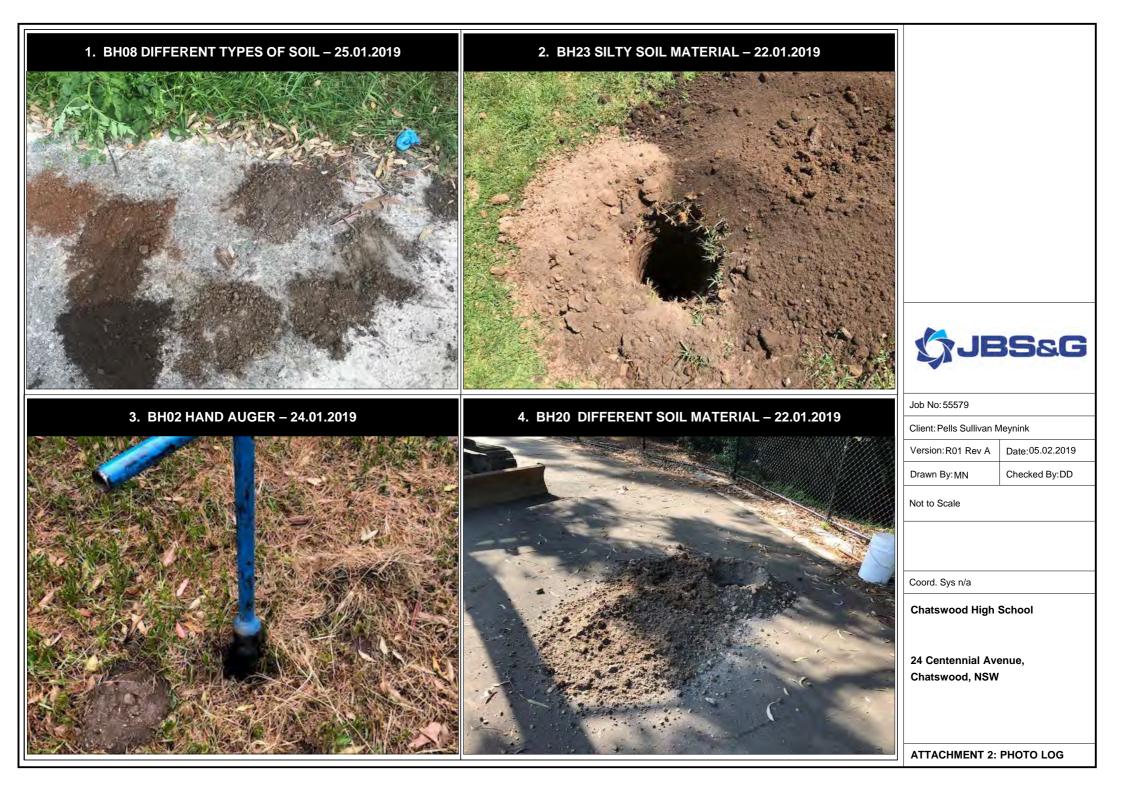
#### Table K1: Summary of Laboratory Results for Soil A

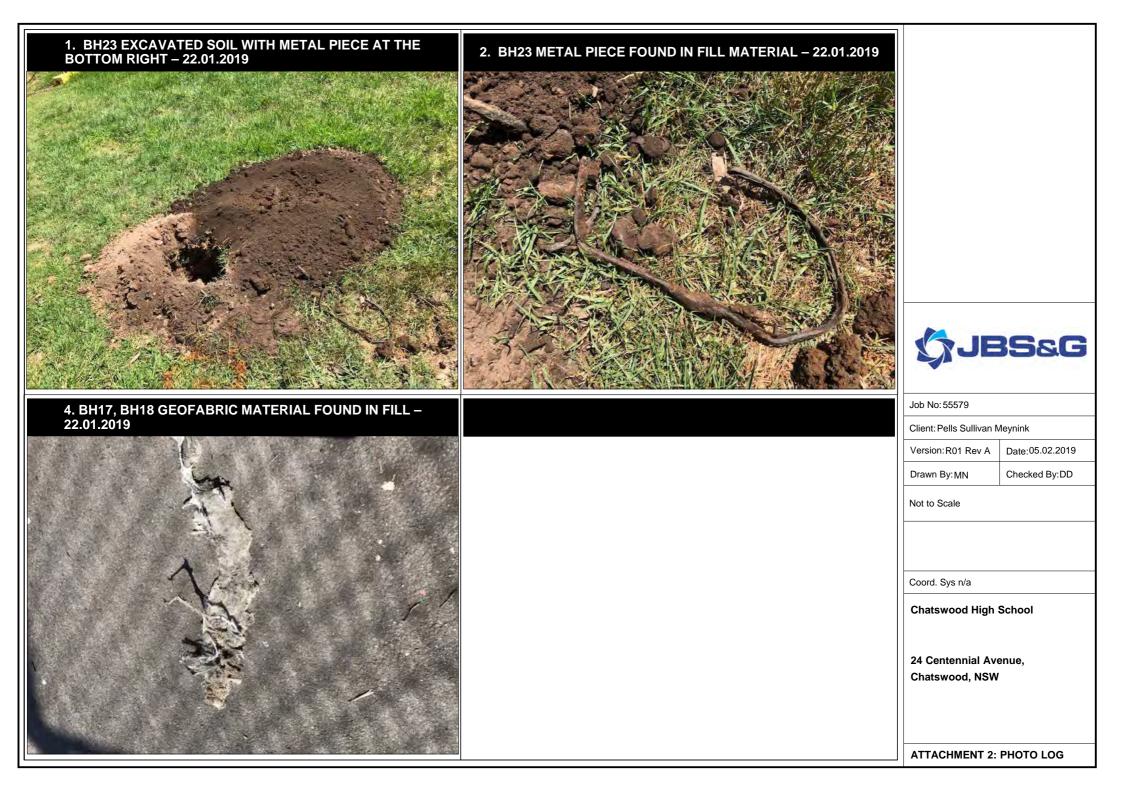

| Sampa         Sampa         Der<br>Index         Support         Der<br>Index         Support         Support <t< th=""><th>Table K1: Summary of Labor</th><th></th><th></th><th></th><th></th><th>TRH (NE</th><th>PM 2013)<sup>i</sup></th><th></th><th></th><th>TPF</th><th>I (NEPM 2</th><th>013)</th><th></th><th>BT</th><th>EX</th><th></th><th></th><th></th><th></th><th>Т</th><th>Т</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table K1: Summary of Labor              |             |            |       |        | TRH (NE             | PM 2013) <sup>i</sup>       |         |            | TPF                                          | I (NEPM 2  | 013)    |             | BT           | EX             |        |            |             |                | Т        | Т          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|------------|-------|--------|---------------------|-----------------------------|---------|------------|----------------------------------------------|------------|---------|-------------|--------------|----------------|--------|------------|-------------|----------------|----------|------------|
| Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line <thlin< th="">         Line         Line         L</thlin<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | Soil Type   |            | 0     | 16     |                     | · · · · ·                   | (F3)    | (F4)       | (silic                                       | a gel clea | n up)   | e           |              |                | ٥      | ō          | Ð           | σ              | •        |            |
| Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line         Line <thlin< th="">         Line         Line         L</thlin<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample                                  | (C=coarse   | Date       | C6-C1 | >C10-C | :6 – C10<br>BTEX (I | C10-C16<br>naphthal<br>(F2) | C16-C34 | C34-C40    | 0-C16                                        | C16-C34    | C34-C40 | Benzer      | Toluer       | thylben        | xylene | pher       | PCE         | OCF            | G        |            |
| Sint According Colspan="2">Sint Control (Colspan="2">Sint Control (Colspan="2">Sint Control (Colspan="2">Sint Control (Colspan="2")Sint C |                                         |             |            | ma/ka | ma/ka  |                     |                             |         | ۸<br>ma/ka | ۸                                            | ۸          | ۸       | ma/ka       | ma/ka        | _              | ma/ka  | malka      | ma/ka       | malka          | ma/ka    |            |
| NH.A         Object         Object <td>Soil Assessment Criteria (SA</td> <td>C) - NEPM (</td> <td>as amended</td> <td>mg/kg</td> <td>10</td>                                                                                                                                                                                                                                                                                                                                                                                                                | Soil Assessment Criteria (SA            | C) - NEPM ( | as amended | mg/kg | mg/kg  | mg/kg               | mg/kg                       | mg/kg   | mg/kg      | mg/kg                                        | mg/kg      | mg/kg   | mg/kg       | mg/kg        | mg/kg          | mg/kg  | mg/kg      | mg/kg       | mg/kg          | mg/kg    | 10         |
| Ele Fig.         none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | Soil        |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          |            |
| Ell PB.         me         rad         mad         rad         rad<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |             |            |       | 400    | 400                 |                             |         | 0.000      | 100                                          |            | 0.000   | 50          | 0.5          |                | 405    | 3,000      | 1           |                | 340      | 4          |
| Management Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link         Source Link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | <u> </u> | ╋          |
| NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB         NBL AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Management Limit                        |             |            |       | -      | 100                 |                             | 2,500   | 10,000     |                                              | 2,500      | 10,000  | 00          | 100          | 120            |        |            |             | 100 (001)      |          |            |
| NBX A.A. yearNBX A.A. yearNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNB <td></td> <td></td> <td></td> <td>800</td> <td>1,000</td> <td>45</td> <td>110</td> <td>3,500</td> <td>10,000</td> <td></td> <td>3,500</td> <td>10,000</td> <td>0.5</td> <td>160</td> <td>55</td> <td>40</td> <td></td> <td>-</td> <td></td> <td><b></b></td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |             |            | 800   | 1,000  | 45                  | 110                         | 3,500   | 10,000     |                                              | 3,500      | 10,000  | 0.5         | 160          | 55             | 40     |            | -           |                | <b></b>  | +          |
| HBA A discriminational     HBA A discriminational     Alon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          | ┢          |
| <table-container>          CHARAN         <thcharan< th=""> <thcharan< th=""> <thcharan< <="" td=""><td>HSL A, direct contact</td><td></td><td></td><td></td><td></td><td>4,400</td><td>3,300</td><td>4,500</td><td>6,300</td><td>3,300</td><td>4,500</td><td>6,300</td><td>100</td><td>14,000</td><td>4,500</td><td>12,000</td><td></td><td></td><td></td><td></td><td></td></thcharan<></thcharan<></thcharan<></table-container>                                                                                                                                                                                                                                                                                                                                                                                        | HSL A, direct contact                   |             |            |       |        | 4,400               | 3,300                       | 4,500   | 6,300      | 3,300                                        | 4,500      | 6,300   | 100         | 14,000       | 4,500          | 12,000 |            |             |                |          |            |
| Best Control Field         SCCTTOL FI         Image Control Field         SCCTTOL FI         Image Control Field         SCCTTOL FIEld         SCCTTOL FIEld         Image Control Field         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld         SCCTTOL FIEld <td>Waste Classification Thresho</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1.000</td> <td></td> <td></td> <td>. f</td> <td></td> <td>_</td>                                                                                                                                                                                                                                                                                                                | Waste Classification Thresho            |             |            |       | 1      |                     | 1                           | 1       | 1          | 1                                            | 1          | 1       |             |              |                | 1.000  |            |             | . f            |          | _          |
| Rothcol Sold         CT         C         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General Solid                           |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                | · ·    |            |             |                |          | +          |
| Network         SCCUPLUP         SCCUPLUP         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |             |            |       |        |                     | +                           |         |            |                                              |            |         |             |              |                | -      |            |             |                | -        | ╀          |
| Public Background Ranges for Assessment of N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N <td>Restricted Solid</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Restricted Solid                        |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              | -              | -      |            |             |                | -        | +          |
| ANZECC (1982)<br>ANZECC (1982)         Control         Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |             |            |       | ·      |                     | <u> </u>                    | ·       | ·          | <u>.                                    </u> | •          | ·       |             |              | .,             | ,      |            |             |                | <u> </u> | <u> </u>   |
| AVECC (2000)         Image Substance         Image Substan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          | Γ          |
| Laboratory Results         High School           High School         School           REPLOATE1-220116         Eds         -50         -50         -100         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         | 0.05 - 1    | 0.1 - 1      |                |        | 0.03 – 0.5 | 0.02 – 0.1  | <0.001 - <0.97 | <u> </u> | ┢          |
| High School         1         0.54.0         Image P         220/18          42         55         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,                                     |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | <u> </u> |            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          | _          |
| REPUEXTE-r20118         Imig-F         201/18         r2         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | filling-E   | 22/01/18   | <25   | <50    | <25                 | <50                         | <100    | <100       |                                              |            |         | <0.2        | <0.5         | <li>&lt;1</li> | <1     | <5         | <01         | <0.1           | <01      | Т          |
| 1//       0.1       sily day/       230/18         0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | -           |            | 120   | ~00    | 120                 | ~~~~                        | \$100   | \$100      |                                              |            |         | <b>NO.2</b> | <0.0         |                |        | ~0         | <b>NO.1</b> | <b>NO.1</b>    | <0.1     | ╧          |
| 3         1         0.01         why dwy         200/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |             | -          | <25   | <50    | <25                 | <50                         | <100    | 120        |                                              |            |         | <0.2        | <0.5         | <1             | <1     | <5         | <0.1        | <0.1           | <0.1     |            |
| 4       1       0+01       filling-C       220/118       2.5       <50       <50       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 / 0-0.1                               |             | 23/01/18   | <25   | <50    | <25                 | <50                         | <100    | <100       |                                              |            |         | <0.2        | <0.5         | <1             | <1     | <5         | <0.1        | <0.1           | <0.1     |            |
| 5       1       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       11111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       11111       1111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       111111       11111       11111       11111       11111       111111       111111       111111       111111       111111       111111       1111111       1111111       11111111111       11111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Replicate 6                             |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          |            |
| 6         1         2.00         Silv day         2201/18         2.5         4.50         4.20         4.00         4.00         4.00         4.02         4.02         4.05         4.1         4.5         4.01         4.01         4.01           7         7         0.0.1         filling-f         2301/18         4.25         4.50         4.20         4.00         4.02         4.05         4.1         4.5         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1         4.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | -           |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | <0.1     | <u>_</u> ' |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>e</b> , 11.1                         | Ű           |            |       | -      |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          |            |
| 7       1       0.5.0.6       filling-F       2301/18       c.25       c.50       c.25       c.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 / 0.2 0.0                             |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | -        | +          |
| B         /         0-0.1         filing-C         230/18         25         450         450         570           4.2         4.55         4.1         4.1         4.0.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1         40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ,                                     | -           |            |       | -      |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          | ┿          |
| 8       /       0.7-0.8       Hilling-F       2301/18       <25       <50       <25       <50       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100       <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 7 8:0 8:0                             | Ű           |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | <0.1     | +          |
| 10       /       22.1       filing-F       2201/18       <25       <50       <25       <50       <100       <100       <100       <102       <10.2       <10.3       <11       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>&lt;0.1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | <0.1     |            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 , 01 <u>2</u> 010                     | -           |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          |            |
| 12       /       0.0.1       filling-C       2301/18       <25       <50       530       800        <0.2       <0.5       <1       <1       <5       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1       <0.1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |             |            |       |        |                     |                             | 1       |            |                                              |            |         |             |              |                |        |            |             |                |          |            |
| Public School and Bush Campus         13         //         0.0-0.1         filing-C         2301/18         <25         <50         160         <100         <0.2         <0.5         <1         <1          <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <0.1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | -           |            |       | -      |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          |            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |             | 20/01/10   | 120   | 100    | 120                 | 100                         | 000     | 000        |                                              | I          | I       | <b>NO.2</b> | <b>N</b> 0.0 |                |        | ~0         | \$0.1       | \$0.1          | 1 0.1    | <u> </u>   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |             | 23/01/18   | <25   | <50    | <25                 | <50                         | 160     | <100       |                                              |            |         | <0.2        | <0.5         | <1             | <1     | <5         | <0.1        | <0.1           | <0.1     | Π          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |             |            | 05    | 50     | 05                  | 50                          | 400     | 400        |                                              |            |         |             | 0.5          |                |        |            |             |                | +        | +          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        | <5         | <0.1        | <0.1           | <0.1     |            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 / 0-0.1                              | filling-F   | 19/01/18   | <25   | <50    | <25                 | <50                         |         | <100       |                                              |            |         | <0.2        |              | 1              | 1      | <5         | <0.1        |                | <0.1     |            |
| 18       1       0.5       filling-F       23/01/18       <25       87       <25       79       1,300       210 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | <0.1     | ĻĪ         |
| 18       /       1.0-1.1       filling-F       23/01/18       <25       140       <25       130       1,600       220       89       940       <100       <0.2       <0.5       <1       <1       <5       <1       <0.1       <0.1       <0.1         18       /       1.5       filling-F       23/01/18       <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , , , , , , , , , , , , , , , , , , , , |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        | <5         | <0.1        | <0.1           | <0.1     |            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 / 1.0-1.1                            | filling-F   | 23/01/18   | <25   | 140    | <25                 | 130                         | 1,600   | 220        | 89                                           | 940        | <100    | <0.2        | <0.5         |                |        | <5         | <1          | <0.1           | <0.1     | ti         |
| 20       /       0.0-0.1       filling-C       24/01/18       <25       <50       <25       <50       1,100       1,100       (0.1)       (0.2)       <0.5       <1       <1       <55       <0.1       <0.1       <0.1         21       /       0.0-0.1       filling-C       24/01/18       <25       80       <25       80       3,500       1,900       <50       1,400       790       <0.2       <0.5       <1       <1       <55       <1       <1       <55       <1       <1       <55       <1       <1       <55       <1       <1       <55       <1       <1       <55       <1       <1       <55       <1       <1       <55       <1       <1       <155       <1       <1       <1       <55       <1       <1       <1       <55       <1       <1       <1       <155       <1       <1       <1       <155       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        | -          | .0.1        | .0.1           |          |            |
| 21       /       0.0-0.1       filling-C       24/01/18       <25       80       <25       80       <25       80       <25       80       <25       1,900       <50       1,400       790       <0.2       <0.5       <1       <1       <55       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | <0.1     |            |
| 22       /       0.3-0.4       filing-F       24/01/18       <25       <50       <25       <50       <100       <100        <0.2       <0.5       <1       <1       <5       <0.1       <0.1       <0.1         23       /       0-0.1       filing-F       19/01/18       <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 / 0.0-0.1                            | filling-C   | 24/01/18   | <25   | 80     | <25                 | 80                          |         |            | <50                                          | 1,400      | 790     | <0.2        | <0.5         |                | 1      |            |             |                | <1       |            |
| 23       /       0-0.1       filling-F       19/01/18       <25       <50       <25       <50       160       <100        <0.2       <0.5       <1       <1       <5       <0.1       <0.1       <0.1         24       /       0.3-0.4       filling-F       24/01/18       <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        | .F         | -0.1        | -0.1           | -0.1     | +          |
| 24       /       0.3-0.4       filling-F       24/01/18       <25       <50       <25       <50       350       280        <0.1       <0.1       <0.1       <0.1       <0.1         25       /       0.2-0.3       filling-C       24/01/18       <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |             |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | _        | +          |
| 26       /       0.2-0.3       filling-C       24/01/18       <25       <50       <25       <50       300       240        <0.2       <0.5       <1       <1       <5       <0.1       <0.1       <0.1         27       /       0-0.3       filling-C       19/01/18       <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 / 0.3-0.4                            | filling-F   | 24/01/18   | <25   | <50    | <25                 | <50                         |         |            |                                              |            |         | <0.2        | <0.5         | 1              | 1      | <5         | <0.1        |                | <0.1     | $\pm$      |
| 27       /       0-0.3       filling-C       19/01/18       <25       100       <25       100       2,800       2,000       <50       230       <100       <0.1       <11       98       <0.1       <0.1       <0.1       <0.1         28       /       0.4-0.45       filling-C       19/01/18       <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | -           |            |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                | <0.1     |            |
| 28 / 0.4-0.45 filling-C 19/01/18 <25 <50 <25 <50 580 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 / 012 010                            | - U         |            |       |        |                     |                             |         |            | <50                                          | 230        | <100    |             |              | 1              |        |            | 1           |                |          |            |
| REPLICATE1-190118 filling-C 19/01/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28 / 0.4-0.45                           |             | 19/01/18   |       |        |                     |                             | ,       |            |                                              | 200        | 100     |             |              |                |        |            |             |                | <0.1     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REPLICATE1-190118                       | filling-C   | 19/01/18   |       |        |                     |                             |         |            |                                              |            |         |             |              |                |        |            |             |                |          | Γ          |






# Appendix A Photographic Log








**ATTACHMENT 2: PHOTO LOG** 



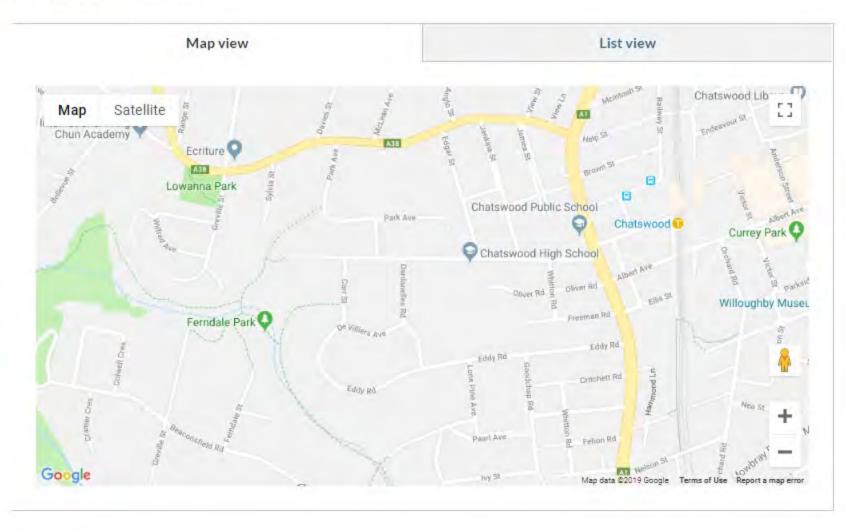




Appendix B PFAS Register

→ C A https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program

Apps 🚯 JBS&G Company Sha 🚷 MPW UF Map 📙 PSI Search


| Contaminated land                       |     |
|-----------------------------------------|-----|
| Managing contaminated land              | ~   |
| Notification policy                     | ~   |
| NSW site auditor scheme                 | ~   |
| Preventing contaminated land            | ~   |
| Assessment and Remediation              | ~   |
| PFAS investigation program              | ^   |
| PFAS investigation process              |     |
| PFAS investigation program FA           | AQs |
| Other contamination issues              | ~   |
| Contaminated land management<br>program | ~   |

# The NSW Government PFAS Investigation Program

NSW has a nation leading, state-wide PFAS investigation program underway to identify the use and impacts of legacy PFAS.

The EPA is leading an investigation program to assess the legacy of PFAS use across NSW. With the assistance of the NSW PFAS Taskforce, which includes NSW Health, Department of Primary Industries and the Office of Environment and Heritage, we provide impacted residents with tailored, precautionary dietary advice to help them reduce any exposure to PFAS.

Current investigations are focused on sites where it is likely that large quantities of PFAS have been used. The EPA is currently investigating PFAS at these sites:





# Sampling and analysis







## Appendix C Loose-Fill Asbestos Insulation Register



Home (https://www.fairtrading.nsw.gov.au)

# Loose-fill asbestos insulation register

| Listen                          | (https://app-oc.readspeaker.com/cgi-bin/rsent?customerid=7371⟨=en_au&readid=page-content&url=https://www.fairtrading.nsw.gov.au/loose-fill-asbestos-insulation-<br>register) |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Look up the                     | premises address                                                                                                                                                             |
| Please ente                     | exact address information (including street type) of the address you wish to search (Note, the search fields are not case sensitive).                                        |
| lf a match is                   | found, the premises has been identified as containing loose-fill asbestos insulation.                                                                                        |
| Results will                    | only appear if an exact match of an address is found.                                                                                                                        |
| (The fields I                   | narked with * are required.)                                                                                                                                                 |
| No Mat                          | ch Found - A search match was not found in the Loose-fill Asbestos Insulation Register                                                                                       |
| Addres                          | s searched: 24 Centennial Avenue Chatswood                                                                                                                                   |
| This in                         | ormation is correct at the time of the search                                                                                                                                |
| Unit                            |                                                                                                                                                                              |
| 0. Inc                          |                                                                                                                                                                              |
| Street nur                      | nber*                                                                                                                                                                        |
| Street nar                      | ne*                                                                                                                                                                          |
| Street typ                      | e* Alley •                                                                                                                                                                   |
| Suburb*                         |                                                                                                                                                                              |
| Postcode                        |                                                                                                                                                                              |
|                                 | Submit                                                                                                                                                                       |
|                                 |                                                                                                                                                                              |
| <u>Site map</u><br>(https://wwy | Privacy policy <b>f D</b>                                                                                                                                                    |
| <u>map)</u>                     | policy)                                                                                                                                                                      |
| Accessibility<br>(https://www   | Disclaimer<br>fairtrading.n <b>śkitus</b> w/ <b>aw/awcfaisibilitin</b> g.nsw.gov.au/disclaimer)                                                                              |
| Copyright                       | NSW.gov.au                                                                                                                                                                   |
| (https://wwv                    | .fairtrading.n <b>\$kttp:</b> //#s/copvr&uht)                                                                                                                                |



Appendix D Borelogs



**BH01** 

Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.6 Bore Diameter (mm): 150 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m):

| Method                                                           | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                          | Samples<br>Tests<br>Remarks | Additional Observations                               |
|------------------------------------------------------------------|--------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
| SFA                                                              |              |                |             | Fill                  | Fill - Silty Sand, brown, damp, heterogeneous, loose, with inclusions of rootlets and trace brick | BH01_0.15                   | No odour, ACM or staining                             |
|                                                                  | 0.5          | 0.15           |             | Fill                  | Fill - Clay, brown, damp, homogeneous, medium plasticity, firm                                    | BH01_0.5                    |                                                       |
|                                                                  | -            | 0.60           |             | CL-ML                 | Silty Clay, brown, damp, homogeneous, medium plasticity, firm                                     |                             | No odour, ACM or staining                             |
|                                                                  | -            |                |             |                       |                                                                                                   |                             |                                                       |
|                                                                  | 1 <u>.0</u>  | 1.10           |             | CL-ML                 | Silty Clay, brown with grey mottling, damp, homogeneous, medium plasticity, firm                  | BH01_1.1                    | No odour, ACM or staining                             |
|                                                                  | -            | 1.10           |             | OL-IVIL               | Unity only, brown with grey mouning, damp, nonrogeneous, meaning plastery, inm                    |                             |                                                       |
|                                                                  | 1.5          |                |             |                       |                                                                                                   |                             | No odour, ACM or staining<br>End of hole at 1.6 m bgs |
| BUREHULE JESG BUREHULE - 2017.GPJ GINT STD AUSTRALIA GDT 2/12/19 |              | 1.60           |             |                       | Borehole BH01 terminated at 1.6m                                                                  | BH01_1.5                    |                                                       |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 0.3 Bore Diameter (mm): 50 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m):

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                            | Samples<br>Tests<br>Remarks | Additional Observations                  |
|--------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------|
| ЧA     | _            |                |             | Fill                  | Fill - Gravelly Silty Sand, brown / grey, heterogeneous, dry, medium dense, poorly<br>graded, with inclusions of rootlets, brick, plastic and paper | BH02_0.15<br>PID = 0.6 ppm  | No odour, ACM or staining                |
|        |              | 0.30           |             |                       | Borehole BH02 terminated at 0.3m                                                                                                                    |                             | End of hole at 0.3 m bgs, moved to BH02a |
|        | _            | 0.30           |             |                       | Bolenole BH02 terminated at 0.5m                                                                                                                    |                             |                                          |
|        | 0.5          |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | -            |                |             |                       |                                                                                                                                                     |                             |                                          |
|        |              |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | _            |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | 1 <u>.0</u>  |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | _            |                |             |                       |                                                                                                                                                     |                             |                                          |
|        |              |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | -            |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | 1.5          |                |             |                       |                                                                                                                                                     |                             |                                          |
|        |              |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | _            |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | _            |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | 2 <u>.0</u>  |                |             |                       |                                                                                                                                                     |                             |                                          |
|        |              |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | _            |                |             |                       |                                                                                                                                                     |                             |                                          |
| ה      | 2.5          |                |             |                       |                                                                                                                                                     |                             |                                          |
| 12112  | 2.5          |                |             |                       |                                                                                                                                                     |                             |                                          |
| 4.601  |              |                |             |                       |                                                                                                                                                     |                             |                                          |
| IKALI  | -            |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | 3.0          |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | -            |                |             |                       |                                                                                                                                                     |                             |                                          |
| 5      | _            |                |             |                       |                                                                                                                                                     |                             |                                          |
| 2.7102 | -            |                |             |                       |                                                                                                                                                     |                             |                                          |
|        | 3.5          |                |             |                       |                                                                                                                                                     |                             |                                          |
|        |              |                |             |                       |                                                                                                                                                     |                             |                                          |
| Pear   | _            |                |             |                       |                                                                                                                                                     |                             |                                          |
| HOLE   | -            |                |             |                       |                                                                                                                                                     |                             |                                          |
| BORE   | 4 <u>.0</u>  |                |             |                       |                                                                                                                                                     |                             |                                          |
|        |              |                |             |                       |                                                                                                                                                     |                             |                                          |

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19



## BH02a

Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 0.6 Bore Diameter (mm): 50

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                        | Samples<br>Tests<br>Remarks | Additional Observations                                                                                            |
|--------|--------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|
| HA     |              |                |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, dry, loose, with inclusions of gravels and glass       | BH02a_0.15<br>PID = 1.5 ppm | No odour, ACM or staining                                                                                          |
|        | _            | 0.20           |             | Fill                  | Fill - Silty Sand, light brown, heterogeneous, dry, loose, with inclusions of gravels and glass |                             |                                                                                                                    |
|        | 0.5          |                |             |                       |                                                                                                 | BH02a_0.5<br>PID = 2.9 ppm  | No odour, ACM or staining<br>End of hole at 0.6 m bgs. Tried two<br>other locations, hard surface, very<br>shallow |
|        | _            | 0.60           |             |                       | Borehole BH02a terminated at 0.6m                                                               |                             | Sitaliuw                                                                                                           |
|        |              |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | _            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | -            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | 1.5          |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | _            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | 2            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | _            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | _            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | 2 <u>.5</u>  |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | _            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | 3.0          |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | _            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | _            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | 3 <u>.5</u>  |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        | -            |                |             |                       |                                                                                                 |                             |                                                                                                                    |
|        |              |                |             |                       |                                                                                                 |                             |                                                                                                                    |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.2 Bore Diameter (mm): 150

| Method                                                           | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                                      | Samples<br>Tests<br>Remarks | Additional Observations                               |
|------------------------------------------------------------------|------------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
| SFA                                                              | -                | 0.15           |             | Fill                  | Fill - Silty Sand, brown, damp, heterogeneous, loose, with inclusions of rootlets, cobbles of rock and roots<br>Fill - Silty Clayey Sand, moist, heterogeneous, brown, medium dense, low plasticity, with inclusions of roots | BH03_0.15<br>PID = 6.3 ppm  | No odour, ACM or staining                             |
|                                                                  | 0.5              |                |             |                       |                                                                                                                                                                                                                               | BH03_0.5<br>PID = 3.6 ppm   |                                                       |
|                                                                  | -                |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
|                                                                  | -                | 0.80           |             | CL                    | Clay, grey with slight yellow / brown mottling, moist, homogeneous, firm, medium plasticity                                                                                                                                   |                             | No odour, ACM or staining                             |
|                                                                  | 1 <u>.0</u>      | 1.20           |             |                       | Borehole BH03 terminated at 1.2m                                                                                                                                                                                              | BH03_1.1<br>PID = 3.4 ppm   | No odour, ACM or staining<br>End of jole at 1.2 m bgs |
|                                                                  | -                | 1.20           |             |                       | Borenole BHU3 terminated at 1.2m                                                                                                                                                                                              |                             |                                                       |
|                                                                  | 1 <u>.5</u><br>_ |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
|                                                                  | 2.0              |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
|                                                                  | -                |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
| <b>б</b>                                                         | _<br>            |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
| A.GDT 27/2/1                                                     | -                |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
| O AUSTRALI                                                       | -                |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
| PJ GINT STI                                                      | 3 <u>.0</u>      |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
| <u> </u>                                                         | -                |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
| BOREHOLE JBSG BOREHOLE - 2017/GPJ GINT STD AUSTRALIA.GDT 27/2/19 | 3 <u>.5</u>      |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |
| OREHOLE JI                                                       | - 4.0            |                |             |                       |                                                                                                                                                                                                                               |                             |                                                       |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.2 Bore Diameter (mm): 150

| -                                                                |              |                | 1           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |                                                                                                                 |
|------------------------------------------------------------------|--------------|----------------|-------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Method                                                           | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class          | Lithological Description                                                                                                                                                                                                                                                                                                                                                                                                                                    | Samples<br>Tests<br>Remarks                                                         | Additional Observations                                                                                         |
| SFA CC N                                                         | _            | 0.15 0.30 0.80 |             | Fill<br>Fill<br>CL-GC<br>CL-GC | Fill - Concrete Slab         Fill - Gravelly Clay, dark grey with brown mottling, damp, hard, high plasicity         Gravelly Clay, dark grey with brown mottling, damp, hard, high plasticity, with inclusions of rootlets         Gravelly Clay, dark grey with brown mottling, damp, hard, high plasticity, with inclusions of rootlets         Gravelly Clay, dark grey with brown mottling, damp, hard, high plasticity, with inclusions of hard shale | BH04_0.3<br>PID = 1.2 ppm<br>BH04_0.5<br>PID = 6.6 ppm<br>BH04_1.1<br>PID = 9.8 ppm | No odour, ACM or staining<br>No odour, ACM or staining<br>No odour, ACM or staining<br>End of hole at 1.2 m bgs |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19 |              | 1.20           |             |                                | Borehole BH04 terminated at 1.2m                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                                                 |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 150

| Method                                               | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                                    | Samples<br>Tests<br>Remarks | Additional Observations                                        |
|------------------------------------------------------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|
| SFA                                                  | -            | 0.15           |             | Fill                  | Fill - Gravelly Sitty Sand (topsoil), brown, loose, heterogeneous, damp, with inclusions of rootlet and mulch         Fill - Gravelly Sand, grey, damp, heterogeneous, medium dense, with inclusions of shale and sandstone | BH05_0.15<br>PID = 1.1 ppm  | No odour, ACM or staining                                      |
|                                                      | 0.5          |                |             |                       |                                                                                                                                                                                                                             | BH05_0.5<br>PID = 1 ppm     | -                                                              |
|                                                      | 1 <u>.0</u>  | 1.00           |             | SM                    | Crushed Shale, recovered as Silty Sand, grey, dry, heterogeneous, medium dense, with inclusions of shale                                                                                                                    | BH05_1.1<br>PID = 4.8 ppm   | No odour, ACM or staining                                      |
|                                                      | 1.5          | 1.50           |             |                       | Borehole BH05 terminated at 1.5m                                                                                                                                                                                            | BH05_1.5<br>PID = 2.2 ppm   | No odour, ACM or staining<br>End of hole at 1.5 m bgs on shale |
|                                                      | 2            |                |             |                       |                                                                                                                                                                                                                             |                             |                                                                |
| /2/19                                                | 2.5          |                |             |                       |                                                                                                                                                                                                                             |                             |                                                                |
| AUSTRALIA.GDT 27/2/19                                |              |                |             |                       |                                                                                                                                                                                                                             |                             |                                                                |
| 2017.GPJ GINT STD                                    | 3 <u>.0</u>  |                |             |                       |                                                                                                                                                                                                                             |                             |                                                                |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA | 3.5          |                |             |                       |                                                                                                                                                                                                                             |                             |                                                                |
| BOREHOLE                                             |              |                |             |                       |                                                                                                                                                                                                                             |                             |                                                                |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.3 Bore Diameter (mm): 150

| Method                                              | Depth (mbgs)               | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                                                   | Samples<br>Tests<br>Remarks                           | Additional Observations                               |
|-----------------------------------------------------|----------------------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| SFA                                                 |                            | 0.15           |             | Fill                  | Fill - Clayey Sand, heterogeneous, brown, damp, medium plasticity, firm, with<br>inclusions of rootlets, trace of sandstone and shale<br>Fill - Silty Sand, brown, heterogeneous, damp, loose, with inclusions of trace brick and<br>shale | BH06_0.15<br>PID = 2 ppm<br>BH06_0.5<br>PID = 3.3 ppm | No odour, ACM or staining                             |
|                                                     | -<br>-<br>-<br>1 <u>.0</u> | 1.00           |             | CL                    | Clay, brown with yelllow / brown mottlling, increased grey motling with depth                                                                                                                                                              | BH06_1.1<br>PID = 2.3 ppm                             | No odour, ACM or staining                             |
|                                                     | -<br>1 <u>.5</u>           | 1.30           |             |                       | Borehole BH06 terminated at 1.3m                                                                                                                                                                                                           |                                                       | No odour, ACM or staining<br>End of hole at 1.3 m bgs |
|                                                     | 2.0                        |                |             |                       |                                                                                                                                                                                                                                            |                                                       |                                                       |
| JA.GDT 27/2/19                                      | <br>2.5<br>                |                |             |                       |                                                                                                                                                                                                                                            |                                                       |                                                       |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINI STD AUSTRALI | 3 <u>.0</u><br>-           |                |             |                       |                                                                                                                                                                                                                                            |                                                       |                                                       |
| LE JBSG BOREHOLE - 20                               | 3.5                        |                |             |                       |                                                                                                                                                                                                                                            |                                                       |                                                       |
| BOREHO                                              |                            |                |             |                       |                                                                                                                                                                                                                                            |                                                       |                                                       |



BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19

**BH07** 

Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24/01/2019 Eastings (GDA 94): Logged By: RC, MN Northings (GDA 94): Contractor: Zone/Area/Permit#: Total Hole Depth (mbgs): 1 Reference Level: Ground Surface Bore Diameter (mm): 50 Elevation (m): Contact (mbgs Depth (mbgs) Samples Graphic Log Lithological Class Lithological Description Tests Additional Observations Method Remarks ΗA Fill Fill - Silty Sand, brown, damp, heterogeneous, loose BH07\_0.15 PID = 1.3 ppm No odour, ACM or staining Silty Clay, Light brown, heterogeneous, damp, stiff, medium plasticity, with inclusion of shale 0.30 Fill 0.5 BH07\_0.6 PID = 1.6 ppm No odour, ACM or staining End of hole at 1.0 m bgs on hard surface, possibly shale 1.0 Borehole BH07 terminated at 1m 1.00 1.5 2.0 2.5 3.0 3.5 4.0



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 25/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.6 Bore Diameter (mm): 50

| Method                                                           | Depth (mbgs)    | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                                                                                                                | Samples<br>Tests<br>Remarks | Additional Observations                                |
|------------------------------------------------------------------|-----------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------|
| НА                                                               | _               | 0.20           |             | Fill                  | Fill - Silty Clayey Sand, brown, dry, heterogeneous, loose, with inclusions of shale,<br>trace brick, rootlets and rock<br>Fill - Silty Clay, brown with light grey / white / red mottling, heterogeneous, firm, dry,<br>low plasticity, with inclusions of shale rock                                  | BH08_0.15<br>PID = 1.5 ppm  | No odour, ACM or staining                              |
|                                                                  | <br>0 <u>.5</u> |                |             |                       |                                                                                                                                                                                                                                                                                                         | BH08_0.50<br>PID = 3.8 ppm  | No odour, ACM or staining                              |
|                                                                  | -               | 0.60           |             | Fill                  | Fill - Silty Clay, dark brown with light brown mottling, damp, low plasticity, firm,<br>heterogeneous, with inclusions of shale rock and trace gravels<br>Fill - Silty Clay, dark brown with light brown mottling, moist, medium plasticity, firm,<br>heterogeneous, with inclusions of more shale rock |                             | No odour, ACM or staining                              |
|                                                                  | 1 <u>.0</u>     | 1.00           |             | Fill                  | Fill - Clayey Silt, dark brown, moist, soft, medium plasticity, heterogeneous, with inclusions of shale                                                                                                                                                                                                 | BH08_0.90<br>PID = 6.5 ppm  | No odour, ACM or staining<br>No odour, ACM or staining |
|                                                                  | -               | 1.10           |             | CL-ML                 | Silty Clay, light brown, stiff, moist, heterogeneous, with inclusions of shale                                                                                                                                                                                                                          | BH08_1.30<br>PID = 4 ppm    | No odour, ACM or staining                              |
|                                                                  | 1 <u>.5</u>     | 1.40           |             | CL-ML                 | Silty Clay, light brown / light orange, stiff, moist, heterogeneous, with inclusions of shale<br>Borehole BH08 terminated at 1.6m                                                                                                                                                                       | BH08_1.60<br>PID = 4.4 ppm  | No odour, ACM or staining<br>End of hole at 1.6 m bgs  |
|                                                                  | -               |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |
|                                                                  | 2 <u>.0</u>     |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |
| 19                                                               | 2.5             |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |
| LIA.GDT 27/2/                                                    | -               |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |
| STD AUSTRA                                                       |                 |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |
| 017.GPJ GINT                                                     | -               |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19 | 3 <u>.5</u>     |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |
| HOLE JBSG E                                                      | -               |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |
| BORE                                                             | 4 <u>.0</u>     |                |             |                       |                                                                                                                                                                                                                                                                                                         |                             |                                                        |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.6 Bore Diameter (mm): 150

|                                                       |                  |                |             |                       |                                                                                                                                       |                             | I                                 |
|-------------------------------------------------------|------------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
| Method                                                | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                              | Samples<br>Tests<br>Remarks | Additional Observations           |
| SFA                                                   | _                |                |             | Fill                  | Fill - Silty Clayey Sand, brown, damp, heterogeneous, medium dense, with inclusions<br>of gravel, trace ash, rootlets and trace brick | BH09_0.15<br>PID = 4 ppm    | No odour, ACM or staining         |
|                                                       | -                | 0.20           |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, damp, loose, with inclusions of shale                                                        |                             | ······                            |
|                                                       | 0.5              | 0.50           |             | CL-ML                 | Silty Clay, brown, heterogeneous, damp, low plasticity, firm, with inclusions of shale                                                | BH09_0.5<br>PID = 2.1 ppm   | No odour, ACM or staining         |
|                                                       |                  |                |             |                       |                                                                                                                                       |                             |                                   |
|                                                       | -                |                |             |                       |                                                                                                                                       | BH09_1.1<br>PID = 3 ppm     |                                   |
|                                                       | 1 <u>.5</u>      | 1.60           |             |                       | Borehole BH09 terminated at 1.6m                                                                                                      |                             | End of hole ay 1.6 m bgs on shale |
|                                                       | -                |                |             |                       |                                                                                                                                       |                             |                                   |
|                                                       | 2 <u>.0</u>      |                |             |                       |                                                                                                                                       |                             |                                   |
|                                                       | -                |                |             |                       |                                                                                                                                       |                             |                                   |
| A.GDT 27/2/19                                         | 2 <u>.5</u><br>  |                |             |                       |                                                                                                                                       |                             |                                   |
| TD AUSTRALI                                           |                  |                |             |                       |                                                                                                                                       |                             |                                   |
| .GPJ GINT S                                           | -                |                |             |                       |                                                                                                                                       |                             |                                   |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA. | -<br>3 <u>.5</u> |                |             |                       |                                                                                                                                       |                             |                                   |
| OLE JBSG BO                                           | -                |                |             |                       |                                                                                                                                       |                             |                                   |
| BOREH                                                 | 4 <u>.0</u>      |                |             |                       |                                                                                                                                       |                             |                                   |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 2 Bore Diameter (mm): 150

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                        | Samples<br>Tests<br>Remarks | Additional Observations                                           |
|--------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|
| SFA    |              | 0.05           |             | Fill<br>Fill          | Fill - Asphalt<br>Fill - Sandy Silty Gravel, brown, dry, dense, sub-angular, with inclusions of mulch           | BH10_0.15<br>PID = 4 ppm    | QA20190121RC_01 /<br>QC20190121RC_01<br>No odour, ACM or staining |
|        | -            | 0.20           |             | Fill                  | Fill - Gravelly Silty Sand, light brown, heterogeneous, dry, medium dense, with inclusions of shale             |                             | No ocour, Acim of stanning                                        |
|        | 0.5          | 0.50           |             | Fill                  | Fill - Gravelly Silty Sand, more silty, light brown, heterogeneous, dry, medium dense, with inclusions of shale | BH10_0.50<br>PID = 1.8 ppm  | No odour, ACM or staining                                         |
|        | -            |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | -            |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | 1 <u>.0</u>  |                |             |                       |                                                                                                                 | BH10_1.10<br>PID = 3.2 ppm  |                                                                   |
|        | _            |                |             |                       |                                                                                                                 |                             |                                                                   |
|        |              |                |             |                       |                                                                                                                 |                             | No odeve ACM excitaising                                          |
|        | 1 <u>.5</u>  | 1.50           |             | CL-ML                 | Silty Clay, creamy brown, homogeneous, dry, stiff, low plasticity                                               | BH10_1_70                   | No odour, ACM or staining                                         |
|        | -            |                |             |                       |                                                                                                                 | BH10_1.70<br>PID = 2.8 ppm  | _                                                                 |
|        | 2.0          |                |             |                       |                                                                                                                 |                             | No odour, ACM or staining<br>End of hole at 2.0 m bgs             |
|        | _            | 2.00           |             |                       | Borehole BH10 terminated at 2m                                                                                  |                             |                                                                   |
|        |              |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | 2.5          |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | -            |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | _            |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | 3.0          |                |             |                       |                                                                                                                 |                             |                                                                   |
|        |              |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | -            |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | 3.5          |                |             |                       |                                                                                                                 |                             |                                                                   |
|        |              |                |             |                       |                                                                                                                 |                             |                                                                   |
|        | 4.0          |                |             |                       |                                                                                                                 |                             |                                                                   |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 150

| Method                 | Depth (mbgs)                                   | Contact (mbgs) | Graphic Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithological<br>Class | Lithological Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Samples<br>Tests<br>Remarks | Additional Observations                                                                                         |
|------------------------|------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
| SFA                    | _                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fill                  | Fill - Gravely Silty Sand, brown, heterogeneous, damp, medium dense, with inclusions<br>of rootlets and shale                                                                                                                                                                                                                                                                                                                                                                            | BH11_0.15<br>PID = 1.9 ppm  | No odour, ACM or staining                                                                                       |
|                        |                                                | 0.15<br>0.15   | Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contractio | SM                    | Fill - Gravely Silty Sand, brown, heterogeneous, damp, medium dense, with inclusions of rootlets and shale         Fill - Silty Sand, light brown, damp, heterogeneous, loose, with inclusions of shale         Silty Sand / crushed shale, hard surface, light brown, damp, heterogeneous, loose, with inclusions of shale         Silty Sand / crushed shale, hard surface, light brown, damp, heterogeneous, loose, with inclusions of shale         Borehole BH11 terminated at 1.5m |                             | No odour, ACM or staining<br>No odour, ACM or staining<br>No odour, ACM or staining<br>End of hole at 1.5 m bgs |
| BOREHOLE JBSG BOREHOLE | 3 <u>.5</u><br>-<br>-<br>-<br>-<br>4 <u>.0</u> |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                                                                                                 |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 150

| Method                                               | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                     | Samples<br>Tests<br>Remarks | Additional Observations           |
|------------------------------------------------------|--------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
| SFA                                                  | -            |                |             | Fill                  | Fill - Silty Sand, dark brown / black, moist, heterogeneous, loose, with inclusions of<br>mulch and bark chip (organic peat) | BH12_0.15<br>PID = 2.8 ppm  | No odour, ACM or staining         |
|                                                      | _            | 0.20           |             | Fill                  | Fill - Silty Sand, light brown, loose, damp, with inclusions of gravels and rootlets                                         |                             |                                   |
|                                                      | 0 <u>.5</u>  | 0.50           |             | Fill                  | Silty Sand, light brown, loose, damp, with inclusions of shale                                                               | BH12_0.5<br>PID = 3.9 ppm   | No odour, ACM or staining         |
|                                                      | -            |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | -            |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | 1 <u>.0</u>  |                |             |                       |                                                                                                                              | BH12_1.1<br>PID = 2.1 ppm   | No odour, ACM or staining         |
|                                                      | -            |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | 1.5          |                |             |                       |                                                                                                                              |                             | End of hole at 1.5 m bgs on shale |
|                                                      | -            | 1.50           |             |                       | Borehole BH12 terminated at 1.5m                                                                                             |                             |                                   |
|                                                      | -            |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | 2 <u>.0</u>  |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | -            |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | -            |                |             |                       |                                                                                                                              |                             |                                   |
| .GDI 27/2/19                                         | 2.5          |                |             |                       |                                                                                                                              |                             |                                   |
| KALIA.GD                                             | -            |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | 3.0          |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | -            |                |             |                       |                                                                                                                              |                             |                                   |
| - 2017.GP                                            | -            |                |             |                       |                                                                                                                              |                             |                                   |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA | 3 <u>.5</u>  |                |             |                       |                                                                                                                              |                             |                                   |
| JBSG BO.                                             | -            |                |             |                       |                                                                                                                              |                             |                                   |
| KEHOLE .                                             | -            |                |             |                       |                                                                                                                              |                             |                                   |
|                                                      | 4.0          |                |             |                       |                                                                                                                              |                             |                                   |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 25/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 50

| Method                                                | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                               | Samples<br>Tests<br>Remarks | Additional Observations                               |
|-------------------------------------------------------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
| HA                                                    | -            |                |             | Fill                  | Fill - Silty Sand (topsoil), dark brown, heterogeneous, loose, dry, with inclusions of<br>rootlets and trace rock                                      | BH13_0.15<br>PID = 2.1 ppm  | No odour, ACM or staining                             |
|                                                       | -            | 0.30           |             | Fill                  | Fill - Clayey Silty Sand, dark brown with light grey mottling, heterogeneous, loose, damp, with inclusions of igenous rock and trace brick             | BH13_0.50<br>PID = 2.1 ppm  |                                                       |
|                                                       | 0 <u>.5</u>  | 0.50           |             | Fill                  | Fill - Silty Clay, brown with light brown / grey mottling, heterogenous, firm, medium<br>plasticity, damp, with inclusions of shale and trace brick    | PID = 2.1 ppm               | No odour, ACM or staining                             |
|                                                       | -            | 0.70           |             | Fill                  | Fill - Silty Clay, dark brown with light brown / grey mottling, heterogenous, firm, medium plasticity, moist, with inclusions of shale and trace brick | BH13_0.80<br>PID = 3.4 ppm  | No odour, ACM or staining                             |
|                                                       | 1            | 0.90           |             | CL                    | Clay, brown / red, homogeneous, damp, hard, high plasticity                                                                                            | -                           | No odour, ACM or staining                             |
|                                                       | -            |                |             |                       |                                                                                                                                                        | BH13_1.30<br>PID = 6.5 ppm  |                                                       |
|                                                       |              | 1.50           |             |                       | Borehole BH13 terminated at 1.5m                                                                                                                       | _                           | No odour, ACM or staining<br>End of hole at 1.5 m bgs |
|                                                       | -            |                |             |                       |                                                                                                                                                        |                             |                                                       |
|                                                       | -            |                |             |                       |                                                                                                                                                        |                             |                                                       |
|                                                       | 2 <u>.0</u>  |                |             |                       |                                                                                                                                                        |                             |                                                       |
|                                                       | -            |                |             |                       |                                                                                                                                                        |                             |                                                       |
| GUI 2//2/19                                           | 2 <u>.5</u>  |                |             |                       |                                                                                                                                                        |                             |                                                       |
|                                                       | -            |                |             |                       |                                                                                                                                                        |                             |                                                       |
|                                                       | 3.0          |                |             |                       |                                                                                                                                                        |                             |                                                       |
|                                                       | -            |                |             |                       |                                                                                                                                                        |                             |                                                       |
| E - 2017.61                                           | -            |                |             |                       |                                                                                                                                                        |                             |                                                       |
| вокеног                                               | 3 <u>.5</u>  |                |             |                       |                                                                                                                                                        |                             |                                                       |
| BUREHULE JBSG BUREHULE - 2017.913 GINI SID AUS IRALIA | -            |                |             |                       |                                                                                                                                                        |                             |                                                       |
| вокенс                                                | 4 <u>.0</u>  |                |             |                       |                                                                                                                                                        |                             |                                                       |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

|                |                         |                |                          |                           | Site Address: Centennial Avenue, Chatswood                                                                              |                             |                                                       |
|----------------|-------------------------|----------------|--------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
| Lo<br>Co<br>To | gged<br>ntrac<br>tal Ho | ole De         | RC, N<br>p <b>th (</b> 1 | /IN<br>mbgs): 1<br>n): 50 | Eastings (GDA 94):<br>Northings (GDA 94):<br>Zone/Area/Permit#:<br>.4 Reference Level: Ground Surface<br>Elevation (m): |                             | -                                                     |
| Method         | Depth (mbgs)            | Contact (mbgs) | Graphic Log              | Lithological<br>Class     | Lithological Description                                                                                                | Samples<br>Tests<br>Remarks | Additional Observations                               |
| НA             | _                       |                |                          | Fill                      | Fill - Silty Sand, brown, loose, heterogenous, damp, with inclusions of rootlets                                        | BH14_0.15<br>PID = 1.8 ppm  | -                                                     |
|                | 0.5                     | 0.40           |                          | Fill                      | Fill - Silty Sand, brown, loose, heterogeneous, damp, with inclusions of rootlets, becomes slightly gravelly            |                             | No odour, ACM or staining                             |
|                | -                       | 0.60           |                          | Fill                      | Fill - Clayey Silty Sand, light brown / orangy, soft, heterogenous, damp, with inclusions of roots                      | BH14_0.7<br>PID = 1.3 ppm   | No odour, ACM or staining                             |
|                | -                       | 0.80           |                          | CL-ML                     | Silty Clay, light brown / orangy with cream mottling, homogeneous, hard, medium                                         | PID = 1.3 ppm               | No odour, ACM or staining                             |
|                | 1 <u>.0</u><br>-        |                |                          |                           | plasticity                                                                                                              | BH14_1.1<br>PID = 2.5 ppm   | No odour, ACM or staining<br>End of hole at 1.4 m bgs |
|                |                         | 1.40           |                          |                           | Borehole BH14 terminated at 1.4m                                                                                        |                             |                                                       |

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 21/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 2.8 Bore Diameter (mm): 150 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m):

| Method  | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                              | Samples<br>Tests<br>Remarks | Additional Observations           |
|---------|--------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
| SFA     | _            |                |             | Fill                  | Fill - Silty Sand, damp, heterogenous, dark, brown, with inclusions of gravels and<br>rootlets                                        | BH15_0.15<br>PID = 1.8 ppm  | No odour, ACM or staining         |
|         |              | 0.20           |             | Fill                  | Fill - Gravelly Silty Sand, heterogeneous, brown, with inclusions of gravels and rootlets                                             |                             |                                   |
|         | 0 <u>.5</u>  | 0.50           |             | Fill                  | Fill - Gravelly Silty Sand, heterogeneous, brown, with inclusions of shale                                                            | BH15_0.50<br>PID = 4.7 ppm  | No odour, ACM or staining         |
|         |              |                |             |                       |                                                                                                                                       |                             |                                   |
|         | _            |                |             |                       |                                                                                                                                       |                             |                                   |
|         | 1 <u>.0</u>  |                |             |                       |                                                                                                                                       | BH15_1.10<br>PID = 1.5 ppm  |                                   |
|         |              | 1.20           |             |                       |                                                                                                                                       |                             | No odour, ACM or staining         |
|         |              |                |             |                       |                                                                                                                                       |                             |                                   |
|         | _            | 1.60           |             | CL-ML                 | Silty Clay, brown, homogeneous, damp, medium plasticty, stiff, with inclusions of trace ash                                           | BH15_1.60<br>PID = 3 ppm    | No odour, ACM or staining         |
|         |              |                |             |                       |                                                                                                                                       |                             |                                   |
|         | 2 <u>.0</u>  |                |             |                       |                                                                                                                                       |                             |                                   |
|         |              |                |             |                       |                                                                                                                                       | BH15_2.30<br>PID = 1.8 ppm  | No odour, ACM or staining         |
|         |              |                |             |                       |                                                                                                                                       | PID = 1.8 ppm               |                                   |
| 2117112 | 2 <u>.5</u>  |                |             |                       |                                                                                                                                       |                             |                                   |
|         | _            | 2.80           |             | CL                    | Clay, brown, dry, homogeneous, hard, medium plasticity, with inclusions of minor ash<br>and shale<br>Borehole BH15 terminated at 2.8m |                             | End of hole ay 2.8 m bgs on shale |
|         | 3.0          | 2.00           |             |                       |                                                                                                                                       |                             |                                   |
|         |              |                |             |                       |                                                                                                                                       |                             |                                   |
| 0.102   |              |                |             |                       |                                                                                                                                       |                             |                                   |
|         | 3.5          |                |             |                       |                                                                                                                                       |                             |                                   |
|         |              |                |             |                       |                                                                                                                                       |                             |                                   |
|         |              |                |             |                       |                                                                                                                                       |                             |                                   |
|         | 4.0          |                | <u>   </u>  |                       | 1                                                                                                                                     |                             |                                   |

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 2.2 Bore Diameter (mm): 150

| Method                                                           | Depth (mbgs)                         | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                        | Samples<br>Tests<br>Remarks                            | Additional Observations                               |
|------------------------------------------------------------------|--------------------------------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| SFA                                                              | -<br>-<br>0 <u>.5</u><br>-           |                |             | Fill                  | Fill - Silty Sand, dark brown, heterogeneous, damp, loose, with inclusions of rootlets, shale and trace gravels | BH16_0.15<br>PID = 6 ppm<br>BH16_0.50<br>PID = 1.5 ppm |                                                       |
|                                                                  |                                      | 1.20           |             | Fill                  | Fill - Silty Clay, brown, damp, heterogeneous, low plasticity, soft, with inclusions of shale                   | BH16_1.10<br>PID = 4.3 ppm                             | No odour, ACM or staining                             |
|                                                                  | 1 <u>.5</u><br>-<br>-<br>2.0         | 1.90           |             | CL                    | Clay, brown with white / grey mottling, homogeneous, damp, stiff, medium plasticity                             | BH16_1.60<br>PID = 4.2 ppm                             | No odour, ACM or staining                             |
|                                                                  | _                                    | 2.20           |             |                       | Borehole BH16 terminated at 2.2m                                                                                | BH16_2.10<br>PID = 4.8 ppm                             | No odour, ACM or staining<br>End of hole at 2.2 m bgs |
| r std Australia.gdt 27/2/19                                      | 2 <u>.5</u><br>-<br>-<br>3 <u>.0</u> |                |             |                       |                                                                                                                 |                                                        |                                                       |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19 |                                      |                |             |                       |                                                                                                                 |                                                        |                                                       |
| BOREHOLE JE                                                      |                                      |                |             |                       |                                                                                                                 |                                                        |                                                       |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 2 Bore Diameter (mm): 150

| Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Samples<br>Tests<br>Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Additional Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                |                |             | Fill                  | Fill - Grout Concrete, dry, dense, light grey, heterogeneous, with inclusions of gravel<br>and boulders of rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH17_0.15<br>PID = 5.7 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No odour, ACM or staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                | 0.15           |             | Fill                  | Fill - Sandy Clay, grey with red / brown mottling, damp, heterogeneous, firm, medium<br>plasticity, with inclusions of gravel and geofabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.5              |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH17_0.50<br>PID = 3.6 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                | 0.80           |             | Fill                  | Fill - Silty Clay, grey with red / brown mottling, damp, heterogeneous, firm, medium<br>plasticity, with inclusions of trace gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No odour, ACM or staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 <u>.0</u><br>_ |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH17_1.10<br>PID = 8.4 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | 1.30           |             | CL                    | Clay, brown with dark grey mottling, hard, high plasticity, damp, homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Very slight organic odour, no ACM or staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH17_1.60<br>PID = 4.4 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.0              | 2.00           |             |                       | Decelors DI147 to mineted at 2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No odour, ACM or staining<br>End of hole at 2.0 m bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _                | 2.00           |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.5              |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.0              |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3 <u>.5</u>      |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                |                |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                |             |                       | - 0.15 Fill<br>- 0.15 Fill<br>- 0.80 Fill<br>- 0.80 Fill<br>- 1.0<br>- 1.0<br>- 1.30 CL<br>- 1.5<br>- 1.5<br>- 1.5<br>- 1.30 CL<br>- 1.5<br>- 1.5<br>- 1.30 CL<br>- 1.5<br>- 1.30 CL<br>- 1.5<br>- 1.5<br>- 1.30 CL<br>- 1.5<br>- 1.5<br>- 1.5<br>- 1.5<br>- 1.5<br>- 1.30 CL<br>- 1.5<br>- 1.5<br>- 1.30 CL<br>- 1.5<br>- 1.5<br>- 1.5<br>- 1.5<br>- 1.30 CL<br>- 1.5<br>- | 1.0       Fill       Fill | 1.0     Fill     Fill     Fill     Fill     Fill     Fill     Fill     BH17, 0.15<br>PID = 5.7 ppm       0.15     Fill     Fill     Fill     Fill     Fill     Fill     Fill     Fill       0.5     -     -     -     -     -     -     -     -       0.5     -     -     -     -     -     -     -     -       0.6     -     -     -     -     -     -     -       0.80     -     Fill     Fill     Fill     -     -     -       1.0     -     -     -     -     -     -     -       1.0     -     -     -     -     -     -     -       1.0     -     -     -     -     -     -     -       1.10     -     -     -     -     -     -     -       1.30     -     -     -     -     -     -     -       2.4     -     -     -     -     -     -     -       2.5     -     -     -     -     -     -     -       1.5     -     -     -     -     -     - |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.3 Bore Diameter (mm): 150

| Method | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                                                 | Samples<br>Tests<br>Remarks | Additional Observations   |
|--------|------------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| SFA    |                  | 0.20           |             | Fill<br>Fill          | Fill - Silty Gravel, grey, dry, homogeneous, dense, medium gravel, angular, with inclusions of geofabric         Fill - Gravelly Sand, light grey, damp, medium dense, heterogeneous, with inclusions of shale, metal wire and geofabric | BH18_0.15<br>PID = 5.1 ppm  | No odour, ACM or staining |
|        | 0.5              | 0.60           |             | Fill                  | Fill - Silty Clay, grey / brown, heterogeneous, damp, firm, medium plasticity, with inclusions of gravel, shale and metal wire                                                                                                           | BH18_0.50<br>PID = 7.6 ppm  | No odour, ACM or staining |
|        | -                |                |             |                       | inclusions of gravel, shale and metal wire                                                                                                                                                                                               | BH18_0.80<br>PID = 4.8 ppm  | No odour, ACM or staining |
|        | 1 <u>.0</u><br>_ | 1.00           |             | CL                    | Clay, brown with grey mottling, heterogeneous, medium plasticity, stiff, with inclusions of trace shale                                                                                                                                  | BH18_1.10<br>PID = 6.5 ppm  | No odour, ACM or staining |
|        |                  | 1.30           |             |                       | Borehole BH18 terminated at 1.3m                                                                                                                                                                                                         |                             | End of hole at 1.3 m bgs  |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.4 Bore Diameter (mm): 150

| Method                                                          | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                      | Samples<br>Tests<br>Remarks | Additional Observations                               |
|-----------------------------------------------------------------|--------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
| SFA                                                             |              |                |             | Fill                  | Fill - Crushed Concrete: Silty gravel, light grey, heterogeneous, dry, dense, with<br>inclusions of asphalt                   | BH19_0.15<br>PID = 6.4 ppm  | No odour, ACM or staining                             |
|                                                                 | 0.5          | 0.20           |             | Fill                  | Fill - Crushed Concrete, sandy, light grey, medium sand, medium dense, with inclusions of gravel, shale, metal wire and metal | BH19_0.50<br>PID = 7.4 ppm  |                                                       |
|                                                                 | -            | 0.70           |             | Fill                  | Fill - Sandy Clay, brown / grey, heterogeneous, damp, medium plasticity, firm, with inclusions of gravel and shale            | BH19_0.80<br>PID = 6.2 ppm  | No odour, ACM or staining                             |
|                                                                 | 1 <u>.0</u>  | 1.00           |             | CL                    | Clay, brown with red mottling, damp, heterogeneous, hard, high plasticity, with inclusions of shale                           | BH19_1.10<br>PID = 2.6 ppm  | No odour, ACM or staining                             |
|                                                                 | _            |                |             |                       |                                                                                                                               |                             | No odour, ACM or staining<br>End of hole at 1.4 m bgs |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINTSTD AUSTRALIA.GDT 27/2/19 |              | 1.40           |             |                       | Borehole BH19 terminated at 1.4m                                                                                              |                             |                                                       |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.6 Bore Diameter (mm): 150

| Method                                                           | Depth (mbgs)          | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                                                                                                           | Samples<br>Tests<br>Remarks | Additional Observations                               |
|------------------------------------------------------------------|-----------------------|----------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
| SFA                                                              | -                     | 0.20           |             | Fill                  | Fill - Silty Gravel, light grey, heterogeneous, dry, dense, with inclusionsa of plastic and asphalt                                                                                                                                                                                                | BH20_0.15<br>PID = 3.2 ppm  | No odour, ACM or staining                             |
|                                                                  | 0.5                   | 0.60           |             | Fill                  | <ul> <li>Fill - Gravelly Silty Sand, brown / light grey, damp, heterogeneous, medium dense, with inclusions of shale and cobbles of rock</li> <li>Fill - Silty Clay, brown / red with light grey mottling, damp, hard, medium plasticity, heterogeneous, with inclusions of trave shale</li> </ul> | BH20_0.50<br>PID = 4.1 ppm  | No odour, ACM or staining                             |
|                                                                  |                       | 1.20           |             | CL-ML                 | Silty Clay, red with light grey mottling, damp, homogeneous, high plasticity, stiff                                                                                                                                                                                                                | BH20_1.10<br>PID = 2.9 ppm  | No odour, ACM or staining                             |
|                                                                  | 1 <u>.5</u>           | 1.60           |             |                       | Borehole BH20 terminated at 1.6m                                                                                                                                                                                                                                                                   | BH20_1.60<br>PID = 6.8 ppm  | No odour, ACM or staining<br>End of hole at 1.6 m bgs |
|                                                                  | <br>2 <u>.0</u>       |                |             |                       |                                                                                                                                                                                                                                                                                                    |                             |                                                       |
| 27/2/19                                                          | _<br>_<br>2 <u>.5</u> |                |             |                       |                                                                                                                                                                                                                                                                                                    |                             |                                                       |
| STD AUSTRALIA.GDT                                                | 3.0                   |                |             |                       |                                                                                                                                                                                                                                                                                                    |                             |                                                       |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19 |                       |                |             |                       |                                                                                                                                                                                                                                                                                                    |                             |                                                       |
| BOREHOLE JBS(                                                    |                       |                |             |                       |                                                                                                                                                                                                                                                                                                    |                             |                                                       |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.2 Bore Diameter (mm): 150

| Method                                                             | Depth (mbgs)    | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                    | Samples<br>Tests<br>Remarks | Additional Observations                               |
|--------------------------------------------------------------------|-----------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
| SFA                                                                | -               |                |             | Fill                  | Fill - Gravelly Silty Sand, medium dense, grey, sub-angular, with inclusions of rootlets                                                                    | BH21_0.15<br>PID = 1.8 ppm  | No odour, ACM or staining                             |
|                                                                    | _               | 0.20           |             | Fill                  | Fill - Gravelly Silty Clay, brown / red with white mottling, heterogeneous, stiff, medium<br>plasticity, with inclusions of trace sandstone and trace shale | <b>RH21 0 5</b>             |                                                       |
|                                                                    | 0 <u>.5</u>     | 0.50           |             | SG-SM                 | Gravelly Silty Sand, brown, heterogeneous, moist, dense, with inclusions of shale                                                                           | BH21_0.5<br>PID = 2.1 ppm   | No odour, ACM or staining                             |
|                                                                    | -               |                |             |                       |                                                                                                                                                             |                             |                                                       |
|                                                                    | 1               |                |             |                       |                                                                                                                                                             | BH21_1.1<br>PID = 2.8 ppm   | -                                                     |
|                                                                    |                 | 1.20           |             |                       | Borehole BH21 terminated at 1.2m                                                                                                                            | PID = 2.8 ppm               | No odour, ACM or staining<br>End of hole at 1.2 m bgs |
|                                                                    | -               |                |             |                       |                                                                                                                                                             |                             |                                                       |
|                                                                    | 1 <u>.5</u>     |                |             |                       |                                                                                                                                                             |                             |                                                       |
|                                                                    | _               |                |             |                       |                                                                                                                                                             |                             |                                                       |
|                                                                    | 2 <u>.0</u>     |                |             |                       |                                                                                                                                                             |                             |                                                       |
|                                                                    | -               |                |             |                       |                                                                                                                                                             |                             |                                                       |
| 61/1                                                               | <br>2 <u>.5</u> |                |             |                       |                                                                                                                                                             |                             |                                                       |
| 4.GUI 2//2                                                         | -               |                |             |                       |                                                                                                                                                             |                             |                                                       |
| AUS I KALIV                                                        | -               |                |             |                       |                                                                                                                                                             |                             |                                                       |
|                                                                    | 3 <u>.0</u>     |                |             |                       |                                                                                                                                                             |                             |                                                       |
| 2017.01                                                            | -               |                |             |                       |                                                                                                                                                             |                             |                                                       |
| פטגברוטרב לפאפ פטגברוטרב - לטו ליפרי פואן אום אטאוגאנואיפטן גוועוש | 3.5             |                |             |                       |                                                                                                                                                             |                             |                                                       |
| JBSG BO                                                            |                 |                |             |                       |                                                                                                                                                             |                             |                                                       |
| JREHULE                                                            | 4.0             |                |             |                       |                                                                                                                                                             |                             |                                                       |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.4 Bore Diameter (mm): 150

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                          | Samples<br>Tests<br>Remarks | Additional Observations   |
|--------|--------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| SFA    | _            |                |             | Fill                  | Fill - Sand, brown / yellow, damp, heterogeneous, soft, with inclusions of gravel and<br>rootlets | BH22_0.15<br>PID = 8.4 ppm  | No odour, ACM or staining |
|        |              | 0.15           |             | Fill                  | Fill - Silty Sand, dark brown / grey, damp, heterogeneous, soft, with inclusions of trave gravel  |                             |                           |
|        |              |                |             |                       |                                                                                                   |                             |                           |
|        | 0.5          |                |             |                       |                                                                                                   | BH22_0.5<br>PID = 2.4 ppm   | -                         |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        | _            | 0.80           |             | SHALE                 | Weathered Shale, red / yellow, damp, firm                                                         |                             | No odour, ACM or staining |
|        | 1.0          |                |             |                       |                                                                                                   |                             |                           |
|        |              |                |             |                       |                                                                                                   | BH22_1.10<br>PID = 4.4 ppm  | -                         |
|        | _            |                |             |                       |                                                                                                   |                             | No odour, ACM or staining |
|        |              | 4.40           |             |                       |                                                                                                   |                             | End of hole at 1.4 m bgs  |
|        | 1.5          | 1.40           |             |                       | Borehole BH22 terminated at 1.4m                                                                  |                             |                           |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        | 2.0          |                |             |                       |                                                                                                   |                             |                           |
|        |              |                |             |                       |                                                                                                   |                             |                           |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        |              |                |             |                       |                                                                                                   |                             |                           |
|        | 2.5          |                |             |                       |                                                                                                   |                             |                           |
|        |              |                |             |                       |                                                                                                   |                             |                           |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        | 3.0          |                |             |                       |                                                                                                   |                             |                           |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        |              |                |             |                       |                                                                                                   |                             |                           |
|        | 3.5          |                |             |                       |                                                                                                   |                             |                           |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        | _            |                |             |                       |                                                                                                   |                             |                           |
|        | 4 <u>.0</u>  |                |             |                       |                                                                                                   |                             |                           |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 2 Bore Diameter (mm): 150

| Method | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                            | Samples<br>Tests<br>Remarks | Additional Observations                            |
|--------|--------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| SFA    | _            |                |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, damp, very loose, with inclusions of rootlets<br>and anthropotic           | BH23_0.15<br>PID = 2.6 ppm  | No odour, ACM or staining                          |
|        | - 0.5        | 0.20           |             | Fill                  | Fill - Silty Clay, brown / white with grey / red mottling, medium plasticity, damp, homogeneous                     | BH23_0.5<br>PID = 4.4 ppm   |                                                    |
|        | _            | 0.60           |             | Fill                  | Fill - Silty Clayey Sand, brown, damp, homogeneous, loose, (firm clay)                                              |                             | No odour, ACM or staining                          |
|        | 1 <u>.0</u>  |                |             |                       |                                                                                                                     | BH23_1.1<br>PID = 4.3 ppm   |                                                    |
|        |              | 1.20           |             | Fill                  | Fill - Silty Sand, dark brown / black, homogeneous, damp, very loose                                                | -                           | No odour, ACM or staining                          |
|        | 1 <u>.5</u>  | 1.40           |             | Fill                  | Fill - Silty Sand, dark brown / black, heterogeneous, damp, very loose, with inclusions of metal and cloats of clay | BH23_1.4<br>PID = 3.5 ppm   | No odour, ACM or staining                          |
|        | -            | 1.70           |             | CL-ML                 | Silty Clay, brown/ grey, damp, homogeneous, high plasticity, hard                                                   | BH23_1.8<br>PID = 6.1 ppm   | No odour, ACM or staining                          |
|        | 2.0          | 2.00           |             |                       | Borehole BH23 terminated at 2m                                                                                      | -                           | No odour, ACM or staining<br>End of hole 2.0 m bgs |
|        | -            |                |             |                       |                                                                                                                     |                             |                                                    |
|        | 2 <u>.5</u>  |                |             |                       |                                                                                                                     |                             |                                                    |
|        |              |                |             |                       |                                                                                                                     |                             |                                                    |
|        | 3 <u>.0</u>  |                |             |                       |                                                                                                                     |                             |                                                    |
|        | -            |                |             |                       |                                                                                                                     |                             |                                                    |
|        | 3 <u>.5</u>  |                |             |                       |                                                                                                                     |                             |                                                    |
|        |              |                |             |                       |                                                                                                                     |                             |                                                    |
|        | 4.0          |                |             |                       |                                                                                                                     |                             |                                                    |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.6 Bore Diameter (mm): 150 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m):

| Method | Depth (mbgs)       | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                       | Samples<br>Tests<br>Remarks | Additional Observations                                |
|--------|--------------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------|
| SFA    | -                  |                |             | Fill                  | Fill - Silty Gravelly Sand, brown, damp, heterogeneous, medium dense, coarse gravel, with inclusions of trace brick, rootlets and bits of wood | BH24_0.1<br>PID = 6.8 ppm   | No odour, ACM or staining                              |
|        | <br>0 <u>.5</u>    | 0.20           |             | Fill                  | Fill - Silty Clay, brown / light grey mottling, heterogeneous, damp, hard, medium<br>plasticity with inclusions of trace gravels               | BH24_0.5<br>PID = 11.4 ppm  | No odour, ACM or staining                              |
|        |                    | 0.80           |             | CL-ML                 | Silty Clay, brown, damp, medium plasticity, hard, heterogeneous                                                                                | BH24_1.1<br>PID = 2.5 ppm   |                                                        |
|        |                    | 1.30           |             | CL                    | Clay, brown, homogeneous, damp, hard, medium plasticity                                                                                        | BH24_1.5<br>PID = 1.4 ppm   | No odour, ACM or staining<br>No odour, ACM or staining |
|        |                    | 1.60           |             |                       | Borehole BH24 terminated at 1.6m                                                                                                               |                             | End of hole at 1.6 m bgs                               |
|        | <br>2 <u>.0</u>    |                |             |                       |                                                                                                                                                |                             |                                                        |
|        | -<br>2.5<br>-<br>- |                |             |                       |                                                                                                                                                |                             |                                                        |
|        | 3 <u>.0</u><br>-   |                |             |                       |                                                                                                                                                |                             |                                                        |
|        | 3.5                |                |             |                       |                                                                                                                                                |                             |                                                        |
|        | 4.0                |                |             |                       |                                                                                                                                                |                             |                                                        |

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 150

|                                                  | (5           | gs)            |             |                       |                                                                                                 | <b>Con</b> traction         |                           |
|--------------------------------------------------|--------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| Method                                           | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                        | Samples<br>Tests<br>Remarks | Additional Observations   |
| S                                                | _            |                |             | Fill                  | Fill - Concrete Slab                                                                            |                             |                           |
| SFA                                              | -            | 0.20           |             | Fill                  | Fill - Silty Clay, brown / white with red mottling, damp, homogeneous, stiff, medium plasticity | BH25_0.3<br>PID = 3.4 ppm   | _                         |
|                                                  | _            |                |             |                       |                                                                                                 |                             | No odour, ACM or staining |
|                                                  | 0.5          | 0.50           |             | Fill                  | Fill - Clay, brown / red, damp, homogeneous, hard, high plastcity                               | BH25_0.6<br>PID = 3.7 ppm   | _                         |
|                                                  |              |                |             |                       |                                                                                                 |                             |                           |
|                                                  | -            |                |             |                       |                                                                                                 |                             |                           |
|                                                  | 1.0          | 1.00           |             | CL                    | Clay, damp, brown with light red mottling, homogeneous, hard, high plasticity                   |                             | No odour, ACM or staining |
|                                                  | -            |                |             |                       |                                                                                                 | BH25_1.2<br>PID = 7.2 ppm   |                           |
|                                                  | -            |                |             |                       |                                                                                                 |                             | No odour, ACM or staining |
|                                                  |              |                |             |                       |                                                                                                 | _                           | End of hole at 1.5 m bgs  |
|                                                  | -            | 1.50           |             |                       | Borehole BH25 terminated at 1.5m                                                                |                             |                           |
|                                                  |              |                |             |                       |                                                                                                 |                             |                           |
|                                                  | 2.0          |                |             |                       |                                                                                                 |                             |                           |
|                                                  | -            |                |             |                       |                                                                                                 |                             |                           |
|                                                  | -            |                |             |                       |                                                                                                 |                             |                           |
|                                                  | -            |                |             |                       |                                                                                                 |                             |                           |
|                                                  | 2 <u>.5</u>  |                |             |                       |                                                                                                 |                             |                           |
| IA.GUI                                           |              |                |             |                       |                                                                                                 |                             |                           |
| TRAI LA                                          | -            |                |             |                       |                                                                                                 |                             |                           |
| SIUA                                             | 3 <u>.0</u>  |                |             |                       |                                                                                                 |                             |                           |
|                                                  | -            |                |             |                       |                                                                                                 |                             |                           |
| 19.7102                                          | -            |                |             |                       |                                                                                                 |                             |                           |
| - HULE -                                         | 3 <u>.5</u>  |                |             |                       |                                                                                                 |                             |                           |
| BOREHOLE JBSG BOREHOLE - ZUT, GN I STU AUSTRALA. | -            |                |             |                       |                                                                                                 |                             |                           |
| LE JBS                                           |              |                |             |                       |                                                                                                 |                             |                           |
| OKEHO                                            | -            |                |             |                       |                                                                                                 |                             |                           |
| ă 🔛                                              | 4.0          |                |             |                       |                                                                                                 |                             |                           |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.8 Bore Diameter (mm): 150 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m):

| Method                                                              | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                         | Samples<br>Tests<br>Remarks | Additional Observations                               |
|---------------------------------------------------------------------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
| SFA                                                                 | _            |                |             | Fill                  | Fill - Silty Clay, light grey with red mottling, damp, heterogeneous, hard, medim<br>plasticity, with inclusions of gravel and asphalt           | BH26_0.1<br>PID = 7 ppm     | No odour, ACM or staining                             |
|                                                                     | -            | 0.20           |             | Fill                  | Fill - Silty Clay, light grey with red mottling, damp, heterogeneous, hard, medim<br>plasticity, with inclusions of shale and brick              |                             |                                                       |
|                                                                     | 0 <u>.5</u>  |                |             |                       |                                                                                                                                                  | BH26_0.5<br>PID = 2.6 ppm   |                                                       |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | 1.0          |                |             |                       |                                                                                                                                                  | BH26_1.1<br>PID = 6.4 ppm   |                                                       |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | -            |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | 1 <u>.5</u>  | 1.50           |             | CL-ML                 | Silty Clay, brown with red mottling, hard, heterogeneous, damp, medium plasticity, with<br>inclusions of shale, colour change to grey with depth | BH26_1.6<br>PID = 5.5 ppm   | No odour, ACM or staining                             |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             | No odour, ACM or staining<br>End of hole at 1.8 m bgs |
|                                                                     |              | 1.80           |             |                       | Borehole BH26 terminated at 1.8m                                                                                                                 |                             |                                                       |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
| 5113                                                                | 2 <u>.5</u>  |                |             |                       |                                                                                                                                                  |                             |                                                       |
| 17 100.                                                             | -            |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | 3.0          |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
| מטרברוטרב לפסט מטרברוטרב - בטון נטרט שוון סום אטס וראבוא טעו בוובוש | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
| DUNEI 10                                                            | 3.5          |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | _            |                |             |                       |                                                                                                                                                  |                             |                                                       |
|                                                                     | 4.0          |                |             |                       |                                                                                                                                                  |                             |                                                       |

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 25/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 150

|                  |                | <u>г</u> г                                                                                                                                                                                                   |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (mbgs)     | Contact (mbgs) | Graphic Log                                                                                                                                                                                                  | Lithological<br>Class | Lithological Description                                                                                                | Samples<br>Tests<br>Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Additional Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                |                |                                                                                                                                                                                                              | Fill                  | Fill - Silty Sand (topsoil), dark brown, heterogeneous, loose, with inclusions of plastic, trace shale and rootlets     | BH27_0.1<br>PID = 0.8 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _                | 0.30           |                                                                                                                                                                                                              | Fill                  | Fill - Silty Sand, dark brown, heterogeneous, loose, with inclusions of trace shale and                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No odour, ACM or staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.5              |                |                                                                                                                                                                                                              |                       | Toolets                                                                                                                 | BH27_0.5<br>PID = 0.9 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                | 0.60           |                                                                                                                                                                                                              | Fill                  | Fill - Gravelly Silty Sand, brown / grey, dry, heterogeneous, medium dense, with inclusions of rootlets and trace shale | BH27.0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No odour, ACM or staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _                |                |                                                                                                                                                                                                              |                       |                                                                                                                         | PID = 1.8 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No odour, ACM or staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 <u>.0</u>      | 0.90           |                                                                                                                                                                                                              | Fill                  | Fill - Silty Clayey Sand, brown / grey, stiff, homogeneous, dry                                                         | BH27_1.1<br>PID = 5 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _                | 1.20           |                                                                                                                                                                                                              | CL-ML                 | Silty Clay, grey with light brown mottling, homogeneou, dry, hard, medium plasticity                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No odour, ACM or staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                |                |                                                                                                                                                                                                              |                       |                                                                                                                         | BH27_1.4<br>PID = 5.3 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.5              | 1.50           | 2692                                                                                                                                                                                                         |                       | Borehole BH27 terminated at 1.5m                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | End of hole 1.5 m bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _                |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.0              |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -                |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 <u>.5</u>      |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.0              |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 <u>.5</u><br>– |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.0              |                |                                                                                                                                                                                                              |                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                | 0.5<br>0.5<br>0.60<br>0.90<br>1.0<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.5<br>1.50<br>2.0<br>-<br>3.0<br>-<br>3.0<br>-<br>3.5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                       |                                                                                                                         | 10     Fill     < | 0.50     Fill     Fill     Fill     Fill     Fill     Fill     BH27_0.1<br>PID = 0.3 ppm       0.50     Fill     Fill     Fill     Fill     Fill     BH27_0.1<br>PID = 0.3 ppm       0.60     Fill     Fill     Fill     Fill     BH27_0.1<br>PID = 0.3 ppm       0.60     Fill     Fill     Fill     BH27_0.1<br>PID = 0.3 ppm       0.60     Fill     Fill     Fill     BH27_0.1<br>PID = 0.3 ppm       1.0     0.60     Fill     Fill     Fill     BH27_0.1<br>PID = 0.3 ppm       1.0     0.60     Fill     Fill     Fill     Sity Clayey Sand, brown / grey, stift, homogeneous, dry       1.0     0.40     Fill     Fill     Sity Clayey Sand, brown / grey, stift, homogeneous, dry       1.10     CL-ML     Sity Clay, grey with light brown motiling, homogeneous, dry, hard, medium plasticity       1.50     CL-ML     Sity Clay, grey with light brown motiling, homogeneou, dry, hard, medium plasticity       1.50     Berehole BH27 terminated at 1.5m |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 1.8 Bore Diameter (mm): 150

| Method                                                           |                                                                                                                                                                                       | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                       | Samples<br>Tests<br>Remarks | Additional Observations   |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| SFA                                                              | -                                                                                                                                                                                     |                |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, heterogeneous, medium dense, with<br>inclusions of gravel, brick and plastic          | BH28_0.1<br>PID = 1.6 ppm   | No odour, ACM or staining |
|                                                                  | -<br>-<br>0 <u>.5</u><br>-                                                                                                                                                            | 0.20           |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, heterogeneous, medium dense, with inclusions of gravel                                | BH28_0.5<br>PID = 3.8 ppm   | No odour, ACM or staining |
|                                                                  | -<br>1 <u>.0</u><br>-<br>-                                                                                                                                                            | 0.80           |             | Fill                  | Fill - Silty Clay, brown / red, damp, heterogeneous, hard, medium plasticity, with inclusions of shale, metal rod and rootlets | BH28_1.1<br>PID = 2.6 ppm   |                           |
|                                                                  | -<br>1 <u>.5</u>                                                                                                                                                                      | 1.40           |             | CL                    | Clay, red / brown with grey mottling, homogeneous, damp, hard, medium plasticity                                               |                             | No odour, ACM or staining |
|                                                                  | -                                                                                                                                                                                     |                |             |                       |                                                                                                                                | BH28_1.7<br>PID = 7.9 ppm   | No odour, ACM or staining |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19 | -<br>2 <u>.0</u><br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>3 <u>.0</u><br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                |             |                       | Borehole BH28 terminated at 1.8m                                                                                               |                             | End of hole at 1.8 m bgs  |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24/01/2019 Logged By: RC, MN Contractor: Total Hole Depth (mbgs): 0.8 Bore Diameter (mm): 50

| Method                                                           | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                             | Samples<br>Tests<br>Remarks | Additional Observations              |
|------------------------------------------------------------------|--------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|
| НA                                                               | _            |                |             | Fill                  | Fill - Silty Sand, brown, heterogeneous, dry, medium dense, with inclusions of twigs<br>and gravel   | BH29_0.1<br>PID = 2.2 ppm   | QA20190124RC_01 /<br>QC20190124RC_01 |
|                                                                  | -            |                |             |                       |                                                                                                      |                             | No odour, ACM or staining            |
|                                                                  | _            | 0.30           |             | Fill                  | Fill - Silty Clayey Sand, light brown / yellow, heterogeneous, damp, loose, with inclusions of shale | BH29_0.5<br>PID = 1.2 ppm   |                                      |
|                                                                  | 0.5          |                |             |                       |                                                                                                      | PID = 1.2 ppm               |                                      |
|                                                                  | -            |                |             |                       |                                                                                                      |                             | No odour, ACM or staining            |
| $\vdash$                                                         |              | 0.80           |             |                       | Borehole BH29 terminated at 0.8m                                                                     |                             | End of hole at 0.8 m bgs             |
|                                                                  | 1.0          |                |             |                       |                                                                                                      |                             |                                      |
|                                                                  |              |                |             |                       |                                                                                                      |                             |                                      |
|                                                                  | -            |                |             |                       |                                                                                                      |                             |                                      |
|                                                                  | 1.5          |                |             |                       |                                                                                                      |                             |                                      |
|                                                                  | -            |                |             |                       |                                                                                                      |                             |                                      |
|                                                                  | -            |                |             |                       |                                                                                                      |                             |                                      |
|                                                                  | 2.0          |                |             |                       |                                                                                                      |                             |                                      |
|                                                                  | _            |                |             |                       |                                                                                                      |                             |                                      |
|                                                                  | -            |                |             |                       |                                                                                                      |                             |                                      |
| _                                                                | _            |                |             |                       |                                                                                                      |                             |                                      |
| - 27/2/1                                                         | 2 <u>.5</u>  |                |             |                       |                                                                                                      |                             |                                      |
| LIA.GD1                                                          | -            |                |             |                       |                                                                                                      |                             |                                      |
| AUSTRA                                                           |              |                |             |                       |                                                                                                      |                             |                                      |
| NT STD                                                           | 3 <u>.0</u>  |                |             |                       |                                                                                                      |                             |                                      |
| GPJ GI                                                           |              |                |             |                       |                                                                                                      |                             |                                      |
| - 2017.                                                          | -            |                |             |                       |                                                                                                      |                             |                                      |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19 | 3.5          |                |             |                       |                                                                                                      |                             |                                      |
| 3SG BOI                                                          |              |                |             |                       |                                                                                                      |                             |                                      |
| HOLE JE                                                          |              |                |             |                       |                                                                                                      |                             |                                      |
| BOREF                                                            | 4.0          |                |             |                       |                                                                                                      |                             |                                      |



Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24/01/2019 Eastings (GDA 94): Logged By: RC, MN Northings (GDA 94): Contractor: Zone/Area/Permit#: Total Hole Depth (mbgs): 0.8 Reference Level: Ground Surface Bore Diameter (mm): 50 Elevation (m): Contact (mbgs Depth (mbgs) Samples Graphic Log Lithological Class Lithological Description Tests Additional Observations Method Remarks ΗA Fill - Silty Clayey Sand, brown , heterogeneous, dry, loose, with inclusions of twigs and trace shale Fill BH30\_0.1 PID = 2 ppm No odour, ACM or staining 0.30 Fill Fill - Silty Sand, brown, dry, heterogeneous, with inclusions of shale, well graded No odour, ACM or staining 0.40 CL-ML Silty Clay, light grey / brown, heterogeneous, damp, stiff, low plasticity, with inclusions of shale BH30\_0.5 PID = 2.2 ppm 0.5 No odour, ACM or staining End of hole at 0.8 m bgs Borehole BH30 terminated at 0.8m 0.80 1.0 1.5 2.0 2.5 3.0 3.5

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 27/2/19

4.0



## Appendix E PID Calibration and Decontamination Field Forms

# Field Equipment Calibration and Decontamination



PROJECT NAME: ChartSWOOD Education Precinct PROJECT NO: 55579 FIELD DATES: 21/1/19 - 25/1/19 FIELD STAFF: MN, RC

1/2

| CALIBRATION   | SUMMARY  |                     | · |
|---------------|----------|---------------------|---|
| EQUIPMENT:    | PID      |                     |   |
| CALIBRATION S | TANDARD: | 100ppm isobutylene. |   |

| DATE     | TIME                                   | READING (ppm <sub>v</sub> ) | COMMENTS    |
|----------|----------------------------------------|-----------------------------|-------------|
| 21/1/19  | 7:00am                                 | 0                           | Ambient     |
| 21/1/19  | 7:03an                                 | 100                         | isobutylene |
| 21/1/19  | 7:05am                                 | n 100.2                     | Bump.       |
| 22/1/19  | 7:00am                                 | 0                           | Ambient     |
| 22/1/19  | 7:02am                                 | 001                         | isobutylene |
| 22/1/19  |                                        | 100.5                       | bump.       |
| 23/1/19  | 7:00am                                 | 0                           | Anbient     |
| 23/1/19  | 7:03am                                 | 100                         | isobutylene |
| 23/1/19- | 7:06am                                 | 99.8                        | bump        |
| 24/1/19- | 7:01am                                 | 0                           | Andrent.    |
| 21/1/19- | ······································ |                             | isobutylene |
| 24/1/19= | 1:05am                                 | 190.1                       | Bump        |

| ef new sample. Nitrile goves were changed for<br>each scimple collection.         1. Was the equipment decontaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?         3. Was the equipment contaminated with grease, tar or similar material?<br>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?         4. Was phosphate-free detergent used to wash the equipment?         5. Was the equipment rinsed with clean water?         6. Was the equipment then rinsed with delonised water?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                                                                                                                                                                                           | I NA                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| eff new Sample. Nitrile gloves were changed for<br>each sample collection.         1. Was the equipment decontaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?         3. Was the equipment contaminated with grease, tar or similar material?         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?         Y         4. Was phosphate-free detergent used to wash the equipment?         5. Was the equipment rinsed with clean water?         6. Was the equipment then rinsed with deionised water?         Y         Y. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                                                                                                                                                                 |                                       |
| of new sample. Nitrile gloves were changed for<br>each sample collection.         1. Was the equipment decontaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?         3. Was the equipment contaminated with grease, tar or similar material?         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?         Y         4. Was phosphate-free detergent used to wash the equipment?         5. Was the equipment rinsed with clean water?         6. Was the equipment then rinsed with deionised water?         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y |                                       |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?       Image: Contaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?       Image: Contaminated with grease, tar or similar material?         3. Was the equipment contaminated with grease, tar or similar material?       Y         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?       Y         4. Was phosphate-free detergent used to wash the equipment?       Image: Container contaminated with clean water?         5. Was the equipment rinsed with clean water?       Image: Container container container container cleaned and acid or solvent washed prior to sample collection?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?       Y                                         | I NA                                  |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?       Image: Contaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?       Image: Contaminated with grease, tar or similar material?         3. Was the equipment contaminated with grease, tar or similar material?       Y         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?       Y         4. Was phosphate-free detergent used to wash the equipment?       Image: Container contaminated with clean water?         5. Was the equipment rinsed with clean water?       Image: Container container container container cleaned and acid or solvent washed prior to sample collection?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?       Y                                         | I NA                                  |
| <ul> <li>2. Was excess soil removed by scraping, brushing or wiping with disposable towels?</li> <li>3. Was the equipment contaminated with grease, tar or similar material?</li> <li>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?</li> <li>4. Was phosphate-free detergent used to wash the equipment?</li> <li>5. Was the equipment rinsed with clean water?</li> <li>6. Was the equipment then rinsed with delonised water?</li> <li>7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?</li> <li>Y</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |
| 3. Was the equipment contaminated with grease, tar or similar material?       Y         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?       Y         4. Was phosphate-free detergent used to wash the equipment?       Image: Color of the equipment rinsed with clean water?         5. Was the equipment rinsed with clean water?       Image: Color of the equipment then rinsed with deionised water?         6. Was the equipment then rinsed with deionised water?       Image: Color of the equipment then rinsed with deionised water?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?       Y                                                                                                                                                                                                                                                                                | I NA                                  |
| <ul> <li>4. Was phosphate-free detergent used to wash the equipment?</li> <li>5. Was the equipment rinsed with clean water?</li> <li>6. Was the equipment then rinsed with deionised water?</li> <li>7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?</li> <li>Y</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| 5. Was the equipment rinsed with clean water?       Image: Comparison of the clean water?         6. Was the equipment then rinsed with deionised water?       Image: Comparison of the clean water?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?       Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · ·                               |
| 6. Was the equipment then rinsed with deionised water?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                    |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection? Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (NA)                                  |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |

## **Field Equipment Calibration and Decontamination**



| PROJECT NAME:  | hatswood Ed    | PROJECT NO:  | 55579 |     |
|----------------|----------------|--------------|-------|-----|
| FIELD DATES: 2 | 1/1/19-25/1/19 | FIELD STAFF: | MN, R | - ( |

| CALIBRATION SUMMARY   |                                       |            | <u> </u>                              |
|-----------------------|---------------------------------------|------------|---------------------------------------|
| EQUIPMENT: PID        | · · · · · · · · · · · · · · · · · · · |            |                                       |
| CALIBRATION STANDARD: | looppin                               | sobutylene |                                       |
|                       |                                       |            | · · · · · · · · · · · · · · · · · · · |

| DATE    | TIME    | READING (ppm <sub>v</sub> ) | COMMENTS                        |
|---------|---------|-----------------------------|---------------------------------|
| 25/1/19 | 1:00an  | ~ 0<br>~ 100                | Ampient                         |
| 25/1/19 | 7: Ogan | n 100                       | isobutylene                     |
| 25/1/19 | 7:072   | ~ 100.2                     | Ambient<br>isobutylene<br>bump. |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |

| DECONTAMINATION SUMMARY                                                                                                                                          | ······            |     |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|------|
| EQUIPMENT: Auger                                                                                                                                                 |                   | ·   |      |
| EQUIPMENT:<br>Mashed with decontamination water<br><u>collection of new samples</u> . Nitrile gloves<br><u>changed for each sample collection</u> .              | ber               | Sar | ~e   |
| collection of new samples. Nitrile gloves                                                                                                                        | in                | ert | 2    |
| changed for each sample collection.                                                                                                                              |                   |     |      |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?                                                                            | Ø                 | N   | NA   |
| 2. Was excess soil removed by scraping, brushing or wiping with disposable towels?                                                                               | Ø                 | N   | NA   |
| 3. Was the equipment contaminated with grease, tar or similar material?<br>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? | Y                 | Ø   | (NA) |
|                                                                                                                                                                  | Y                 | N   |      |
| 4. Was phosphate-free detergent used to wash the equipment?                                                                                                      | $\mathcal{O}_{-}$ | N   | NA   |
| 5. Was the equipment rinsed with clean water?                                                                                                                    | 0                 | N   | NA   |
| 6. Was the equipment then rinsed with delonised water?                                                                                                           | $\Theta$          | N   | NA   |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                     | Y                 | N   | NA   |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                          |                   |     |      |
|                                                                                                                                                                  |                   |     |      |
|                                                                                                                                                                  |                   |     |      |



## Appendix F QAQC Assessment

#### Table 1 - QA/QC Results Summary

| Data Quality Indicator                      | Results                                                                                  | DQI met?             |
|---------------------------------------------|------------------------------------------------------------------------------------------|----------------------|
|                                             | Precision                                                                                |                      |
| Soil                                        |                                                                                          |                      |
| Soil Blind duplicates (intra laboratory)    | 0-178% RPD                                                                               | Partial <sup>1</sup> |
|                                             | Intra laboratory samples were analysed at a rate                                         |                      |
|                                             | greater than 1 in 20 samples.                                                            |                      |
| Soil Blind triplicates (inter laboratory)   | 0-140% RPD                                                                               | Partial <sup>1</sup> |
|                                             | Inter laboratory samples were analysed at a rate                                         |                      |
|                                             | greater than 1 in 20 samples.                                                            |                      |
|                                             | 0-110% RPD                                                                               | Partial              |
| Laboratory duplicates                       | Intra laboratory samples were analysed at a rate                                         |                      |
|                                             | greater than 1 in 20 samples.                                                            |                      |
|                                             | Accuracy                                                                                 | 1                    |
| Soil                                        | · · · · · · · · · · · · · · · · · · ·                                                    |                      |
| Surrogate spikes                            | 50-129% Recovery                                                                         | Partial <sup>1</sup> |
|                                             | Surrogate spikes were completed for all organic                                          |                      |
|                                             | samples                                                                                  |                      |
| Laboratory Control Samples                  | 74-123% Recovery                                                                         | Yes                  |
| ···· , ··· , ··· , ···                      | Laboratory control samples were completed for all                                        |                      |
|                                             | organic and metals samples                                                               |                      |
| Matrix spikes                               | 49-130% Recovery                                                                         | Partial <sup>1</sup> |
|                                             | Matrix spikes were completed for all organic and                                         |                      |
|                                             | metals samples                                                                           |                      |
|                                             | Representativeness                                                                       |                      |
| Soil                                        | · · · ·                                                                                  |                      |
| Sampling appropriate for media and          | All sampling conducted in accordance with JBS&G                                          | Yes                  |
| analytes                                    | procedures                                                                               |                      |
| Laboratory blanks                           | <lor< td=""><td>Yes</td></lor<>                                                          | Yes                  |
| Samples extracted and analysed within       | All samples were extracted and analysed within holding                                   | Yes                  |
| holding times.                              | times less than 14 days.                                                                 |                      |
| Trip spikes                                 | NA                                                                                       | No <sup>1</sup>      |
| Trip blanks                                 | NA                                                                                       | No <sup>1</sup>      |
| Rinsate blank                               | <lor, equal="" lor<="" results="" td="" to="" two=""><td>Partial<sup>1</sup></td></lor,> | Partial <sup>1</sup> |
|                                             | Comparability                                                                            |                      |
| Standard operating procedures used for      | Field staff used same standard operating procedures                                      | Yes                  |
| sample collection & handling                | throughout works                                                                         |                      |
| Standard analytical methods used            | Standard analytical methods used.                                                        | Yes                  |
| Consistent field conditions, sampling staff | Sampling was conducted by a field scientist using                                        | Yes                  |
| and laboratory analysis                     | standard operating procedures in the same conditions                                     |                      |
|                                             | throughout the works. The laboratories remained                                          |                      |
|                                             | consistent throughout the investigation.                                                 |                      |
| Limits of reporting appropriate and         | Limits of reporting were consistent and appropriate.                                     | Yes                  |
| consistent                                  |                                                                                          |                      |
|                                             | Completeness                                                                             |                      |
| Soil/water description & COCs completed     | All bore logs and COCs were completed appropriately.                                     | Yes                  |
| Appropriate documentation                   | All appropriate field documentation is included in the                                   | Yes                  |
|                                             | Appendices.                                                                              |                      |
| Satisfactory frequency/result for QC        | The QC results are considered adequate for the                                           | Yes                  |
| samples                                     | purposes of the investigation.                                                           |                      |
| Data from critical samples is considered    | Data from critical samples is considered valid.                                          | Yes                  |
|                                             |                                                                                          |                      |

1. See discussion of DQI exceedances below.



#### QA/QC Discussion

#### Precision

#### Duplicates (intra-laboratory) and triplicate (Inter-laboratory) samples

The rate of duplicate and triplicate sampling and analysis was 2 duplicates/ triplicates per 30 primary samples for heavy metals, asbestos and PAH (6.7 %), 1 duplicate/ triplicate per 5 primary samples for TRH/BTEX, OCPs and OCPs (20 %), and 1 duplicate/ triplicate per 2 primary samples for PCBs (50%). As such, the frequency of duplicate sample analysis for all key contaminants of concern met/exceeded the nominated 5 % frequency.

#### Laboratory Duplicates

The laboratory completed a total of 9 laboratory duplicate samples, meeting the JBS&G acceptance criteria of 1 in 20 samples. Nine analyses from two laboratory duplicate samples exceeded the JBS&G DQI of 0%-50%. JBS&G note that reported RPDs pass the Eurofins | mgt's QC - Acceptance Criteria and as such are not considered to affect the precision of results.

#### Accuracy

#### Laboratory Control Samples

Laboratory control samples were generally within the range of 70-130% RPD for all analytes.

#### Soil Surrogate Spikes

Surrogate spike exceedances are considered acceptable as they are within the laboratory acceptance criteria of 50-150% recovery for surrogate spikes.

#### Soil Matrix Spikes

Matrix spike recoveries were within the acceptable range of 70-130% with the exception of sample S19-Ja24092 (benzene recovery 49% and toluene recovery 60%). These recoveries are not considered to be reflective of an unacceptable level of accuracy in the dataset as an acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

#### Representativeness

The extraction and analysis of selected samples was completed within the recommended holding times for all analytes.

JBS&G note that no trip spikes or trip blanks (TS/TB) were analysed as part of the assessment herein. Notwithstanding, JBS&G note that all sample handling procedures, including the storage of samples on ice were adhered to prior to, and during shipment to the testing laboratory. As such, JBS&G do not consider the omission of TB/TS samples adversely affect the representativeness of the data set. Furthermore, JBS&G note that the data set does not report the presence of any volatile hydrocarbons within samples.

All laboratory blanks analysed reported no concentrations above the laboratory LOR.

All field equipment was decontaminated and calibrated appropriately.

A rinsate sample was collected following decontamination of all non-disposable sampling equipment for the intrusive investigation. All analyte concentrations in the rinsate blanks were below the laboratory limit of reporting (LOR) with the exception of S19-Ja24422, which returned results equal to the LOR for 0.0001 for DDT+DDE+DDD (Total) and 4.4'-DDT. JBS&G does not consider this result indicative of contamination

#### Comparability

Eurofins | mgt, the primary laboratory, and Envirolab Services, the secondary laboratory, are NATA accredited for all analytical methods used. The laboratories used similar analytical methods and the



analytical data were comparable between laboratories as indicated by the results of duplicate analysis. Where different LORs were adopted by the laboratories, consideration of the data set was not impacted.

The samples collected for assessment purposes are considered comparable as all samples were collected by experienced JBS&G personnel in accordance with standard JBS&G sampling methods.

#### Completeness

All laboratory and field documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix H**.

The frequency of analysis of all QC samples was considered appropriate and valid.

#### Sensitivity

The adopted analytical methods provided suitable LORs with respect to the adopted site assessment criteria for all mediums.

#### QA/QC Conclusions

The field sampling and handling procedures across the site produced QA/QC results which indicate that data collected is of an acceptable quality.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program data is of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.



## Appendix G Statistical Assessment of B(a)P

|          | А         | В            | С             | D E                       | F            | G               | Н            |             | J             | К            | L     |
|----------|-----------|--------------|---------------|---------------------------|--------------|-----------------|--------------|-------------|---------------|--------------|-------|
| 1        |           |              |               | Nonparametric UCL         | Statistics   | for Uncensor    | red Full Da  | ta Sets     |               |              |       |
| 2        |           |              |               |                           |              |                 |              |             |               |              |       |
| 3        |           | User Selec   | cted Options  |                           |              |                 |              |             |               |              |       |
| 4        | Date      | /Time of Co  | omputation    | 26/02/2019 2:23:18 PM     |              |                 |              |             |               |              |       |
| 5        |           |              | From File     | WorkSheet.xls             |              |                 |              |             |               |              |       |
| 6        |           |              | I Precision   | OFF                       |              |                 |              |             |               |              |       |
| 7        |           | Confidence ( |               | 95%                       |              |                 |              |             |               |              |       |
| 8        | Number of | Bootstrap (  | Operations    | 2000                      |              |                 |              |             |               |              |       |
| 9        |           |              |               |                           |              |                 |              |             |               |              |       |
| 10       |           |              |               |                           |              |                 |              |             |               |              |       |
|          | BaP       |              |               |                           |              |                 |              |             |               |              |       |
| 12       |           |              |               |                           | Comoral      | Otatiatian      |              |             |               |              |       |
| 13       |           |              | Total         | lumber of Observations    | 48           | Statistics      |              | Number      | of Distinct C | haanvationa  | 5     |
| 14       |           |              | Total h       |                           | 40           |                 |              |             | of Missing C  |              | -     |
| 15       |           |              |               | Minimum                   | 0.6          |                 |              | runnber     | or missing C  | Mean         |       |
| 16       |           |              |               | Maximum                   | 5.6          |                 |              |             |               | Median       |       |
| 17       |           |              |               | SD                        | 0.815        |                 |              |             | Std F         | rror of Mean |       |
| 18       |           |              |               | Coefficient of Variation  | 1.035        |                 |              |             |               | Skewness     |       |
| 19<br>20 |           |              |               | Mean of logged Data       | -0.398       |                 |              |             | SD of         | logged Data  |       |
| 20       |           |              |               |                           |              |                 |              |             | 02 0.         |              | 01120 |
| 21       |           |              |               | Nonparamet                | ric Distribu | tion Free UC    | L Statistics | 5           |               |              |       |
| 23       |           |              |               | Data do not fo            | llow a Disc  | ernible Distri  | bution (0.0  | 5)          |               |              |       |
| 24       |           |              |               |                           |              |                 |              |             |               |              |       |
| 25       |           |              |               | Ass                       | uming Nor    | mal Distributio | on           |             |               |              |       |
| 26       |           |              | 95% No        | rmal UCL                  |              |                 | 95%          | UCLs (Adju  | isted for Ske | ewness)      |       |
| 27       |           |              |               | 95% Student's-t UCL       | 0.985        |                 | 95           | 5% Adjusted | I-CLT UCL (   | Chen-1995)   | 1.075 |
| 28       |           |              |               |                           |              |                 | 9            | 5% Modifie  | d-t UCL (Joł  | nson-1978)   | 1     |
| 29       |           |              |               |                           |              |                 |              |             |               |              |       |
| 30       |           |              |               | Nonpara                   | ametric Dis  | tribution Free  | UCLs         |             |               |              |       |
| 31       |           |              |               | 95% CLT UCL               | 0.981        |                 |              |             | 95% Ja        | ckknife UCL  | 0.985 |
| 32       |           |              |               | tandard Bootstrap UCL     | 0.978        |                 |              |             |               | tstrap-t UCL |       |
| 33       |           |              |               | % Hall's Bootstrap UCL    | 1.868        |                 |              | 95% P       | ercentile Bo  | otstrap UCL  | 0.992 |
| 34       |           |              |               | 5% BCA Bootstrap UCL      | 1.104        |                 |              |             |               |              |       |
| 35       |           |              |               | byshev(Mean, Sd) UCL      | 1.14         |                 |              |             | ebyshev(Mea   |              |       |
| 36       |           |              | 97.5% Che     | byshev(Mean, Sd) UCL      | 1.522        |                 |              | 99% Che     | ebyshev(Mea   | an, Sd) UCL  | 1.958 |
| 37       |           |              |               |                           | <b>.</b>     |                 |              |             |               |              |       |
| 38       |           |              |               |                           |              | UCL to Use      |              |             |               |              |       |
| 39       |           |              |               | 95% Student's-t UCL       | 0.985        |                 |              |             | or 95% Mo     | dified-t UCL | 1     |
| 40       | Note      | · Suggesti-  | ne regardir - | the selection of a 95% l  |              | ovided to hele  | a the user t |             |               | prioto 05%   |       |
| 41       |           |              |               | are based upon the result |              |                 |              |             |               |              |       |
| 42       |           |              |               | d Singh (2003). Howeve    |              |                 |              |             |               |              | (20   |
| 43       |           | c            |               | For additional insight    |              |                 |              |             |               | <b>.</b> .   |       |
| 44       |           |              |               |                           |              | ay want to oc   |              |             |               |              |       |
| 45       |           |              |               |                           |              |                 |              |             |               |              |       |



## Appendix H Laboratory Documentation

07563

## Eurofinsiof,



## CHAIN OF CUSTODY

| PROJECT NO .: 55574                                                              | 4                   |                  |                  |                                            |            | LA     | BO     | RAT    | ORY     | BATO       | HN     | 0.    |          |        |      | -      | -      | 181  |            | 40.0   | ales.                     |            |         |   |
|----------------------------------------------------------------------------------|---------------------|------------------|------------------|--------------------------------------------|------------|--------|--------|--------|---------|------------|--------|-------|----------|--------|------|--------|--------|------|------------|--------|---------------------------|------------|---------|---|
| PROJECT NAME: Chats                                                              | yood E              | ducation         | Recint           | Primary Ochosi                             |            |        |        |        |         | Rel        |        |       | -        |        |      |        | -      |      |            | 100    | Still.                    |            |         |   |
| DATE NEEDED BY: JTD                                                              |                     |                  |                  |                                            |            |        |        |        |         | PM (2      |        |       |          |        |      |        |        |      |            |        | _                         |            |         |   |
| PHONE: Sydney: 02 8245 030                                                       | 00   Perth:         | 08 9488 01       | 00   Brisba      | ane: 07 3112 2688                          |            | 0      |        |        |         | -          |        |       |          |        |      | -      |        |      |            |        |                           |            |         |   |
| SEND REPORT & INVOICE TO                                                         | : (1) admin         | nsw@jbsg.        | com.au; (2       | e) Denals @jt                              | osg.com    | au:    | (3)    |        | m       | nun        | ain    |       | @;       | bsg.c  | om   |        | D      | ch.a | Que Y      | -      | Le.                       | Con        |         |   |
| COMMENTS / SPECIAL HANDLING / STOR                                               | AGE OR DISPOS       | SAL:             |                  |                                            |            | 2      | 0      | -      | 0       | 1          | 1      | 1     |          | 035.0  |      |        |        | Chi  | - I        |        | YPE OF                    | I          | ·as     |   |
|                                                                                  |                     |                  |                  |                                            |            | 2      | P      | RH     | Z       | 5          | 5      |       |          |        |      |        |        |      |            | A      | SBESTOS                   |            |         |   |
|                                                                                  |                     |                  |                  |                                            |            | Wetals | 5      | 3      | 5       | the second |        |       |          |        |      |        |        |      |            |        | NOI                       | 1          |         |   |
| SAMPLE ID                                                                        |                     |                  |                  |                                            |            | r      |        | 2      |         | PCB PCB    | -      |       |          |        |      |        |        |      |            |        | IDENTIFICATION<br>NEPM/WA |            |         |   |
|                                                                                  | MATRIX              | DATE             | TIME             | TYPE & PRESERVATIVE                        | pH         |        |        |        |         |            |        |       |          |        |      |        |        |      |            |        | IDENTIFICA<br>NEPM/WA     | NOTE       | S:      |   |
| Rinsolte                                                                         | Water               | 23/1/14          | 3                | Bucken unital reministile                  | gl.t.ckv   | X      | X      | X      | X       | $\times$   |        |       |          |        |      |        |        |      |            |        |                           |            |         |   |
| Rinsate                                                                          |                     | 25/11/19         |                  | 5                                          |            | X      | X      | ×      | X       | X          |        |       |          |        |      |        |        |      |            |        | -                         |            |         |   |
| QC20190121 RC-01                                                                 | 14:02               | 21/1/19          |                  | by to altice                               |            |        | 1.1    |        |         | X          |        |       |          |        | 1    |        | -      |      |            |        | X                         |            | -       |   |
| QA 20190121 RC-01                                                                |                     | L                |                  | by jult: 4                                 |            | F      | s.     | 12     | 1       | Y          | 0.     | 1.5   | 1        | 1      | 1    |        | -      | +    |            | -      | 13                        |            |         |   |
| QCZUIGOIZZECOI                                                                   |                     | 23/11/9          |                  |                                            |            | -      | X      | ×      | X       | X          | 40     | 1.1   | 040      | -      | -    |        | +      | -    |            | -      | X                         | -          |         | - |
| QA20120123 RC.01                                                                 |                     | L                |                  |                                            |            | 7      | 5      | Va     | i.      | +3         | 0      | 12    | 1        | 1      | +    |        | -      | +    |            | -      | -                         | -          |         |   |
| QC 20190124 RC.01                                                                |                     | 24/1/14          |                  | 4                                          |            | V      | X      |        | X       | X          | the    | 12.1  | 0 1      | ~ 10   | +    |        | +      | +    |            | -      | 17                        | -          |         |   |
| 8A 2019 01 24 RC-01                                                              |                     | L                |                  | L                                          |            | ĉ      | 2      | ~      | 1       | +>         | +      | 11.   | 1        | 1      | +    | + +    | -      | +    |            | -      | X                         | -          |         |   |
|                                                                                  |                     |                  |                  |                                            | -          | · ·    | 010    | ~2     | 62      | +0         | w      | n.1   | 0/0      | 14     | -    | +      | -      | -    |            | -      | -                         | -          |         |   |
|                                                                                  |                     |                  |                  |                                            | 1          |        |        | -      | -       | -          | +      |       | -        | -      | +    |        | +      | -    |            | -      | -                         | -          | 2       |   |
|                                                                                  |                     |                  |                  |                                            |            |        |        | -      | -       |            | +      | +     | -        | -      | +    |        | -      | -    |            | -      | -                         |            |         |   |
|                                                                                  |                     |                  |                  |                                            |            |        |        | -      | -       | -          | -      |       | -        | -      | -    |        | _      | -    |            | _      | -                         | -          |         | _ |
|                                                                                  |                     |                  |                  |                                            | -          |        | -      | -      | -       | _          | +      |       | -        |        | -    |        | _      | -    |            |        |                           |            |         |   |
|                                                                                  |                     |                  |                  |                                            | -          |        |        | -      | -       | -          | +      |       | -        | -      | -    |        |        | -    |            |        |                           |            |         |   |
|                                                                                  |                     | -                |                  |                                            | -          |        | _      | -      | -       | _          | -      |       |          | -      |      |        |        |      |            |        |                           |            |         |   |
|                                                                                  |                     |                  |                  |                                            | -          |        |        | _      | _       | -          | -      |       | _        |        |      |        |        |      |            |        |                           |            |         |   |
|                                                                                  |                     |                  |                  |                                            | -          |        |        |        |         |            |        |       |          |        |      |        |        |      |            |        |                           |            |         |   |
|                                                                                  |                     |                  |                  |                                            | -          |        |        |        |         |            |        |       |          |        |      |        |        |      |            |        |                           |            |         |   |
|                                                                                  |                     | -                |                  |                                            |            |        |        |        |         |            |        |       |          |        |      |        |        |      |            |        |                           |            |         |   |
| PEUNOURUS au                                                                     | -                   |                  | -                | and a second second                        | 1          |        |        |        |         |            |        |       |          |        |      |        |        |      |            |        |                           |            |         |   |
| NAME: NAME: DATE: 20                                                             | Ulla                | CONICI           | GNMENT NO        | METHOD OF SHIPMENT:                        |            |        | _      |        |         | CEIVED     |        |       |          | 1      |      | - 1-1  |        | FOR  | RECE       | IVING  | LABL                      | SE ONL     | Y:      | 2 |
|                                                                                  | 51119               | CONSI            | GINIVIENT NO     | NENU.                                      |            | NA     | ME:    | le     | ca      | D          | 23     | .01.  | 19       | C      | OOLE | R SEAL | L – Ye | s !  | No         | Ir     | ntact                     | Bro        | oken    |   |
| OF: JBS&G                                                                        |                     |                  | PORT CO.         |                                            | 2          | OF     | F      | ieve   | ofi     | ns         | Ma     | TSI   | \$0 (    | m      | 0015 | RTEM   | P      | deg  | ~          | 3,5    | · 'C                      | -          |         |   |
| NAME: DATE:                                                                      |                     | CONSI            | GNMENT NO        | DTE NO.                                    |            | NA     | AME:   |        |         |            | C      | ATE:  | -        | 0      | OOLE | R SEAL | L - Ye | s    | No         | 1      | ntact .                   | Br         | oken    |   |
| OF:                                                                              |                     | TRANS            | PORT CO          |                                            |            | OF     |        |        |         |            |        |       |          |        |      |        |        |      |            |        |                           |            |         |   |
| Container & Preservative Codes: P = Pla:<br>MSO FormsO13 - Chain of Custody - Ge | stic; J = Soil Jar; | B = Glass Bottle | ; N = Nitric Aci | d Prsvd.; C = Sodium Hydroxide Prsvd; VC = | Hydrochlor | ic Aci | d Prsv | d Vial | 1; VS = | Sulfuri    | c Acid | Prsvd | fial: Sa | Sulfur | OOLE | R TEM  | 7 = 7  | deg  | C di F e d | IDTA D | here we have              | T - Cha 11 | Renth F |   |

# 637848



### JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

| Attention:<br>Report<br>Project Name<br>Project ID<br>Received Date<br>Date Reported | Daniel Denaro<br>637848-AID<br>CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL<br>55579<br>Jan 23, 2019<br>Feb 04, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methodology:<br>Asbestos Fibre<br>Identification                                     | Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of<br>Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion<br>staining (DS) techniques.<br>NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unknown Mineral<br>Fibres                                                            | Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as<br>Electron Microscopy, to confirm unequivocal identity.<br>NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the<br>optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an<br>independent technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Subsampling Soil<br>Samples                                                          | The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed.<br>NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bonded asbestos-<br>containing material<br>(ACM)                                     | The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.                                                                                                                                                                                                                                                         |
| Limit of Reporting                                                                   | The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH. |

# eurofins mgt

Project NameCHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOLProject ID55579Date SampledJan 21, 2019 to Jan 24, 2019Report637848-AID

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                                           | Result                                                                                                                   |
|------------------|------------------------------|--------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| QC20190121RC_01  | 19-Ja24424                   | Jan 21, 2019 | Approximate Sample 887g<br>Sample consisted of: Brown coarse-grained soil, rocks and<br>bituminous fragments | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| QC20190123RC_01  | 19-Ja24425                   | Jan 23, 2019 | Approximate Sample 668g<br>Sample consisted of: Brown coarse-grained soil and rocks                          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| QC20190124RC_01  | 19-Ja24426                   | Jan 24, 2019 | Approximate Sample 635g<br>Sample consisted of: Brown coarse-grained soil and rocks                          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |



#### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description<br>Asbestos - LTM-ASB-8020 | Testing Site<br>Sydney | <b>Extracted</b><br>Jan 29, 2019 | Holding Time<br>Indefinite |
|----------------------------------------|------------------------|----------------------------------|----------------------------|
|                                        |                        |                                  |                            |
|                                        |                        |                                  |                            |
|                                        |                        |                                  |                            |
|                                        |                        |                                  |                            |
|                                        |                        |                                  |                            |
|                                        |                        |                                  |                            |
|                                        |                        |                                  |                            |

|           | euro                                              | ofins                                                                   | mgt              |        |              | ABN –<br>e.mail :<br>web : v | 50 005<br>Enviros<br>/ww.eur | 085 521<br>Sales@<br>ofins.co | eurofins<br>m.au | Melbourne         6           6 Monterey Road         Dandenong South VIC 3175           Phone : +61 3 8564 5000         NATA # 1261           Site # 1254 & 14271         Site # 1254 & 14271 | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | <b>Brisbane</b><br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 2079 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|-----------|---------------------------------------------------|-------------------------------------------------------------------------|------------------|--------|--------------|------------------------------|------------------------------|-------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Ad<br>Pro | mpany Name:<br>dress:<br>oject Name:<br>oject ID: | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000<br>CHATSWOC<br>55579 | Aargaret St      |        | PRIMARY SCHO | OL                           | Re                           | der N<br>port ;<br>one:<br>x: |                  | 637848<br>02 8245 0300                                                                                                                                                                         | Receive<br>Due:<br>Priority:<br>Contact                                                                                                | Feb 4,<br>5 Day<br>Name: Daniel                                                                                    | , 2019 5:50 PM<br>2019<br>Denaro<br>Ianager : Nibha Vaidya                                               |
|           |                                                   | Sa                                                                      | mple Detail      |        |              | Asbestos - WA guidelines     | НОГД                         | Moisture Set                  | JBS&G Suite 2    |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| Melb      | ourne Laborato                                    | orv - NATA Site                                                         | # 1254 & 142     | 271    |              |                              | х                            | х                             | х                |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
|           | ney Laboratory                                    |                                                                         |                  |        |              | X                            |                              | -                             |                  |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| -         | bane Laboratory                                   |                                                                         |                  |        |              |                              |                              |                               |                  |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
|           | h Laboratory - N                                  |                                                                         |                  |        |              |                              |                              |                               |                  |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
|           | rnal Laboratory                                   |                                                                         |                  |        |              |                              | l                            |                               |                  |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| No        | Sample ID                                         | Sample Date                                                             | Sampling<br>Time | Matrix | LAB ID       |                              |                              |                               |                  |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| 1         | RINSATE                                           | Jan 23, 2019                                                            |                  | Water  | S19-Ja24422  |                              |                              |                               | Х                |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| 2         | RINSATE                                           | Jan 25, 2019                                                            |                  | Water  | S19-Ja24423  |                              |                              |                               | х                |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
|           | QC20190121R<br>C_01                               | Jan 21, 2019                                                            |                  | Soil   | S19-Ja24424  | х                            |                              | x                             | х                |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| 4         | <br>QC20190123R<br>C_01                           | Jan 23, 2019                                                            |                  | Soil   | S19-Ja24425  | х                            |                              | х                             | х                |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| 5         | QC20190124R<br>C_01                               | Jan 24, 2019                                                            |                  | Soil   | S19-Ja24426  | х                            |                              | х                             | х                |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| 6         | TRIP SPIKE                                        | Jan 17, 2019                                                            |                  | Water  | S19-Ja24427  |                              | х                            |                               |                  |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |
| 7         | TRIP BLANK                                        | Jan 17, 2019                                                            |                  | Water  | S19-Ja24428  |                              | х                            |                               |                  |                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                    |                                                                                                          |

| 🔅 euro                                                    | ofins                                                                     | mgt         |        |                            | ABN –<br>e.mail :<br>web : v | 50 005<br>: Enviro<br>vww.eu | 085 52<br>Sales@<br>rofins.co     | 1<br>eurofins<br>om.au | Melbourne         6 Monterey Road           Dandenong South VIC 3175         Phone : +61 3 8564 5000           NATA # 1261         Site # 1254 & 14271 | Sydney<br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +618 9251 9600<br>NATA # 1261<br>Site # 23736 |
|-----------------------------------------------------------|---------------------------------------------------------------------------|-------------|--------|----------------------------|------------------------------|------------------------------|-----------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Company Name:<br>Address:<br>Project Name:<br>Project ID: | JBS & G Aust<br>Level 1, 50 M<br>Sydney<br>NSW 2000<br>CHATSWOOI<br>55579 | argaret St  |        | NCT PRIMARY SCHC           | OL                           | Re                           | rder N<br>eport :<br>none:<br>ix: |                        | 637848<br>02 8245 0300                                                                                                                                 | Receive<br>Due:<br>Priority<br>Contact                                                                                          | Feb 4, 2<br>5 Day                                                                                            |                                                                                                         |
|                                                           |                                                                           |             |        |                            |                              |                              |                                   |                        |                                                                                                                                                        | Eurofins   mgt A                                                                                                                | analytical Services Ma                                                                                       | nager : Nibha Vaidya                                                                                    |
|                                                           |                                                                           | nple Detail |        |                            | Asbestos - WA guidelines     | HOLD                         | Moisture Set                      | JBS&G Suite 2          |                                                                                                                                                        |                                                                                                                                 |                                                                                                              |                                                                                                         |
| lelbourne Laborato                                        |                                                                           |             | '1     |                            |                              | Х                            | X                                 | Х                      |                                                                                                                                                        |                                                                                                                                 |                                                                                                              |                                                                                                         |
| ydney Laboratory -                                        |                                                                           |             |        |                            | Х                            |                              | <u> </u>                          |                        |                                                                                                                                                        |                                                                                                                                 |                                                                                                              |                                                                                                         |
| Brisbane Laboratory                                       |                                                                           |             |        |                            |                              |                              |                                   |                        |                                                                                                                                                        |                                                                                                                                 |                                                                                                              |                                                                                                         |
| Perth Laboratory - N                                      | ATA Site # 2373<br>Jan 09, 2019                                           |             | Water  | S19-Ja24429                |                              | x                            |                                   |                        |                                                                                                                                                        |                                                                                                                                 |                                                                                                              |                                                                                                         |
|                                                           | Jan 09, 2019<br>Jan 09, 2019                                              |             | Water  | S19-Ja24429<br>S19-Ja24430 |                              | X                            |                                   |                        |                                                                                                                                                        |                                                                                                                                 |                                                                                                              |                                                                                                         |
|                                                           | Jan U3. ZU13                                                              |             | vvalei | 1313-Jaz4430               |                              | ^                            |                                   | I                      |                                                                                                                                                        |                                                                                                                                 |                                                                                                              |                                                                                                         |



#### Internal Quality Control Review and Glossary General

#### 1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

## Units

| % w/w: weight for weigh | nt basis                                                                                                              | grams per kilogram                                                                                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Filter loading:         |                                                                                                                       | fibres/100 graticule areas                                                                                                             |
| Reported Concentration  | :                                                                                                                     | fibres/mL                                                                                                                              |
| Flowrate:               |                                                                                                                       | L/min                                                                                                                                  |
| Terms                   |                                                                                                                       |                                                                                                                                        |
| Dry                     | Sample is dried by heating prior to analysis                                                                          |                                                                                                                                        |
| LOR                     | Limit of Reporting                                                                                                    |                                                                                                                                        |
| COC                     | Chain of Custody                                                                                                      |                                                                                                                                        |
| SRA                     | Sample Receipt Advice                                                                                                 |                                                                                                                                        |
| ISO                     | International Standards Organisation                                                                                  |                                                                                                                                        |
| AS                      | Australian Standards                                                                                                  |                                                                                                                                        |
| WA DOH                  | Reference document for the NEPM. Government of Weste                                                                  | ern Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated                                      |
|                         | Sites in Western Australia (2009), including supporting doc                                                           | cument Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)                                                       |
| NEPM                    | National Environment Protection (Assessment of Site Con-                                                              | tamination) Measure, 2013 (as amended)                                                                                                 |
| ACM                     | Asbestos Containing Materials. Asbestos contained within<br>NEPM, ACM is generally restricted to those materials that | a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the<br>do not pass a 7mm x 7mm sieve. |
| AF                      | Asbestos Fines. Asbestos containing materials, including f equivalent to "non-bonded / friable".                      | riable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as                                   |
| FA                      | Fibrous Asbestos. Asbestos containing materials in a friab materials that do not pass a 7mm x 7mm sieve.              | le and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those                              |
| Friable                 | Asbestos-containing materials of any size that may be bro                                                             | ken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is                                    |
|                         | outside of the laboratory's remit to assess degree of friabili                                                        | ity.                                                                                                                                   |
| Trace Analysis          | Analytical procedure used to detect the presence of respira                                                           | able fibres in the matrix.                                                                                                             |
|                         |                                                                                                                       |                                                                                                                                        |





#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

mgt

#### **Qualifier Codes/Comments**

| Code | Description    |  |
|------|----------------|--|
| N/A  | Not applicable |  |
|      |                |  |

#### Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

#### Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

#### Glenn Jackson General Manager

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.





JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

#### Attention:

**Daniel Denaro** 

#### Report Project name Project ID Received Date

637848-S CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL 55579 Jan 23, 2019

| Client Sample ID                                  |        |       | QC20190121R<br>C_01 | QC20190123R<br>C_01 | QC20190124R<br>C_01 |
|---------------------------------------------------|--------|-------|---------------------|---------------------|---------------------|
| Sample Matrix                                     |        |       | Soil                | Soil                | Soil                |
| Eurofins   mgt Sample No.                         |        |       | S19-Ja24424         | S19-Ja24425         | S19-Ja24426         |
| Date Sampled                                      |        |       | Jan 21, 2019        | Jan 23, 2019        | Jan 24, 2019        |
| Test/Reference                                    | LOR    | Unit  |                     |                     |                     |
| Total Recoverable Hydrocarbons - 1999 NEPM Fra    | ctions |       |                     |                     |                     |
| TRH C6-C9                                         | 20     | mg/kg | < 20                | < 20                | < 20                |
| TRH C10-C14                                       | 20     | mg/kg | < 20                | < 20                | < 20                |
| TRH C15-C28                                       | 50     | mg/kg | 150                 | < 50                | < 50                |
| TRH C29-C36                                       | 50     | mg/kg | 410                 | < 50                | < 50                |
| TRH C10-36 (Total)                                | 50     | mg/kg | 560                 | < 50                | < 50                |
| BTEX                                              |        |       |                     |                     |                     |
| Benzene                                           | 0.1    | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Toluene                                           | 0.1    | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Ethylbenzene                                      | 0.1    | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| m&p-Xylenes                                       | 0.2    | mg/kg | < 0.2               | < 0.2               | < 0.2               |
| o-Xylene                                          | 0.1    | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Xylenes - Total                                   | 0.3    | mg/kg | < 0.3               | < 0.3               | < 0.3               |
| 4-Bromofluorobenzene (surr.)                      | 1      | %     | 74                  | 69                  | 67                  |
| Total Recoverable Hydrocarbons - 2013 NEPM Fra    | ctions |       |                     |                     |                     |
| Naphthalene <sup>N02</sup>                        | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| TRH C6-C10                                        | 20     | mg/kg | < 20                | < 20                | < 20                |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20     | mg/kg | < 20                | < 20                | < 20                |
| TRH >C10-C16                                      | 50     | mg/kg | < 50                | < 50                | < 50                |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50     | mg/kg | < 50                | < 50                | < 50                |
| TRH >C16-C34                                      | 100    | mg/kg | 440                 | < 100               | < 100               |
| TRH >C34-C40                                      | 100    | mg/kg | 400                 | < 100               | < 100               |
| TRH >C10-C40 (total)*                             | 100    | mg/kg | 840                 | < 100               | < 100               |
| Polycyclic Aromatic Hydrocarbons                  |        |       |                     |                     |                     |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5    | mg/kg | 0.6                 | 0.6                 | 0.6                 |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5    | mg/kg | 1.2                 | 1.2                 | 1.2                 |
| Acenaphthene                                      | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Acenaphthylene                                    | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Anthracene                                        | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benz(a)anthracene                                 | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(a)pyrene                                    | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(g.h.i)perylene                              | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Benzo(k)fluoranthene                              | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Chrysene                                          | 0.5    | mg/kg | < 0.5               | < 0.5               | < 0.5               |



| Client Sample ID                    |   |      |       | QC20190121R<br>C_01 | QC20190123R<br>C_01 | QC20190124R<br>C_01 |
|-------------------------------------|---|------|-------|---------------------|---------------------|---------------------|
| Sample Matrix                       |   |      |       | Soil                | Soil                | Soil                |
| Eurofins   mgt Sample No.           |   |      |       | S19-Ja24424         | S19-Ja24425         | S19-Ja24426         |
| Date Sampled                        |   |      |       | Jan 21, 2019        | Jan 23, 2019        | Jan 24, 2019        |
| Test/Reference                      |   | LOR  | Unit  |                     |                     |                     |
| Polycyclic Aromatic Hydrocarbons    |   |      |       |                     |                     |                     |
| Dibenz(a.h)anthracene               |   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Fluoranthene                        |   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Fluorene                            |   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Indeno(1.2.3-cd)pyrene              |   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Naphthalene                         |   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Phenanthrene                        |   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Pyrene                              |   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| Total PAH*                          |   | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5               |
| 2-Fluorobiphenyl (surr.)            |   | 1    | %     | 106                 | 54                  | 64                  |
| p-Terphenyl-d14 (surr.)             |   | 1    | %     | 102                 | 76                  | 86                  |
| Organochlorine Pesticides           |   |      |       |                     |                     |                     |
| Chlordanes - Total                  |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| 4.4'-DDD                            |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| 4.4'-DDE                            |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| 4.4'-DDT                            |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| a-BHC                               |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Aldrin                              |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| b-BHC                               |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| d-BHC                               |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Dieldrin                            |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endosulfan I                        |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endosulfan II                       |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endosulfan sulphate                 |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endrin                              |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endrin aldehyde                     |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Endrin ketone                       |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| g-BHC (Lindane)                     |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Heptachlor                          |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Heptachlor epoxide                  |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Hexachlorobenzene                   |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Methoxychlor                        |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Toxaphene                           |   | 1    | mg/kg | < 1                 | < 1                 | < 1                 |
| Aldrin and Dieldrin (Total)*        |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| DDT + DDE + DDD (Total)*            |   | 0.05 | mg/kg | < 0.05              | < 0.05              | < 0.05              |
| Vic EPA IWRG 621 OCP (Total)*       |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Vic EPA IWRG 621 Other OCP (Total)* |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Dibutylchlorendate (surr.)          | _ | 1    | %     | 124                 | 70                  | 56                  |
| Tetrachloro-m-xylene (surr.)        |   | 1    | %     | 102                 | 77                  | 76                  |
| Polychlorinated Biphenyls           |   |      |       |                     |                     |                     |
| Aroclor-1016                        |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor-1221                        |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor-1232                        |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor-1242                        |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor-1248                        |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor-1254                        |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Aroclor-1260                        |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Total PCB*                          |   | 0.1  | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Dibutylchlorendate (surr.)          |   | 1    | %     | 124                 | 70                  | 56                  |
| Tetrachloro-m-xylene (surr.)        |   | 1    | %     | 102                 | 77                  | 76                  |



| Client Sample ID          |         |       | QC20190121R<br>C_01 | QC20190123R<br>C_01 | QC20190124R<br>C_01 |
|---------------------------|---------|-------|---------------------|---------------------|---------------------|
| Sample Matrix             |         |       | Soil                | Soil                | Soil                |
| Eurofins   mgt Sample No. |         |       | S19-Ja24424         | S19-Ja24425         | S19-Ja24426         |
| Date Sampled              |         |       | Jan 21, 2019        | Jan 23, 2019        | Jan 24, 2019        |
| Test/Reference            | LOR     | Unit  |                     |                     |                     |
| Heavy Metals              |         |       |                     |                     |                     |
| Arsenic                   | 2       | mg/kg | 13                  | 4.6                 | 5.1                 |
| Cadmium                   | 0.4     | mg/kg | < 0.4               | < 0.4               | < 0.4               |
| Chromium                  | 5       | mg/kg | 14                  | 9.7                 | 42                  |
| Copper                    | 5       | mg/kg | 33                  | 8.6                 | 24                  |
| Lead                      | 5       | mg/kg | 17                  | 11                  | 31                  |
| Mercury                   | <br>0.1 | mg/kg | < 0.1               | < 0.1               | < 0.1               |
| Nickel                    | 5       | mg/kg | 23                  | 7.3                 | 42                  |
| Zinc                      | 5       | mg/kg | 59                  | 14                  | 41                  |
|                           |         |       |                     |                     |                     |
| % Moisture                | 1       | %     | 8.8                 | 9.1                 | 11                  |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                                               | Testing Site | Extracted    | Holding Time |
|-------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| JBS&G Suite 2                                                                             |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                                      | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                                         |              |              |              |
| BTEX                                                                                      | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices                    |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions<br>- Method: LTM-ORG-2010 TRH C6-C40 | Melbourne    | Jan 30, 2019 | 14 Day       |
|                                                                                           |              | lan 20, 2010 | 44 Dev       |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                                      | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                                         |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                                          | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water                                  |              |              |              |
| Organochlorine Pesticides                                                                 | Melbourne    | Jan 30, 2019 | 14 Day       |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                                        |              |              |              |
| Polychlorinated Biphenyls                                                                 | Melbourne    | Jan 30, 2019 | 28 Days      |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                                        |              |              |              |
| Metals M8                                                                                 | Melbourne    | Jan 30, 2019 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS                      |              |              |              |
| % Moisture                                                                                | Melbourne    | Jan 30, 2019 | 14 Day       |
|                                                                                           |              |              |              |

- Method: LTM-GEN-7080 Moisture

|           | 🔅 eur                                               | ofins                               | mgt              |        | ABN- 50 005 (<br>e.mail : Enviro<br>web : www.eur | Sales@                   |      | .com                          | 6<br>D<br>P<br>N | <b>felbourne</b><br>Monterey Road<br>vandenong South VIC 3175<br>vhone : +61 3 8564 5000<br>IATA # 1261<br>vite # 1254 & 14271 | Sydney<br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | <b>Brisbane</b><br>1/21 Smallwood Place<br>Murarie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 2079 | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>9 Phone : +61 8 9251 9600<br>94 NATA # 1261<br>Site # 23736 |
|-----------|-----------------------------------------------------|-------------------------------------|------------------|--------|---------------------------------------------------|--------------------------|------|-------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Ad<br>Pre | ompany Name:<br>Idress:<br>oject Name:<br>oject ID: | Level 1, 50 N<br>Sydney<br>NSW 2000 | -                |        | PRIMARY SCHO                                      | OL                       | Re   | der N<br>port #<br>one:<br>x: |                  | 637848<br>02 8245 0300                                                                                                         | Eurofir                                                                                                                         | Received:<br>Due:<br>Priority:<br>Contact Name:<br>ns   mgt Analytical Ser                                        | Jan 25, 2019 5:50 PM<br>Feb 4, 2019<br>5 Day<br>Daniel Denaro<br><b>rvices Manager : Nibha Vaidya</b>                |
|           |                                                     | Sa                                  | mple Detail      |        |                                                   | Asbestos - WA guidelines | НОГД | Moisture Set                  | JBS&G Suite 2    |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| Molt      | ourne Laborato                                      |                                     | # 1254 & 142     | 71     |                                                   |                          | Х    | Х                             | х                | -                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
|           | ney Laboratory                                      |                                     |                  |        |                                                   | x                        | ~    | ~                             | ~                | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
|           | bane Laboratory                                     |                                     |                  |        |                                                   |                          |      |                               |                  | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
|           | h Laboratory - N                                    |                                     |                  |        |                                                   |                          |      |                               |                  | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
|           | rnal Laboratory                                     |                                     |                  |        |                                                   |                          |      |                               |                  | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| No        | Sample ID                                           | Sample Date                         | Sampling<br>Time | Matrix | LAB ID                                            |                          |      |                               |                  | ]                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 1         | RINSATE                                             | Jan 23, 2019                        |                  | Water  | S19-Ja24422                                       |                          |      |                               | Х                | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 2         | RINSATE                                             | Jan 25, 2019                        |                  | Water  | S19-Ja24423                                       |                          |      |                               | Х                | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 3         | QC20190121R<br>C_01                                 |                                     |                  | Soil   | S19-Ja24424                                       | x                        |      | х                             | х                |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 4         | <br>QC20190123R<br>C_01                             | Jan 23, 2019                        |                  | Soil   | S19-Ja24425                                       | х                        |      | х                             | х                | ]                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 5         | QC20190124R<br>C_01                                 | Jan 24, 2019                        |                  | Soil   | S19-Ja24426                                       | x                        |      | х                             | х                |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 6         | TRIP SPIKE                                          | Jan 17, 2019                        |                  | Water  | S19-Ja24427                                       |                          | Х    |                               |                  |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 7         | TRIP BLANK                                          | Jan 17, 2019                        |                  | Water  | S19-Ja24428                                       |                          | х    |                               |                  |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |

| 🔅 euro                       | ofins                                              | mgt                          |             | ABN– 50 005<br>e.mail : Envirc<br>web : www.eu | Sales@                   |      | s.com                            | E<br>F<br>N   | Dandenong South VIC 3175 16 Mars<br>Phone : +61 3 8564 5000 Lane C<br>NATA # 1261 Phone | ₩<br>3, Building F<br>rs Road<br>Cove West NSW 2066<br>: +61 2 9900 8400<br># 1261 Site # 18217 | <b>Brisbane</b><br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 44<br>NATA # 1261 Site # 20 | Kewdale WA 6105<br>600 Phone : +61 8 9251 9600                |
|------------------------------|----------------------------------------------------|------------------------------|-------------|------------------------------------------------|--------------------------|------|----------------------------------|---------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Company Name:<br>Address:    | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | stralia (NSW)<br>Margaret St | P/L         |                                                |                          | Re   | der N<br>eport :<br>ione:<br>ix: | #:            | 637848<br>02 8245 0300                                                                  |                                                                                                 | Received:<br>Due:<br>Priority:<br>Contact Name:                                                                | Jan 25, 2019 5:50 PM<br>Feb 4, 2019<br>5 Day<br>Daniel Denaro |
| Project Name:<br>Project ID: | CHATSWOC<br>55579                                  | DD EDUCATIO                  | ON PRECINCT | PRIMARY SCHC                                   | OL                       |      |                                  |               |                                                                                         | Eurofin                                                                                         | s   mgt Analytical S                                                                                           | ervices Manager : Nibha Vaidya                                |
|                              | Sa                                                 | mple Detail                  |             |                                                | Asbestos - WA guidelines | НОГО | Moisture Set                     | JBS&G Suite 2 | F                                                                                       |                                                                                                 |                                                                                                                |                                                               |
| Melbourne Laborator          | y - NATA Site                                      | # 1254 & 142                 | 271         |                                                |                          | х    | Х                                | Х             |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| Sydney Laboratory -          | NATA Site # 1                                      | 8217                         |             |                                                | Х                        |      |                                  |               |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| Brisbane Laboratory          | - NATA Site #                                      | 20794                        |             |                                                | L                        |      |                                  |               |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| Perth Laboratory - N/        | ATA Site # 237                                     | 736                          |             |                                                | L                        |      |                                  |               |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| 3 TRIP SPIKE                 | Jan 09, 2019                                       |                              | Water       | S19-Ja24429                                    |                          | Х    |                                  |               | _                                                                                       |                                                                                                 |                                                                                                                |                                                               |
|                              | Jan 09, 2019                                       |                              | Water       | S19-Ja24430                                    |                          | Х    |                                  |               |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| Test Counts                  |                                                    |                              |             |                                                | 3                        | 4    | 3                                | 5             |                                                                                         |                                                                                                 |                                                                                                                |                                                               |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. \*\*NOTE: pH duplicates are reported as a range NOT as RPD

> ug/L: micrograms per litre %: Percentage

MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### Units

| onits                                    |                                    |
|------------------------------------------|------------------------------------|
| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         |
| ppm: Parts per million                   | ppb: Parts per billion             |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units |

#### Terms

| Terms            |                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| LOR              | Limit of Reporting.                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| USEPA            | United States Environmental Protection Agency                                                                                                                      |
| APHA             | American Public Health Association                                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| COC              | Chain of Custody                                                                                                                                                   |
| SRA              | Sample Receipt Advice                                                                                                                                              |
| QSM              | US Department of Defense Quality Systems Manual Version 5.2 2018                                                                                                   |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
|                  |                                                                                                                                                                    |

#### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                 | Units   | Result 1 |            | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|---------|----------|------------|----------------------|----------------|--------------------|
| Method Blank                                         |         | 1        | ч <u>ч</u> | 1                    |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |         |          |            |                      |                |                    |
| TRH C6-C9                                            | mg/kg   | < 20     |            | 20                   | Pass           |                    |
| TRH C10-C14                                          | mg/kg   | < 20     |            | 20                   | Pass           |                    |
| TRH C15-C28                                          | mg/kg   | < 50     |            | 50                   | Pass           |                    |
| TRH C29-C36                                          | mg/kg   | < 50     |            | 50                   | Pass           |                    |
| Method Blank                                         |         | 1        | ч т<br>Т   | 1                    |                |                    |
| BTEX                                                 |         |          |            |                      |                |                    |
| Benzene                                              | mg/kg   | < 0.1    |            | 0.1                  | Pass           |                    |
| Toluene                                              | mg/kg   | < 0.1    |            | 0.1                  | Pass           |                    |
| Ethylbenzene                                         | mg/kg   | < 0.1    |            | 0.1                  | Pass           |                    |
| m&p-Xylenes                                          | mg/kg   | < 0.2    |            | 0.2                  | Pass           |                    |
| o-Xylene                                             | mg/kg   | < 0.1    |            | 0.1                  | Pass           |                    |
| Xylenes - Total                                      | mg/kg   | < 0.3    |            | 0.3                  | Pass           |                    |
| Method Blank                                         |         |          |            | 0.0                  | 1 400          |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |         |          |            |                      |                |                    |
| Naphthalene                                          | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| TRH C6-C10                                           | mg/kg   | < 20     |            | 20                   | Pass           |                    |
| TRH >C10-C16                                         | mg/kg   | < 50     |            | 50                   | Pass           |                    |
| TRH >C16-C34                                         | mg/kg   | < 100    |            | 100                  | Pass           |                    |
| TRH >C34-C40                                         | mg/kg   | < 100    |            | 100                  | Pass           |                    |
| Method Blank                                         | iiig/kg | 100      |            | 100                  | 1 455          |                    |
| Polycyclic Aromatic Hydrocarbons                     |         |          |            |                      |                |                    |
| Acenaphthene                                         | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Acenaphthylene                                       | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Anthracene                                           | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Benz(a)anthracene                                    | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                       | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene                               | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                                 | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                                 | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Chrysene                                             | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                                | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Fluoranthene                                         | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Fluorene                                             | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                               | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Naphthalene                                          | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Phenanthrene                                         | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Pyrene                                               | mg/kg   | < 0.5    |            | 0.5                  | Pass           |                    |
| Method Blank                                         | iiig/kg | < 0.5    |            | 0.0                  | 1 855          |                    |
| Organochlorine Pesticides                            |         | L        |            |                      |                |                    |
| Chlordanes - Total                                   | mg/kg   | < 0.1    |            | 0.1                  | Pass           |                    |
| 4.4'-DDD                                             | mg/kg   | < 0.05   |            | 0.05                 | Pass           |                    |
| 4.4-DDD<br>4.4'-DDE                                  | mg/kg   | < 0.05   |            | 0.05                 | Pass           |                    |
| 4.4-DDE<br>4.4'-DDT                                  | mg/kg   | < 0.05   |            | 0.05                 | Pass           |                    |
| a-BHC                                                | mg/kg   | < 0.05   |            | 0.05                 | Pass           |                    |
| Aldrin                                               |         |          |            | 0.05                 | Pass           |                    |
|                                                      | mg/kg   | < 0.05   |            |                      |                |                    |
| b-BHC                                                | mg/kg   | < 0.05   |            | 0.05                 | Pass           |                    |
| d-BHC                                                | mg/kg   | < 0.05   |            | 0.05                 | Pass           |                    |
| Dieldrin<br>Endesution                               | mg/kg   | < 0.05   | <u> </u>   | 0.05                 | Pass           |                    |
| Endosulfan I                                         | mg/kg   | < 0.05   |            | 0.05                 | Pass           |                    |
| Endosulfan II                                        | mg/kg   | < 0.05   |            | 0.05                 | Pass           |                    |



| Test                                                 | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|-------|----------|----------------------|----------------|--------------------|
| Endosulfan sulphate                                  | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin                                               | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin aldehyde                                      | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin ketone                                        | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| g-BHC (Lindane)                                      | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor                                           | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor epoxide                                   | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Hexachlorobenzene                                    | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Methoxychlor                                         | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Toxaphene                                            | mg/kg | < 1      | 1                    | Pass           |                    |
| Method Blank                                         |       |          |                      |                |                    |
| Polychlorinated Biphenyls                            |       |          |                      |                |                    |
| Aroclor-1016                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1221                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1232                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1242                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1248                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1254                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1260                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Total PCB*                                           | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                                         |       | •        |                      | •              |                    |
| Heavy Metals                                         |       |          |                      |                |                    |
| Arsenic                                              | mg/kg | < 2      | 2                    | Pass           |                    |
| Cadmium                                              | mg/kg | < 0.4    | 0.4                  | Pass           |                    |
| Chromium                                             | mg/kg | < 5      | 5                    | Pass           |                    |
| Copper                                               | mg/kg | < 5      | 5                    | Pass           |                    |
| Lead                                                 | mg/kg | < 5      | 5                    | Pass           |                    |
| Mercury                                              | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Nickel                                               | mg/kg | < 5      | 5                    | Pass           |                    |
| Zinc                                                 | mg/kg | < 5      | 5                    | Pass           |                    |
| LCS - % Recovery                                     | 00    |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |       |          |                      |                |                    |
| TRH C6-C9                                            | %     | 96       | 70-130               | Pass           |                    |
| TRH C10-C14                                          | %     | 106      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       |          |                      |                |                    |
| BTEX                                                 |       |          |                      |                |                    |
| Benzene                                              | %     | 87       | 70-130               | Pass           |                    |
| Toluene                                              | %     | 97       | 70-130               | Pass           |                    |
| Ethylbenzene                                         | %     | 101      | 70-130               | Pass           |                    |
| m&p-Xylenes                                          | %     | 99       | 70-130               | Pass           |                    |
| Xylenes - Total                                      | %     | 98       | 70-130               | Pass           |                    |
| LCS - % Recovery                                     | /0    |          |                      | 1 400          |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |       |          |                      |                |                    |
| Naphthalene                                          | %     | 78       | 70-130               | Pass           |                    |
| TRH C6-C10                                           | %     | 92       | 70-130               | Pass           |                    |
| TRH >C10-C16                                         | %     | 105      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     | /0    |          | 1 10130              | 1 000          |                    |
| Polycyclic Aromatic Hydrocarbons                     |       |          |                      |                |                    |
| Acenaphthene                                         | %     | 125      | 70-130               | Pass           |                    |
| Acenaphthylene                                       | %     | 119      | 70-130               | Pass           |                    |
| Acenaphthylene                                       | %     | 109      | 70-130               | Pass           |                    |
|                                                      | %     | 99       | 70-130               | Pass           |                    |
|                                                      | ~/0   | . 33     | 1 / ()-1.5()         | I rass         | 1                  |
| Benz(a)anthracene Benzo(a)pyrene                     | %     | 84       | 70-130               | Pass           |                    |



| Test                           |                                         |              | Units         | Result 1 |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|-----------------------------------------|--------------|---------------|----------|----------|----------------------|----------------|--------------------|
| Benzo(g.h.i)perylene           |                                         |              | %             | 84       |          | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene           |                                         |              | %             | 83       |          | 70-130               | Pass           |                    |
| Chrysene                       |                                         |              | %             | 82       |          | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene          |                                         |              | %             | 82       |          | 70-130               | Pass           |                    |
| Fluoranthene                   |                                         |              | %             | 115      |          | 70-130               | Pass           |                    |
| Fluorene                       |                                         |              | %             | 120      |          | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene         |                                         |              | %             | 94       |          | 70-130               | Pass           |                    |
| Naphthalene                    |                                         |              | %             | 111      |          | 70-130               | Pass           |                    |
| Phenanthrene                   |                                         |              | %             | 112      |          | 70-130               | Pass           |                    |
| Pyrene                         |                                         |              | %             | 125      |          | 70-130               | Pass           |                    |
| LCS - % Recovery               |                                         |              | ,.            |          |          | 1                    |                |                    |
| Organochlorine Pesticides      |                                         |              |               |          |          | 1                    |                |                    |
| Chlordanes - Total             |                                         |              | %             | 100      |          | 70-130               | Pass           |                    |
| 4.4'-DDE                       |                                         |              | %             | 108      |          | 70-130               | Pass           |                    |
| 4.4'-DDT                       |                                         |              | %             | 88       |          | 70-130               | Pass           |                    |
| a-BHC                          |                                         |              | %             | 83       |          | 70-130               | Pass           |                    |
| Aldrin                         |                                         |              | %             | 100      |          | 70-130               | Pass           |                    |
| b-BHC                          |                                         |              | %             | 72       |          | 70-130               | Pass           |                    |
| d-BHC                          |                                         |              | %             | 72       |          | 70-130               | Pass           |                    |
| Dieldrin                       |                                         |              |               | 117      |          |                      |                |                    |
| Endosulfan I                   |                                         |              | <u>%</u><br>% | 117      | <u>├</u> | 70-130               | Pass<br>Pass   |                    |
|                                |                                         |              |               |          |          | 70-130               |                |                    |
| Endosulfan II                  | -                                       | -            | %             | 86       |          | 70-130               | Pass           |                    |
| Endosulfan sulphate            |                                         |              | %             | 71       |          | 70-130               | Pass           |                    |
| Endrin                         |                                         |              | %             | 120      |          | 70-130               | Pass           |                    |
| Endrin aldehyde                |                                         |              | %             | 83       |          | 70-130               | Pass           |                    |
| Endrin ketone                  |                                         |              | %             | 88       |          | 70-130               | Pass           |                    |
| g-BHC (Lindane)                |                                         |              | %             | 92       |          | 70-130               | Pass           |                    |
| Heptachlor                     |                                         |              | %             | 92       |          | 70-130               | Pass           |                    |
| Heptachlor epoxide             |                                         |              | %             | 80       |          | 70-130               | Pass           |                    |
| Hexachlorobenzene              |                                         |              | %             | 110      |          | 70-130               | Pass           |                    |
| Methoxychlor                   |                                         |              | %             | 76       |          | 70-130               | Pass           |                    |
| LCS - % Recovery               |                                         |              |               | 1        |          | 1                    |                |                    |
| Polychlorinated Biphenyls      |                                         |              |               |          |          | +                    |                |                    |
| Aroclor-1260                   |                                         |              | %             | 87       |          | 70-130               | Pass           |                    |
| LCS - % Recovery               |                                         |              |               | 1        |          |                      |                | ļ                  |
| Heavy Metals                   |                                         | _            |               |          |          | <u> </u>             |                | ļ                  |
| Arsenic                        |                                         |              | %             | 115      |          | 80-120               | Pass           | ļ                  |
| Cadmium                        |                                         |              | %             | 104      | <b>↓</b> | 80-120               | Pass           |                    |
| Chromium                       |                                         |              | %             | 120      |          | 80-120               | Pass           |                    |
| Copper                         |                                         |              | %             | 118      | ļ        | 80-120               | Pass           |                    |
| Lead                           |                                         |              | %             | 116      |          | 80-120               | Pass           |                    |
| Mercury                        |                                         |              | %             | 109      | ļ        | 75-125               | Pass           |                    |
| Nickel                         |                                         |              | %             | 115      |          | 80-120               | Pass           |                    |
| Zinc                           |                                         |              | %             | 114      |          | 80-120               | Pass           |                    |
| Test                           | Lab Sample ID                           | QA<br>Source | Units         | Result 1 |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery             | ·                                       |              |               |          |          |                      |                |                    |
| Total Recoverable Hydrocarbons | - 1999 NEPM Fract                       | ions         |               | Result 1 |          |                      |                |                    |
| TRH C6-C9                      | S19-Ja22195                             | NCP          | %             | 84       |          | 70-130               | Pass           | [                  |
| TRH C10-C14                    | M19-Ja23438                             | NCP          | %             | 95       |          | 70-130               | Pass           |                    |
| Spike - % Recovery             | , , , , , , , , , , , , , , , , , , , , |              |               |          |          |                      |                |                    |
| BTEX                           |                                         |              |               | Result 1 |          |                      |                |                    |
|                                | S19-Ja22195                             | NCP          | %             | 82       |          | 70-130               | Pass           |                    |
| Benzene                        |                                         |              |               |          |          |                      |                | I                  |
| Benzene<br>Toluene             | S19-Ja22195                             | NCP          | %             | 96       |          | 70-130               | Pass           | l                  |



| Test                          | Lab Sample ID        | QA<br>Source | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------|----------------------|--------------|-------|----------|----------------------|----------------|--------------------|
| m&p-Xylenes                   | S19-Ja22195          | NCP          | %     | 101      | 70-130               | Pass           |                    |
| o-Xylene                      | S19-Ja22195          | NCP          | %     | 102      | 70-130               | Pass           |                    |
| Xylenes - Total               | S19-Ja22195          | NCP          | %     | 101      | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |       |          |                      | -              |                    |
| Total Recoverable Hydrocarbor | ns - 2013 NEPM Fract | ions         |       | Result 1 |                      |                |                    |
| Naphthalene                   | S19-Ja22195          | NCP          | %     | 77       | 70-130               | Pass           |                    |
| TRH C6-C10                    | S19-Ja22195          | NCP          | %     | 82       | 70-130               | Pass           |                    |
| TRH >C10-C16                  | M19-Ja23438          | NCP          | %     | 94       | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |       |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarb | ons                  | -            |       | Result 1 |                      |                |                    |
| Acenaphthene                  | P19-Ja24685          | NCP          | %     | 103      | 70-130               | Pass           |                    |
| Acenaphthylene                | P19-Ja24685          | NCP          | %     | 103      | 70-130               | Pass           |                    |
| Anthracene                    | P19-Ja24685          | NCP          | %     | 84       | 70-130               | Pass           |                    |
| Benz(a)anthracene             | P19-Ja24685          | NCP          | %     | 97       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                | P19-Ja24685          | NCP          | %     | 98       | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene        | P19-Ja24685          | NCP          | %     | 86       | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene          | P19-Ja24685          | NCP          | %     | 80       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene          | P19-Ja24685          | NCP          | %     | 102      | 70-130               | Pass           |                    |
| Chrysene                      | P19-Ja24685          | NCP          | %     | 79       | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene         | P19-Ja24685          | NCP          | %     | 101      | 70-130               | Pass           |                    |
| Fluoranthene                  | P19-Ja24685          | NCP          | %     | 85       | 70-130               | Pass           |                    |
| Fluorene                      | P19-Ja24685          | NCP          | %     | 97       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene        | P19-Ja24685          | NCP          | %     | 88       | 70-130               | Pass           |                    |
| Naphthalene                   | P19-Ja24685          | NCP          | %     | 109      | 70-130               | Pass           |                    |
| Phenanthrene                  | P19-Ja24685          | NCP          | %     | 85       | 70-130               | Pass           |                    |
| Pyrene                        | P19-Ja24685          | NCP          | %     | 88       | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |       |          |                      |                |                    |
| Organochlorine Pesticides     |                      |              |       | Result 1 |                      |                |                    |
| Chlordanes - Total            | M19-Ja23309          | NCP          | %     | 111      | 70-130               | Pass           |                    |
| 4.4'-DDE                      | M19-Ja23309          | NCP          | %     | 121      | 70-130               | Pass           |                    |
| a-BHC                         | M19-Ja23309          | NCP          | %     | 90       | 70-130               | Pass           |                    |
| Aldrin                        | M19-Ja23309          | NCP          | %     | 104      | 70-130               | Pass           |                    |
| b-BHC                         | M19-Ja23309          | NCP          | %     | 82       | 70-130               | Pass           |                    |
| d-BHC                         | M19-Ja23309          | NCP          | %     | 84       | 70-130               | Pass           |                    |
| Dieldrin                      | M19-Ja23309          | NCP          | %     | 124      | 70-130               | Pass           |                    |
| Endosulfan I                  | M19-Ja23309          | NCP          | %     | 103      | 70-130               | Pass           |                    |
| Endosulfan II                 | M19-Ja23309          | NCP          | %     | 106      | 70-130               | Pass           |                    |
| Endosulfan sulphate           | M19-Ja23309          | NCP          | %     | 70       | 70-130               | Pass           |                    |
| Endrin                        | M19-Ja23309          | NCP          | %     | 125      | 70-130               | Pass           |                    |
| Endrin aldehyde               | M19-Ja23309          | NCP          | %     | 89       | 70-130               | Pass           |                    |
| Endrin ketone                 | M19-Ja23309          | NCP          | %     | 114      | 70-130               | Pass           |                    |
| g-BHC (Lindane)               | M19-Ja23309          | NCP          | %     | 99       | 70-130               | Pass           |                    |
| Heptachlor                    | M19-Ja23309          | NCP          | %     | 95       | 70-130               | Pass           |                    |
| Heptachlor epoxide            | M19-Ja23309          | NCP          | %     | 85       | 70-130               | Pass           |                    |
| Hexachlorobenzene             | M19-Ja23309          | NCP          | %     | 115      | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |       |          |                      |                |                    |
| Polychlorinated Biphenyls     |                      |              |       | Result 1 |                      |                |                    |
| Aroclor-1016                  | M19-Ja24646          | NCP          | %     | 72       | 70-130               | Pass           |                    |
| Aroclor-1260                  | M19-Ja24646          | NCP          | %     | 92       | 70-130               | Pass           |                    |
| Spike - % Recovery            |                      |              |       |          |                      |                |                    |
| Heavy Metals                  |                      |              |       | Result 1 |                      |                |                    |
| Arsenic                       | M19-Ja24618          | NCP          | %     | 117      | 75-125               | Pass           |                    |
| Cadmium                       | M19-Ja24618          | NCP          | %     | 108      | 75-125               | Pass           |                    |
|                               |                      |              |       |          | -                    |                |                    |



| Test                          | Lab Sample ID        | QA<br>Source | Units | Result 1   |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------|----------------------|--------------|-------|------------|----------|-----|----------------------|----------------|--------------------|
| Copper                        | M19-Ja24618          | NCP          | %     | 170        |          |     | 75-125               | Fail           | Q08                |
| Lead                          | M19-Ja24618          | NCP          | %     | 219        |          |     | 75-125               | Fail           | Q08                |
| Mercury                       | M19-Ja24618          | NCP          | %     | 106        |          |     | 70-130               | Pass           |                    |
| Nickel                        | M19-Ja24618          | NCP          | %     | 115        |          |     | 75-125               | Pass           |                    |
| Zinc                          | M19-Ja24618          | NCP          | %     | 150        |          |     | 75-125               | Fail           | Q08                |
| Test                          | Lab Sample ID        | QA           | Units | Result 1   |          |     | Acceptance           | Pass           | Qualifying         |
| Duplicate                     |                      | Source       |       |            |          |     | Limits               | Limits         | Code               |
| Total Recoverable Hydrocarbo  | ns - 1999 NEPM Fract | ions         |       | Result 1   | Result 2 | RPD |                      |                |                    |
| TRH C6-C9                     | S19-Ja22194          | NCP          | mg/kg | < 20       | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C10-C14                   | M19-Ja25129          | NCP          | mg/kg | < 20       | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C15-C28                   | M19-Ja25129          | NCP          | mg/kg | < 50       | < 50     | <1  | 30%                  | Pass           |                    |
| TRH C29-C36                   | M19-Ja25129          | NCP          | mg/kg | < 50       | < 50     | <1  | 30%                  | Pass           |                    |
| Duplicate                     |                      |              |       |            | 100      |     | 0070                 | 1 400          |                    |
| BTEX                          |                      |              |       | Result 1   | Result 2 | RPD |                      |                |                    |
| Benzene                       | S19-Ja22194          | NCP          | mg/kg | < 0.1      | < 0.1    | <1  | 30%                  | Pass           |                    |
| Toluene                       | S19-Ja22194          | NCP          | mg/kg | < 0.1      | < 0.1    | <1  | 30%                  | Pass           |                    |
| Ethylbenzene                  | S19-Ja22194          | NCP          | mg/kg | < 0.1      | < 0.1    | <1  | 30%                  | Pass           |                    |
| m&p-Xylenes                   | S19-Ja22194          | NCP          | mg/kg | < 0.1      | < 0.1    | <1  | 30%                  | Pass           |                    |
| o-Xylene                      | S19-Ja22194          | NCP          | mg/kg | < 0.2      | < 0.2    | <1  | 30%                  | Pass           |                    |
| Xylenes - Total               | S19-Ja22194          | NCP          |       | < 0.1      | < 0.1    | <1  | 30%                  | Pass           |                    |
|                               | 319-Jazz194          | NCF          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | F d 55         |                    |
| Duplicate                     |                      | iene         |       | Deput 1    | Result 2 | RPD |                      |                |                    |
| Total Recoverable Hydrocarbo  |                      | 1            |       | Result 1   |          |     | 200/                 | Deee           |                    |
| Naphthalene                   | S19-Ja22194          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| TRH C6-C10                    | S19-Ja22194          | NCP          | mg/kg | < 20       | < 20     | <1  | 30%                  | Pass           |                    |
| TRH >C10-C16                  | M19-Ja25129          | NCP          | mg/kg | < 50       | < 50     | <1  | 30%                  | Pass           |                    |
| TRH >C16-C34                  | M19-Ja25129          | NCP          | mg/kg | < 100      | < 100    | <1  | 30%                  | Pass           |                    |
| TRH >C34-C40                  | M19-Ja25129          | NCP          | mg/kg | < 100      | < 100    | <1  | 30%                  | Pass           |                    |
| Duplicate                     |                      |              |       | I <b>-</b> |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocarb |                      |              |       | Result 1   | Result 2 | RPD |                      | _              |                    |
| Acenaphthene                  | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Acenaphthylene                | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene                    | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benz(a)anthracene             | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene                | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene        | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene          | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene          | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Chrysene                      | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene         | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluoranthene                  | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluorene                      | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene        | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Naphthalene                   | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Phenanthrene                  | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Pyrene                        | M19-Ja23308          | NCP          | mg/kg | < 0.5      | < 0.5    | <1  | 30%                  | Pass           |                    |
| Duplicate                     |                      |              |       |            |          |     |                      |                |                    |
| Organochlorine Pesticides     |                      |              |       | Result 1   | Result 2 | RPD |                      |                |                    |
| Chlordanes - Total            | M19-Ja23308          | NCP          | mg/kg | < 0.1      | < 0.1    | <1  | 30%                  | Pass           |                    |
| 4.4'-DDD                      | M19-Ja23308          | NCP          | mg/kg | < 0.05     | < 0.05   | <1  | 30%                  | Pass           |                    |
| 4.4'-DDE                      | M19-Ja23308          | NCP          | mg/kg | < 0.05     | < 0.05   | <1  | 30%                  | Pass           |                    |
| 4.4'-DDT                      | M19-Ja23308          | NCP          | mg/kg | < 0.05     | < 0.05   | <1  | 30%                  | Pass           |                    |
| a-BHC                         | M19-Ja23308          | NCP          | mg/kg | < 0.05     | < 0.05   | <1  | 30%                  | Pass           |                    |
| Aldrin                        | M19-Ja23308          | NCP          | mg/kg | < 0.05     | < 0.05   | <1  | 30%                  | Pass           |                    |
| b-BHC                         | M19-Ja23308          | NCP          |       | < 0.05     | < 0.05   |     | 30%                  |                | 1                  |



| Duplicate                 |             |     |       |          |          |     |     |      |  |
|---------------------------|-------------|-----|-------|----------|----------|-----|-----|------|--|
| Organochlorine Pesticides |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| d-BHC                     | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Dieldrin                  | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endosulfan I              | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endosulfan II             | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endosulfan sulphate       | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endrin                    | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endrin aldehyde           | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Endrin ketone             | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| g-BHC (Lindane)           | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Heptachlor                | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Heptachlor epoxide        | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Hexachlorobenzene         | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Methoxychlor              | M19-Ja23308 | NCP | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Duplicate                 |             |     |       |          |          |     |     |      |  |
| Heavy Metals              |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| Arsenic                   | M19-Ja24617 | NCP | mg/kg | < 2      | < 2      | <1  | 30% | Pass |  |
| Cadmium                   | M19-Ja24617 | NCP | mg/kg | < 0.4    | < 0.4    | <1  | 30% | Pass |  |
| Chromium                  | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Copper                    | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Lead                      | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Mercury                   | M19-Ja24617 | NCP | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |  |
| Nickel                    | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Zinc                      | M19-Ja24617 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Duplicate                 |             |     |       |          |          |     | 1   | _    |  |
|                           |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| % Moisture                | M19-Ja23454 | NCP | %     | 14       | 15       | 3.0 | 30% | Pass |  |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

mgt

#### **Qualifier Codes/Comments**

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

- F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
- N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
- The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix qual interference

#### Authorised By

| Nibha Vaidya    | Analytical Services Manager   |
|-----------------|-------------------------------|
| Joseph Edouard  | Senior Analyst-Organic (VIC)  |
| Harry Bacalis   | Senior Analyst-Volatile (VIC) |
| Nibha Vaidya    | Senior Analyst-Asbestos (NSW) |
| Emily Rosenberg | Senior Analyst-Metal (VIC)    |

#### Glenn Jackson General Manager

- Indicates Not Requested

- \* Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.
- Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.





JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

| • · · · · • |  |
|-------------|--|
| Attention:  |  |
| Allention.  |  |

#### **Daniel Denaro**

Report Project name Project ID Received Date

637848-W CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL 55579 Jan 23, 2019

| Client Sample ID                                  |           |      | RINSATE      | RINSATE      |
|---------------------------------------------------|-----------|------|--------------|--------------|
| Sample Matrix                                     |           |      | Water        | Water        |
| Eurofins   mgt Sample No.                         |           |      | S19-Ja24422  | S19-Ja24423  |
| Date Sampled                                      |           |      | Jan 23, 2019 | Jan 25, 2019 |
| Test/Reference                                    | LOR       | Unit |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |      |              |              |
| TRH C6-C9                                         | 0.02      | mg/L | < 0.02       | < 0.02       |
| TRH C10-C14                                       | 0.05      | mg/L | < 0.05       | < 0.05       |
| TRH C15-C28                                       | 0.1       | mg/L | < 0.1        | < 0.1        |
| TRH C29-C36                                       | 0.1       | mg/L | < 0.1        | < 0.1        |
| TRH C10-36 (Total)                                | 0.1       | mg/L | < 0.1        | < 0.1        |
| BTEX                                              |           |      |              |              |
| Benzene                                           | 0.001     | mg/L | < 0.001      | < 0.001      |
| Toluene                                           | 0.001     | mg/L | < 0.001      | < 0.001      |
| Ethylbenzene                                      | 0.001     | mg/L | < 0.001      | < 0.001      |
| m&p-Xylenes                                       | 0.002     | mg/L | < 0.002      | < 0.002      |
| o-Xylene                                          | 0.001     | mg/L | < 0.001      | < 0.001      |
| Xylenes - Total                                   | 0.003     | mg/L | < 0.003      | < 0.003      |
| 4-Bromofluorobenzene (surr.)                      | 1         | %    | 99           | 107          |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |      |              |              |
| Naphthalene <sup>N02</sup>                        | 0.01      | mg/L | < 0.01       | < 0.01       |
| TRH C6-C10                                        | 0.02      | mg/L | < 0.02       | < 0.02       |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 0.02      | mg/L | < 0.02       | < 0.02       |
| TRH >C10-C16                                      | 0.05      | mg/L | < 0.05       | < 0.05       |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 0.05      | mg/L | < 0.05       | < 0.05       |
| TRH >C16-C34                                      | 0.1       | mg/L | < 0.1        | < 0.1        |
| TRH >C34-C40                                      | 0.1       | mg/L | < 0.1        | < 0.1        |
| TRH >C10-C40 (total)*                             | 0.1       | mg/L | < 0.1        | < 0.1        |
| Polycyclic Aromatic Hydrocarbons                  |           |      |              |              |
| Acenaphthene                                      | 0.001     | mg/L | < 0.001      | < 0.001      |
| Acenaphthylene                                    | 0.001     | mg/L | < 0.001      | < 0.001      |
| Anthracene                                        | 0.001     | mg/L | < 0.001      | < 0.001      |
| Benz(a)anthracene                                 | 0.001     | mg/L | < 0.001      | < 0.001      |
| Benzo(a)pyrene                                    | 0.001     | mg/L | < 0.001      | < 0.001      |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.001     | mg/L | < 0.001      | < 0.001      |
| Benzo(g.h.i)perylene                              | 0.001     | mg/L | < 0.001      | < 0.001      |
| Benzo(k)fluoranthene                              | 0.001     | mg/L | < 0.001      | < 0.001      |
| Chrysene                                          | 0.001     | mg/L | < 0.001      | < 0.001      |
| Dibenz(a.h)anthracene                             | 0.001     | mg/L | < 0.001      | < 0.001      |
| Fluoranthene                                      | 0.001     | mg/L | < 0.001      | < 0.001      |
| Fluorene                                          | 0.001     | mg/L | < 0.001      | < 0.001      |



| Client Sample ID<br>Sample Matrix   |        |      | RINSATE<br>Water | RINSATE<br>Water |
|-------------------------------------|--------|------|------------------|------------------|
| Eurofins   mgt Sample No.           |        |      | S19-Ja24422      | S19-Ja24423      |
| Date Sampled                        |        |      | Jan 23, 2019     | Jan 25. 2019     |
| Test/Reference                      | LOR    | Unit | 0411 23, 2013    | Juli 23, 2013    |
| Polycyclic Aromatic Hydrocarbons    | LUK    | Unit |                  |                  |
| Indeno(1.2.3-cd)pyrene              | 0.001  | mg/L | < 0.001          | < 0.001          |
| Naphthalene                         | 0.001  | mg/L | < 0.001          | < 0.001          |
| Phenanthrene                        | 0.001  | mg/L | < 0.001          | < 0.001          |
| Pyrene                              | 0.001  | mg/L | < 0.001          | < 0.001          |
| Total PAH*                          | 0.001  | mg/L | < 0.001          | < 0.001          |
| 2-Fluorobiphenyl (surr.)            | 1      | %    | 62               | 54               |
| p-Terphenyl-d14 (surr.)             | 1      | %    | 91               | 96               |
| Organochlorine Pesticides           | •      | /0   |                  |                  |
| Chlordanes - Total                  | 0.001  | mg/L | < 0.001          | < 0.001          |
| 4.4'-DDD                            | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| 4.4'-DDE                            | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| 4.4'-DDT                            | 0.0001 | mg/L | 0.0001           | < 0.0001         |
| a-BHC                               | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Aldrin                              | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| b-BHC                               | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| d-BHC                               | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Dieldrin                            | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Endosulfan I                        | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Endosulfan II                       | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Endosulfan sulphate                 | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Endrin                              | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Endrin aldehyde                     | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Endrin ketone                       | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| g-BHC (Lindane)                     | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Heptachlor                          | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Heptachlor epoxide                  | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Hexachlorobenzene                   | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Methoxychlor                        | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Toxaphene                           | 0.01   | mg/L | < 0.01           | < 0.01           |
| Aldrin and Dieldrin (Total)*        | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| DDT + DDE + DDD (Total)*            | 0.0001 | mg/L | 0.0001           | < 0.0001         |
| Vic EPA IWRG 621 OCP (Total)*       | 0.001  | mg/L | < 0.001          | < 0.001          |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.001  | mg/L | < 0.001          | < 0.001          |
| Dibutylchlorendate (surr.)          | 1      | %    | 90               | 75               |
| Tetrachloro-m-xylene (surr.)        | 1      | %    | 60               | 69               |
| Polychlorinated Biphenyls           |        |      |                  |                  |
| Aroclor-1016                        | 0.001  | mg/L | < 0.001          | < 0.001          |
| Aroclor-1221                        | 0.001  | mg/L | < 0.001          | < 0.001          |
| Aroclor-1232                        | 0.001  | mg/L | < 0.001          | < 0.001          |
| Aroclor-1242                        | 0.001  | mg/L | < 0.001          | < 0.001          |
| Aroclor-1248                        | 0.001  | mg/L | < 0.001          | < 0.001          |
| Aroclor-1254                        | 0.001  | mg/L | < 0.001          | < 0.001          |
| Aroclor-1260                        | 0.001  | mg/L | < 0.001          | < 0.001          |
| Total PCB*                          | 0.001  | mg/L | < 0.001          | < 0.001          |
| Dibutylchlorendate (surr.)          | 1      | %    | 90               | 75               |
| Tetrachloro-m-xylene (surr.)        | 1      | %    | 60               | 69               |



| Client Sample ID<br>Sample Matrix |        |      | RINSATE<br>Water | RINSATE<br>Water |
|-----------------------------------|--------|------|------------------|------------------|
| Eurofins   mgt Sample No.         |        |      | S19-Ja24422      | S19-Ja24423      |
| Date Sampled                      |        |      | Jan 23, 2019     | Jan 25, 2019     |
| Test/Reference                    | LOR    | Unit |                  |                  |
| Heavy Metals                      |        |      |                  |                  |
| Arsenic                           | 0.001  | mg/L | < 0.001          | < 0.001          |
| Cadmium                           | 0.0002 | mg/L | < 0.0002         | < 0.0002         |
| Chromium                          | 0.001  | mg/L | < 0.001          | < 0.001          |
| Copper                            | 0.001  | mg/L | < 0.001          | < 0.001          |
| Lead                              | 0.001  | mg/L | < 0.001          | < 0.001          |
| Mercury                           | 0.0001 | mg/L | < 0.0001         | < 0.0001         |
| Nickel                            | 0.001  | mg/L | < 0.001          | < 0.001          |
| Zinc                              | 0.005  | mg/L | < 0.005          | < 0.005          |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                            | Testing Site | Extracted    | Holding Time |
|------------------------------------------------------------------------|--------------|--------------|--------------|
| JBS&G Suite 2                                                          |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                   | Melbourne    | Feb 01, 2019 | 7 Day        |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| BTEX                                                                   | Melbourne    | Jan 31, 2019 | 14 Day       |
| - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Jan 31, 2019 | 7 Day        |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Feb 01, 2019 | 7 Day        |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                       | Melbourne    | Feb 01, 2019 | 7 Day        |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water               |              |              |              |
| Organochlorine Pesticides                                              | Melbourne    | Feb 04, 2019 | 7 Day        |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |              |
| Polychlorinated Biphenyls                                              | Melbourne    | Feb 01, 2019 | 7 Days       |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |              |
| Metals M8                                                              | Melbourne    | Jan 31, 2019 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS   |              |              |              |

|                                                                                                                                                                                                                                      | 🔅 eur                   | ofins        | mgt              |        | ABN- 50 005 (<br>e.mail : Enviro<br>web : www.eur | Sales@                   |      | .com                          | 6<br>D<br>P<br>N | <b>felbourne</b><br>Monterey Road<br>vandenong South VIC 3175<br>vhone : +61 3 8564 5000<br>IATA # 1261<br>vite # 1254 & 14271 | Sydney<br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | <b>Brisbane</b><br>1/21 Smallwood Place<br>Murarie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 2079 | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>9 Phone : +61 8 9251 9600<br>94 NATA # 1261<br>Site # 23736 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|------------------|--------|---------------------------------------------------|--------------------------|------|-------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Company Name:       JBS & G Australia (NSW) P/L         Address:       Level 1, 50 Margaret St         Sydney       NSW 2000         Project Name:       CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL         Project ID:       55579 |                         |              |                  |        |                                                   | OL                       | Re   | der N<br>port #<br>one:<br>x: |                  | 637848<br>02 8245 0300                                                                                                         | Eurofir                                                                                                                         | Received:<br>Due:<br>Priority:<br>Contact Name:<br>ns   mgt Analytical Ser                                        | Jan 25, 2019 5:50 PM<br>Feb 4, 2019<br>5 Day<br>Daniel Denaro<br><b>rvices Manager : Nibha Vaidya</b>                |
|                                                                                                                                                                                                                                      | Sample Detail           |              |                  |        |                                                   | Asbestos - WA guidelines | НОГД | Moisture Set                  | JBS&G Suite 2    |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| Molt                                                                                                                                                                                                                                 | ourne Laborato          |              | # 1254 & 142     | 71     |                                                   |                          | Х    | Х                             | х                | -                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
|                                                                                                                                                                                                                                      | ney Laboratory          |              |                  |        |                                                   | x                        | ~    | ~                             | ~                | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
|                                                                                                                                                                                                                                      | bane Laboratory         |              |                  |        |                                                   |                          |      |                               |                  | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
|                                                                                                                                                                                                                                      | h Laboratory - N        |              |                  |        |                                                   |                          |      |                               |                  | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
|                                                                                                                                                                                                                                      | rnal Laboratory         |              |                  |        |                                                   |                          |      |                               |                  | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| No                                                                                                                                                                                                                                   | Sample ID               | Sample Date  | Sampling<br>Time | Matrix | LAB ID                                            |                          |      |                               |                  | ]                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 1                                                                                                                                                                                                                                    | RINSATE                 | Jan 23, 2019 |                  | Water  | S19-Ja24422                                       |                          |      |                               | Х                | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 2                                                                                                                                                                                                                                    | RINSATE                 | Jan 25, 2019 |                  | Water  | S19-Ja24423                                       |                          |      |                               | Х                | 1                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 3                                                                                                                                                                                                                                    | QC20190121R<br>C_01     |              |                  | Soil   | S19-Ja24424                                       | x                        |      | х                             | х                |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 4                                                                                                                                                                                                                                    | <br>QC20190123R<br>C_01 | Jan 23, 2019 |                  | Soil   | S19-Ja24425                                       | х                        |      | х                             | х                | ]                                                                                                                              |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 5                                                                                                                                                                                                                                    | QC20190124R<br>C_01     | Jan 24, 2019 |                  | Soil   | S19-Ja24426                                       | x                        |      | х                             | х                |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 6                                                                                                                                                                                                                                    | TRIP SPIKE              | Jan 17, 2019 |                  | Water  | S19-Ja24427                                       |                          | Х    |                               |                  |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |
| 7                                                                                                                                                                                                                                    | TRIP BLANK              | Jan 17, 2019 |                  | Water  | S19-Ja24428                                       |                          | х    |                               |                  |                                                                                                                                |                                                                                                                                 |                                                                                                                   |                                                                                                                      |

| 🔅 euro                                                                                                                                | ofins                                              | mgt                          |       | ABN– 50 005<br>e.mail : Envirc<br>web : www.eu | Sales@                   |      | s.com                            | E<br>F<br>N                    | Dandenong South VIC 3175 16 Mars<br>Phone : +61 3 8564 5000 Lane C<br>NATA # 1261 Phone | ₩<br>3, Building F<br>rs Road<br>Cove West NSW 2066<br>: +61 2 9900 8400<br># 1261 Site # 18217 | <b>Brisbane</b><br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 44<br>NATA # 1261 Site # 20 | Kewdale WA 6105<br>600 Phone : +61 8 9251 9600                |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------|-------|------------------------------------------------|--------------------------|------|----------------------------------|--------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Company Name:<br>Address:                                                                                                             | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | stralia (NSW)<br>Margaret St | P/L   |                                                |                          | Re   | der N<br>eport :<br>ione:<br>ix: | #:                             | 637848<br>02 8245 0300                                                                  |                                                                                                 | Received:<br>Due:<br>Priority:<br>Contact Name:                                                                | Jan 25, 2019 5:50 PM<br>Feb 4, 2019<br>5 Day<br>Daniel Denaro |
| Project Name: CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL Project ID: 55579 Eurofins   mgt Analytical Services Manager : Nibha Vaidya |                                                    |                              |       |                                                |                          |      |                                  | ervices Manager : Nibha Vaidya |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
|                                                                                                                                       | Sa                                                 | mple Detail                  |       |                                                | Asbestos - WA guidelines | НОГО | Moisture Set                     | JBS&G Suite 2                  | F                                                                                       |                                                                                                 |                                                                                                                |                                                               |
| Melbourne Laborator                                                                                                                   | y - NATA Site                                      | # 1254 & 142                 | 271   |                                                |                          | х    | Х                                | Х                              |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| Sydney Laboratory -                                                                                                                   | NATA Site # 1                                      | 8217                         |       |                                                | Х                        |      |                                  |                                |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| Brisbane Laboratory                                                                                                                   | - NATA Site #                                      | 20794                        |       |                                                | L                        |      |                                  |                                |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| Perth Laboratory - N/                                                                                                                 | ATA Site # 237                                     | 736                          |       |                                                | L                        |      |                                  |                                |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| 3 TRIP SPIKE                                                                                                                          | Jan 09, 2019                                       |                              | Water | S19-Ja24429                                    |                          | Х    |                                  |                                | _                                                                                       |                                                                                                 |                                                                                                                |                                                               |
|                                                                                                                                       | Jan 09, 2019                                       |                              | Water | S19-Ja24430                                    |                          | Х    |                                  |                                |                                                                                         |                                                                                                 |                                                                                                                |                                                               |
| Test Counts                                                                                                                           |                                                    |                              |       |                                                | 3                        | 4    | 3                                | 5                              |                                                                                         |                                                                                                 |                                                                                                                |                                                               |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. \*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

| onits                                    |                                    |
|------------------------------------------|------------------------------------|
| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         |
| ppm: Parts per million                   | ppb: Parts per billion             |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units |

ug/L: micrograms per litre %: Percentage MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### Terms

| Terma            |                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| LOR              | Limit of Reporting.                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| USEPA            | United States Environmental Protection Agency                                                                                                                      |
| APHA             | American Public Health Association                                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| COC              | Chain of Custody                                                                                                                                                   |
| SRA              | Sample Receipt Advice                                                                                                                                              |
| QSM              | US Department of Defense Quality Systems Manual Version 5.2 2018                                                                                                   |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
|                  |                                                                                                                                                                    |

#### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

| Test                                          | Units   | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------|---------|----------|----------------------|----------------|--------------------|
| Method Blank                                  |         | · · ·    |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fr | actions |          |                      |                |                    |
| TRH C6-C9                                     | mg/L    | < 0.02   | 0.02                 | Pass           |                    |
| TRH C10-C14                                   | mg/L    | < 0.05   | 0.05                 | Pass           |                    |
| TRH C15-C28                                   | mg/L    | < 0.1    | 0.1                  | Pass           |                    |
| TRH C29-C36                                   | mg/L    | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                                  | · · ·   |          |                      | •              |                    |
| BTEX                                          |         |          |                      |                |                    |
| Benzene                                       | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Toluene                                       | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Ethylbenzene                                  | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| m&p-Xylenes                                   | mg/L    | < 0.002  | 0.002                | Pass           |                    |
| o-Xylene                                      | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Xylenes - Total                               | mg/L    | < 0.003  | 0.003                | Pass           |                    |
| Method Blank                                  |         |          |                      | •              |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fr | actions |          |                      |                |                    |
| Naphthalene                                   | mg/L    | < 0.01   | 0.01                 | Pass           |                    |
| TRH C6-C10                                    | mg/L    | < 0.02   | 0.02                 | Pass           |                    |
| TRH >C10-C16                                  | mg/L    | < 0.05   | 0.05                 | Pass           |                    |
| TRH >C16-C34                                  | mg/L    | < 0.1    | 0.1                  | Pass           |                    |
| TRH >C34-C40                                  | mg/L    | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                                  |         |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons              |         |          |                      |                |                    |
| Acenaphthene                                  | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Acenaphthylene                                | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Anthracene                                    | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Benz(a)anthracene                             | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Benzo(a)pyrene                                | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Benzo(b&i)fluoranthene                        | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Benzo(g.h.i)perylene                          | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Benzo(k)fluoranthene                          | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Chrysene                                      | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Dibenz(a.h)anthracene                         | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Fluoranthene                                  | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Fluorene                                      | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                        | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Naphthalene                                   | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Phenanthrene                                  | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Pyrene                                        | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| Method Blank                                  |         |          |                      | 1              |                    |
| Organochlorine Pesticides                     |         |          |                      |                |                    |
| Chlordanes - Total                            | mg/L    | < 0.001  | 0.001                | Pass           |                    |
| 4.4'-DDD                                      | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| 4.4'-DDE                                      | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| 4.4'-DDT                                      | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| a-BHC                                         | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| Aldrin                                        | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| b-BHC                                         | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| d-BHC                                         | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| Dieldrin                                      | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| Endosulfan I                                  | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |
| Endosulfan II                                 | mg/L    | < 0.0001 | 0.0001               | Pass           |                    |



| Test                                                 | Units | Result 1 |    | eptance<br>imits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|-------|----------|----|------------------|----------------|--------------------|
| Endosulfan sulphate                                  | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Endrin                                               | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Endrin aldehyde                                      | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Endrin ketone                                        | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| g-BHC (Lindane)                                      | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Heptachlor                                           | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Heptachlor epoxide                                   | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Hexachlorobenzene                                    | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Methoxychlor                                         | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Toxaphene                                            | mg/L  | < 0.01   |    | 0.01             | Pass           |                    |
| Method Blank                                         |       |          |    |                  |                |                    |
| Polychlorinated Biphenyls                            |       |          |    |                  |                |                    |
| Aroclor-1016                                         | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Aroclor-1221                                         | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Aroclor-1232                                         | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Aroclor-1242                                         | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Aroclor-1248                                         | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Aroclor-1254                                         | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Aroclor-1260                                         | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Total PCB*                                           | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Method Blank                                         |       |          |    |                  |                |                    |
| Heavy Metals                                         |       |          |    |                  |                |                    |
| Arsenic                                              | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Cadmium                                              | mg/L  | < 0.0002 | 0  | .0002            | Pass           |                    |
| Chromium                                             | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Copper                                               | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Lead                                                 | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Mercury                                              | mg/L  | < 0.0001 | 0  | .0001            | Pass           |                    |
| Nickel                                               | mg/L  | < 0.001  | (  | 0.001            | Pass           |                    |
| Zinc                                                 | mg/L  | < 0.005  | (  | 0.005            | Pass           |                    |
| LCS - % Recovery                                     |       |          |    |                  |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |       |          |    |                  |                |                    |
| TRH C6-C9                                            | %     | 109      | 7  | 0-130            | Pass           |                    |
| TRH C10-C14                                          | %     | 97       | 7  | 0-130            | Pass           |                    |
| LCS - % Recovery                                     |       | 1 1      |    |                  |                |                    |
| BTEX                                                 |       |          |    |                  |                |                    |
| Benzene                                              | %     | 83       | 7  | 0-130            | Pass           |                    |
| Toluene                                              | %     | 88       | 7  | 0-130            | Pass           |                    |
| Ethylbenzene                                         | %     | 106      | 7  | 0-130            | Pass           |                    |
| m&p-Xylenes                                          | %     | 109      | 7  | 0-130            | Pass           |                    |
| Xylenes - Total                                      | %     | 108      | 7  | 0-130            | Pass           |                    |
| LCS - % Recovery                                     |       | 1 1      | ii |                  |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |       |          |    |                  |                |                    |
| Naphthalene                                          | %     | 92       | 7  | 0-130            | Pass           |                    |
| TRH C6-C10                                           | %     | 113      | 7  | 0-130            | Pass           |                    |
| TRH >C10-C16                                         | %     | 99       | 7  | 0-130            | Pass           |                    |
| LCS - % Recovery                                     |       |          |    |                  |                |                    |
| Polycyclic Aromatic Hydrocarbons                     |       |          |    |                  |                |                    |
| Acenaphthene                                         | %     | 123      | 7  | 0-130            | Pass           |                    |
| Acenaphthylene                                       | %     | 107      | 7  | 0-130            | Pass           |                    |
| Anthracene                                           | %     | 124      | 7  | 0-130            | Pass           |                    |
| Benz(a)anthracene                                    | %     | 91       | 7  | 0-130            | Pass           |                    |
| Benzo(a)pyrene                                       | %     | 84       | 7  | 0-130            | Pass           |                    |
| Benzo(b&j)fluoranthene                               | %     | 86       | 7  | 0-130            | Pass           |                    |



| Test                             |                            | Units        | Result 1 |            | Acceptance<br>Limits | Pass<br>Limits       | Qualifying<br>Code |                    |
|----------------------------------|----------------------------|--------------|----------|------------|----------------------|----------------------|--------------------|--------------------|
| Benzo(g.h.i)perylene             |                            |              | %        | 80         |                      | 70-130               | Pass               |                    |
| Benzo(k)fluoranthene             |                            |              | %        | 74         |                      | 70-130               | Pass               |                    |
| Chrysene                         |                            |              | %        | 88         |                      | 70-130               | Pass               |                    |
| Dibenz(a.h)anthracene            |                            |              | %        | 92         |                      | 70-130               | Pass               |                    |
| Fluoranthene                     |                            |              | %        | 94         |                      | 70-130               | Pass               |                    |
| Fluorene                         |                            |              | %        | 103        |                      | 70-130               | Pass               |                    |
| Indeno(1.2.3-cd)pyrene           |                            |              | %        | 115        |                      | 70-130               | Pass               |                    |
| Naphthalene                      |                            |              | %        | 96         |                      | 70-130               | Pass               |                    |
| Phenanthrene                     |                            |              | %        | 120        |                      | 70-130               | Pass               |                    |
| Pyrene                           |                            |              | %        | 95         |                      | 70-130               | Pass               |                    |
| LCS - % Recovery                 |                            |              |          |            |                      |                      |                    |                    |
| Organochlorine Pesticides        |                            |              |          |            |                      |                      |                    |                    |
| Chlordanes - Total               |                            | I            | %        | 101        |                      | 70-130               | Pass               |                    |
| 4.4'-DDD                         |                            |              | %        | 90         |                      | 70-130               | Pass               |                    |
| 4.4'-DDE                         |                            |              | %        | 114        |                      | 70-130               | Pass               |                    |
| 4.4'-DDT                         |                            |              | %        | 95         |                      | 70-130               | Pass               |                    |
| a-BHC                            |                            |              | %        | 79         |                      | 70-130               | Pass               | 1                  |
| Aldrin                           |                            |              | %        | 79         |                      | 70-130               | Pass               |                    |
| b-BHC                            |                            | _            | %        | 88         |                      | 70-130               | Pass               |                    |
| d-BHC                            |                            |              | %        | 102        |                      | 70-130               | Pass               |                    |
| Dieldrin                         |                            |              | %        | 110        |                      | 70-130               | Pass               |                    |
| Endosulfan I                     |                            |              | %        | 78         |                      | 70-130               | Pass               |                    |
| Endosulfan II                    |                            |              | %        | 80         |                      | 70-130               | Pass               |                    |
| Endosulfan sulphate              |                            |              | %        | 90         |                      | 70-130               | Pass               |                    |
| Endrin                           |                            |              | %        | 87         |                      | 70-130               | Pass               |                    |
| Endrin aldehyde                  |                            |              | %        | 75         |                      | 70-130               | Pass               |                    |
| Endrin ketone                    |                            |              | %        | 116        |                      | 70-130               | Pass               |                    |
|                                  |                            |              | %        | 79         |                      | 70-130               | Pass               |                    |
| g-BHC (Lindane)                  |                            |              | %        | 79         |                      | 70-130               | Pass               |                    |
| Heptachlor<br>Heptachlor epoxide |                            |              | %        | 84         |                      | 70-130               | Pass               |                    |
| Hexachlorobenzene                |                            |              |          | 80         |                      |                      |                    |                    |
|                                  |                            |              | %        |            |                      | 70-130               | Pass               |                    |
| Methoxychlor                     |                            |              | %        | 118        |                      | 70-130               | Pass               |                    |
| LCS - % Recovery                 |                            |              |          |            |                      | 1                    |                    |                    |
| Heavy Metals                     |                            |              | 0/       |            |                      | 00.400               | Deee               |                    |
| Arsenic                          |                            |              | %        | 88         |                      | 80-120               | Pass               |                    |
| Cadmium                          |                            |              | %        | 88         |                      | 80-120               | Pass               |                    |
| Chromium                         |                            |              | %        | 88         |                      | 80-120               | Pass               |                    |
| Copper                           |                            |              | %        | 87         | <u> </u>             | 80-120               | Pass               |                    |
| Lead                             |                            |              | %        | 89         | <u> </u>             | 80-120               | Pass               |                    |
| Mercury                          |                            |              | %        | 88         | <u> </u>             | 75-125               | Pass               |                    |
| Nickel                           |                            |              | %        | 87         | <u> </u>             | 80-120               | Pass               |                    |
| Zinc                             |                            |              | %        | 89         | <u> </u>             | 80-120               | Pass               | <b>a</b>           |
| Test                             | Lab Sample ID              | QA<br>Source | Units    | Result 1   |                      | Acceptance<br>Limits | Pass<br>Limits     | Qualifying<br>Code |
| Spike - % Recovery               |                            |              |          |            |                      |                      |                    |                    |
| Total Recoverable Hydrocarbor    | ns - 1999 NEPM Fract       | tions        |          | Result 1   |                      |                      |                    |                    |
| TRH C6-C9                        | S19-Ja22235                | NCP          | %        | 113        |                      | 70-130               | Pass               |                    |
| TRH C10-C14                      | M19-Ja27601                | NCP          | %        | 110        |                      | 70-130               | Pass               | 1                  |
| Spike - % Recovery               |                            |              | ,0       |            |                      |                      |                    |                    |
| BTEX                             |                            |              |          | Result 1   |                      | T                    |                    |                    |
| Benzene                          | S19-Ja22235                | NCP          | %        | 88         |                      | 70-130               | Pass               |                    |
| Toluene                          | S19-Ja22235                | NCP          | %        | 95         |                      | 70-130               | Pass               |                    |
| 10100110                         |                            |              |          |            |                      |                      |                    |                    |
| Ethylbenzene                     | S19-1a22235                | NCP          | · %      | 1 11/1/2   |                      | / / / - / 3//        |                    |                    |
| Ethylbenzene<br>m&p-Xylenes      | S19-Ja22235<br>S19-Ja22235 | NCP<br>NCP   | %<br>%   | 104<br>108 |                      | 70-130<br>70-130     | Pass<br>Pass       |                    |



| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 | Accep | ptance<br>mits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-----------------|--------------|-------|----------|-------|----------------|----------------|--------------------|
| Xylenes - Total                  | S19-Ja22235     | NCP          | %     | 107      | 70-   | -130           | Pass           |                    |
| Spike - % Recovery               |                 |              |       |          |       |                |                |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | tions        |       | Result 1 |       |                |                |                    |
| Naphthalene                      | S19-Ja22235     | NCP          | %     | 94       | 70-   | -130           | Pass           |                    |
| TRH C6-C10                       | S19-Ja22235     | NCP          | %     | 114      | 70-   | -130           | Pass           |                    |
| TRH >C10-C16                     | M19-Ja27601     | NCP          | %     | 115      | 70-   | -130           | Pass           |                    |
| Spike - % Recovery               |                 |              |       | 1        |       |                |                |                    |
| Polycyclic Aromatic Hydrocarbons | Ş               |              |       | Result 1 |       |                |                |                    |
| Acenaphthene                     | M19-Ja19670     | NCP          | %     | 112      | 70-   | -130           | Pass           |                    |
| Acenaphthylene                   | M19-Ja19670     | NCP          | %     | 95       | 70-   | -130           | Pass           |                    |
| Anthracene                       | M19-Ja19670     | NCP          | %     | 81       | 70-   | -130           | Pass           |                    |
| Benz(a)anthracene                | M19-Ja19670     | NCP          | %     | 113      | 70-   | -130           | Pass           |                    |
| Benzo(a)pyrene                   | M19-Ja19670     | NCP          | %     | 116      | 70-   | -130           | Pass           |                    |
| Benzo(b&j)fluoranthene           | M19-Ja19670     | NCP          | %     | 80       | 70-   | -130           | Pass           |                    |
| Benzo(g.h.i)perylene             | M19-Ja19670     | NCP          | %     | 100      | 70-   | -130           | Pass           |                    |
| Benzo(k)fluoranthene             | M19-Ja19670     | NCP          | %     | 93       | 70-   | -130           | Pass           |                    |
| Chrysene                         | M19-Ja19670     | NCP          | %     | 103      | 70-   | -130           | Pass           |                    |
| Dibenz(a.h)anthracene            | M19-Ja19670     | NCP          | %     | 88       | 70-   | -130           | Pass           |                    |
| Fluoranthene                     | M19-Ja19670     | NCP          | %     | 94       | 70-   | -130           | Pass           |                    |
| Fluorene                         | M19-Ja19670     | NCP          | %     | 89       | 70-   | -130           | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | M19-Ja19670     | NCP          | %     | 114      | 70-   | -130           | Pass           |                    |
| Naphthalene                      | M19-Ja19670     | NCP          | %     | 96       | 70-   | -130           | Pass           |                    |
| Phenanthrene                     | M19-Ja19670     | NCP          | %     | 104      | 70-   | -130           | Pass           |                    |
| Pyrene                           | M19-Ja19670     | NCP          | %     | 95       | 70-   | -130           | Pass           |                    |
| Spike - % Recovery               |                 |              |       | -        |       |                |                |                    |
| Heavy Metals                     |                 |              |       | Result 1 |       |                |                |                    |
| Arsenic                          | M19-Ja19906     | NCP          | %     | 102      | 75-   | -125           | Pass           |                    |
| Cadmium                          | M19-Ja19906     | NCP          | %     | 102      | 75-   | -125           | Pass           |                    |
| Chromium                         | M19-Ja19906     | NCP          | %     | 101      | 75-   | -125           | Pass           |                    |
| Copper                           | M19-Ja19906     | NCP          | %     | 101      | 75-   | -125           | Pass           |                    |
| Lead                             | M19-Ja19906     | NCP          | %     | 101      | 75-   | -125           | Pass           |                    |
| Mercury                          | M19-Ja19906     | NCP          | %     | 104      | 70-   | -130           | Pass           |                    |
| Nickel                           | M19-Ja19906     | NCP          | %     | 100      | 75-   | -125           | Pass           |                    |
| Zinc                             | M19-Ja19906     | NCP          | %     | 104      | 75-   | -125           | Pass           |                    |
| Spike - % Recovery               |                 |              |       | 1        |       |                |                |                    |
| Organochlorine Pesticides        |                 |              |       | Result 1 |       |                |                |                    |
| Chlordanes - Total               | M19-Ja23029     | NCP          | %     | 107      | 70-   | -130           | Pass           |                    |
| 4.4'-DDD                         | M19-Ja23029     | NCP          | %     | 89       | 70-   | -130           | Pass           |                    |
| 4.4'-DDE                         | M19-Ja23029     | NCP          | %     | 114      | 70-   | -130           | Pass           |                    |
| 4.4'-DDT                         | M19-Ja23029     | NCP          | %     | 98       | 70-   | -130           | Pass           |                    |
| a-BHC                            | M19-Ja23029     | NCP          | %     | 92       | 70-   | -130           | Pass           |                    |
| Aldrin                           | M19-Ja23029     | NCP          | %     | 81       | 70-   | -130           | Pass           |                    |
| b-BHC                            | M19-Ja23029     | NCP          | %     | 91       | 70-   | -130           | Pass           |                    |
| d-BHC                            | M19-Ja23029     | NCP          | %     | 96       | 70-   | -130           | Pass           |                    |
| Dieldrin                         | M19-Ja23029     | NCP          | %     | 101      | 70-   | -130           | Pass           |                    |
| Endosulfan I                     | M19-Ja23029     | NCP          | %     | 78       | 70-   | -130           | Pass           |                    |
| Endosulfan II                    | M19-Ja23029     | NCP          | %     | 95       | 70-   | -130           | Pass           |                    |
| Endosulfan sulphate              | M19-Ja23029     | NCP          | %     | 77       | 70-   | -130           | Pass           |                    |
| Endrin                           | M19-Ja23029     | NCP          | %     | 106      | 70-   | -130           | Pass           |                    |
| Endrin aldehyde                  | M19-Fe01757     | NCP          | %     | 105      | 70-   | -130           | Pass           |                    |
| Endrin ketone                    | M19-Ja23029     | NCP          | %     | 79       | 70-   | -130           | Pass           |                    |
| g-BHC (Lindane)                  | M19-Ja23029     | NCP          | %     | 87       | 70-   | -130           | Pass           |                    |
| Heptachlor                       | M19-Ja23029     | NCP          | %     | 79       | 70-   | -130           | Pass           |                    |
| Heptachlor epoxide               | M19-Ja23029     | NCP          | %     | 79       | 70-   | -130           | Pass           |                    |



| Test                          | Lab Sample ID        | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------|----------------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Hexachlorobenzene             | M19-Ja23029          | NCP          | %     | 82       |          |     | 70-130               | Pass           |                    |
| Methoxychlor                  | M19-Ja23029          | NCP          | %     | 120      |          |     | 70-130               | Pass           |                    |
| Test                          | Lab Sample ID        | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                     |                      | Source       |       |          |          |     | Linits               | Linits         | Code               |
| Total Recoverable Hydrocarbo  | ns - 1999 NEPM Fract | tions        |       | Result 1 | Result 2 | RPD |                      |                |                    |
| TRH C6-C9                     | M19-Ja21481          | NCP          | mg/L  | < 0.02   | < 0.02   | <1  | 30%                  | Pass           |                    |
| TRH C10-C14                   | M19-Ja27069          | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| TRH C15-C28                   | M19-Ja27069          | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH C29-C36                   | M19-Ja27069          | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Duplicate                     |                      |              |       |          |          |     |                      |                |                    |
| BTEX                          |                      |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Benzene                       | M19-Ja21481          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Toluene                       | M19-Ja21481          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Ethylbenzene                  | M19-Ja21481          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| m&p-Xylenes                   | M19-Ja21481          | NCP          | mg/L  | < 0.002  | < 0.002  | <1  | 30%                  | Pass           |                    |
| o-Xylene                      | M19-Ja21481          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Xvlenes - Total               | M19-Ja21481          | NCP          | mg/L  | < 0.003  | < 0.003  | <1  | 30%                  | Pass           |                    |
| Duplicate                     |                      |              |       |          |          |     |                      |                |                    |
| Total Recoverable Hydrocarbo  | ns - 2013 NEPM Fract | tions        |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Naphthalene                   | M19-Ja21481          | NCP          | mg/L  | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| TRH C6-C10                    | M19-Ja21481          | NCP          | mg/L  | < 0.02   | < 0.02   | <1  | 30%                  | Pass           |                    |
| TRH >C10-C16                  | M19-Ja27069          | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| TRH >C16-C34                  | M19-Ja27069          | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH >C34-C40                  | M19-Ja27069          | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Duplicate                     |                      |              |       |          |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocarb | oons                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Acenaphthene                  | M19-Ja23872          | NCP          | mg/L  | 0.021    | 0.026    | 24  | 30%                  | Pass           |                    |
| Acenaphthylene                | M19-Ja23872          | NCP          | mg/L  | 0.049    | 0.065    | 29  | 30%                  | Pass           |                    |
| Anthracene                    | M19-Ja23872          | NCP          | mg/L  | 0.018    | 0.022    | 21  | 30%                  | Pass           |                    |
| Benz(a)anthracene             | M19-Ja23872          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene                | M19-Ja23872          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene        | M19-Ja23872          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene          | M19-Ja23872          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene          | M19-Ja23872          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Chrysene                      | M19-Ja23872          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene         | M19-Ja23872          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Fluoranthene                  | M19-Ja23872          | NCP          | mg/L  | 0.006    | 0.008    | 33  | 30%                  | Fail           | Q15                |
| Fluorene                      | M19-Ja23872          | NCP          | mg/L  | 0.070    | 0.10     | 39  | 30%                  | Fail           | Q02                |
| Indeno(1.2.3-cd)pyrene        | M19-Ja23872          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Naphthalene                   | M19-Ja23872          | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Phenanthrene                  | M19-Ja23872          | NCP          | mg/L  | 0.057    | 0.073    | 25  | 30%                  | Pass           |                    |
| Pyrene                        | M19-Ja23872          | NCP          | mg/L  | 0.005    | 0.007    | 44  | 30%                  | Fail           | Q15                |
| Duplicate                     |                      |              |       |          |          |     |                      |                |                    |
| Heavy Metals                  |                      |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Arsenic                       | M19-Ja19906          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Cadmium                       | M19-Ja19906          | NCP          | mg/L  | < 0.0002 | < 0.0002 | <1  | 30%                  | Pass           |                    |
| Chromium                      | M19-Ja19906          | NCP          | mg/L  | 0.001    | 0.001    | 10  | 30%                  | Pass           |                    |
| Copper                        | M19-Ja19906          | NCP          | mg/L  | 0.001    | 0.001    | 8.0 | 30%                  | Pass           |                    |
| Lead                          | M19-Ja19906          | NCP          | mg/L  | 0.001    | 0.001    | 3.0 | 30%                  | Pass           |                    |
| Mercury                       | M19-Ja19906          | NCP          | mg/L  | < 0.0001 | < 0.0001 | <1  | 30%                  | Pass           |                    |
| Nickel                        | M19-Ja19906          | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Zinc                          | M19-Ja19906          | NCP          | mg/L  | 0.005    | 0.005    | 1.0 | 30%                  | Pass           |                    |



| Duplicate                 |             |     |      |          |          |     |     |      |  |
|---------------------------|-------------|-----|------|----------|----------|-----|-----|------|--|
| Organochlorine Pesticides |             |     |      | Result 1 | Result 2 | RPD |     |      |  |
| Chlordanes - Total        | M19-Ja23028 | NCP | mg/L | < 0.001  | < 0.001  | <1  | 30% | Pass |  |
| 4.4'-DDD                  | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| 4.4'-DDE                  | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| 4.4'-DDT                  | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| a-BHC                     | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Aldrin                    | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| b-BHC                     | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| d-BHC                     | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Dieldrin                  | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Endosulfan I              | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Endosulfan II             | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Endosulfan sulphate       | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Endrin                    | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Endrin aldehyde           | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Endrin ketone             | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| g-BHC (Lindane)           | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Heptachlor                | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Heptachlor epoxide        | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Hexachlorobenzene         | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Methoxychlor              | M19-Ja23028 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |





#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

mgt

#### **Qualifier Codes/Comments**

Code Description

| N01 | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).                                                                                                                                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N02 | Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. |
|     | E1 is determined by arithmatically subtracting the "Total BTEY" value from the "C6-C10" value. The "Total BTEY" value is obtained by summing the concentrations of BTEY                                                                                                                                                                                                                                                |

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantifating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

# Authorised By

| Nibha Vaidya    | Analytical Services Manager   |
|-----------------|-------------------------------|
| Joseph Edouard  | Senior Analyst-Organic (VIC)  |
| Harry Bacalis   | Senior Analyst-Volatile (VIC) |
| Emily Rosenberg | Senior Analyst-Metal (VIC)    |

Glenn Jackson General Manager

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



| PROJECT NO .: 5557                                                         | 9              |                      |                                                | LABORATORY BATCH NO                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|----------------------------------------------------------------------------|----------------|----------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| DATE NEEDED BY.                                                            | formed         | Eau                  | Education Precinct                             | SAMPLERS: PC/ML                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brishane: 07 3117 3600 | Perth: 08 9488 | 0100   Rria          | leads 46.47 1035 2112 20 - 2000                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| COMMENTS / SEECIAL HANDING (CTOC) (1)                                      | 1) adminnsw@jt | osg.com.au;          | adminnsw@jbsg.com.au; (2) .D.D.ex@jbsg.com.au; | (3) MN NOW DIM                                 | (@ibsg.com.au O.C.h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | anna an a more a           |
| COMMEND / SECURE RANDLING / STORAGE OR DISPOSAL                            | E OR DISPOSAL: |                      |                                                | 7CLP.M<br>2829<br>2920<br>2920<br>2924<br>2024 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AMALYSIS DID-UP RAMAIN     |
| SAMPLE ID                                                                  | MATRIX DATE    | TIME                 | TYPE & PRESERVATIVE                            | ۲.<br>۲.<br>۲.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTIFICA NO Samples on hold |
| BHO1-0-0.15                                                                | 5011 21/1/19   | 19                   | ice                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                          |
| 8401 _ 0.4-0.5                                                             |                |                      |                                                | >>>>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                          |
| SHO1- 1.0 -1.1                                                             |                |                      |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8H01-1.4-1.5                                                               | -              |                      | Jour + ice                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                            | 24/1           | 19                   | 5                                              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8403 - 6.4-0.5                                                             | 4              |                      |                                                | XXX                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                          |
| 6                                                                          | 21/1/19        | 9                    |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8+03-0.4-0.5                                                               | -              |                      | £                                              | X                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <                          |
| SH03 - 1.0-1.1                                                             |                |                      | lar + ice                                      | >>>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                          |
| BH04-0.2-0.3                                                               |                |                      | 1 600                                          | $\langle  $                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8404-0.4-0.5                                                               |                |                      | 1                                              | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                          |
| SH04-1.0-1.1                                                               | -              |                      | Inw tico                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 5405-0-0.15                                                                |                |                      | 5                                              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8405-0.4-0.S                                                               |                |                      | 1 June 1                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8405-1-0-1-1                                                               |                |                      |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8H05-1.4-1.5                                                               |                |                      |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                          |
| 8406-0-0.15                                                                |                |                      |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8H06-0.4-0.5                                                               | *              |                      | 4                                              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| RELINO                                                                     |                |                      | METHOD OF SHIPMENT:                            | DECENTED BY                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                          |
| NAME: AND DATE: 25                                                         | Illa           | CONSIGNMENT NOTE NO. | NOTE NO.                                       | NAME: R. TVXRA                                 | FOR RECEIV<br>COOLER SEAL - Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Intact Broken           |
| NAME: DATE:                                                                | TR             | TRANSPORT CO.        |                                                | OF: 25/17                                      | COOLER TEMP deer C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                          |
|                                                                            | 1 6            | CONSIGNMENT NOTE NO  | NOTE NO.                                       | NAME: DATE:<br>OF:                             | COOLER SEAL Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                          |
| 4.4                                                                        | IR             | I KANSPORT CO        |                                                | IRANSPORT CO                                   | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | もし、シート                     |

|                                                    |                    |                                                    | CUSIODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |
|----------------------------------------------------|--------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| PROJECT NO .: 55579                                | ٩                  |                                                    | I ARODATODV RATCH NO .                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                  |
| PROJECT NAME: Charts work                          |                    | Education Precinet Hat Chash                       | SAMPLERS: P.C M.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
|                                                    |                    | 1                                                  | QC LEVEL: NEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
| PHONE: Sydney: 02 8245 0300   P                    | erth: 08 9488 0100 | Perth: 08 9488 0100   Brisbane: 07 3112 2688       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL: | DISPOSAL:          | COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL: | n.au; (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bsg.com.au RCingmon bsg.com.au     |
|                                                    |                    |                                                    | 72 80000<br>100 10000<br>100 10000<br>100 10000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>1000000 | ASBESTOS<br>ANALYSIS               |
| SAMPLE ID MA                                       | MATRIX DATE 1      | TIME TYPE & PRESERVATIVE DH                        | àI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NTIFICA                            |
| 8406-1-1.1 Soi                                     | 1 21/1/19          | law + ice                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                                  |
|                                                    |                    | soom bag shartice                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| 110                                                | Ł                  | + 0                                                | XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| -0-0-1                                             | 25/1/19            |                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < >                                |
| RH08 - 0.8 -0.9                                    |                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| \$H08_ 1.2-1.3                                     |                    | 4                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| -1-5-1                                             |                    | Jar +1ce                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| 1-0-0                                              | 21/1/19            | Societ bag santice                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| 0401 0.4-0.V                                       |                    |                                                    | XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                  |
| 0 -                                                | -+                 | 401                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| RH10-0.4-0.5                                       |                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| H10-1-1.1                                          |                    | ¢                                                  | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| 2+1-9-1-01HS                                       |                    | Jow + i ce                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                  |
| 0                                                  |                    | Sochilbers, Jantice                                | XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X                                  |
| 「キニーないシー」・4                                        | -                  | . 4                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| 2                                                  | t                  | SOOme bag. Invelice                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| NAME RELINQUISHED BY:                              | \$                 | OD OF SHIPMENT:                                    | RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| E COLA                                             | TRANSPORT CO       | CONSIGNMENT NOTE NO.                               | đ<br><sup>ŭ</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COOLER SEAL - Yes No Intact Broken |
| NAME: DATE:                                        | CONSIGNN           | CONSIGNMENT NOTE NO.                               | 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                  |
| OF: OF: OF:                                        | TRANSPORT CO       |                                                    | OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |

| Some ED         MATRY         OARE         THERE         NUME         THE EXPRESENTATION         MATRY         OARE         MATRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Into:         SS 5 (1)         Into (2)         SS (2)         (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2)         Into (2) <thinto (2)<="" th=""> <thinto (2)<="" th=""> <thinto (2<="" th=""><th>CHUIDD1         CHAIN OF CUSTODY         "MT/N_2 &amp; C         Construction         Construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction<th>CONTENTERNO TO CALLO</th><th></th><th>Container &amp; Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd; C = Sodium Hodewide Prevel: VC = Unit and the Container &amp; COOLER TEMP deg C</th><th>= Soil Jar; B = Glass Bottle; N = N</th><th>Container &amp; Preservative Codes: P = Plastic; J</th></th></thinto></thinto></thinto> | CHUIDD1         CHAIN OF CUSTODY         "MT/N_2 & C         Construction         Construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction         Some construction <th>CONTENTERNO TO CALLO</th> <th></th> <th>Container &amp; Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd; C = Sodium Hodewide Prevel: VC = Unit and the Container &amp; COOLER TEMP deg C</th> <th>= Soil Jar; B = Glass Bottle; N = N</th> <th>Container &amp; Preservative Codes: P = Plastic; J</th>                                                                                                                                                                                                                   | CONTENTERNO TO CALLO                               |                        | Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd; C = Sodium Hodewide Prevel: VC = Unit and the Container & COOLER TEMP deg C | = Soil Jar; B = Glass Bottle; N = N | Container & Preservative Codes: P = Plastic; J |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|---|
| SAMPLEID         MATRIX         DOTE         TIME         TIME BARGERIVATIVE         pH         Start Bard         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Into:         SS 5 + 1         Into Cut Cut Cut from pre cut if kich hub i         Indoktion Ratch ND:           EBDD Br         Trb         Cut Reline Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in Rest in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DD     CHAIN OF CUSTODY     UNDER CURVE NOT NOT STORE     UNDER CURVE NOT NOT STORE       TIMME:     CLARGE SCANCE     CLARGE NOT DE BESSANCE     CLARGE NOT NOT STORE       Statement 2000     De Bessance 07 3112 268     CLARGE NOT NOT STORE     CLARGE NOT NOT STORE       Statement 2000     De Bessance 07 3112 268     CLARGE NOT NOT NOT STORE     CLARGE NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COOLER SEAL - Yes No Intact Broken                 | OF: DATE:              | 17 CO                                                                                                                                                                           | TRANSPORT                           | DE:                                            |   |
| SAMPLE ID     MATRIX     DATE     TIME     TIPE & PRESENATIVE     PH      0-4-0::S     Solid     21/1/14     SOC multicargi, XMY + 1 (ca.     X     X      0-6-0::S     25/1/14     SOC multicargi, XMY + 1 (ca.     X     X     X      0-0::S     25/1/14     SOC multicargi, XMY + 1 (ca.     X     X     X      0-0::S     25/1/14     SOC multicargi, XMY + 1 (ca.     X     X     X      0-0::S     25/1/14     SOC multicargi, XMY + 1 (ca.     X     X     X      0-0::S     22/1/19     SOC multicargi, XMY + 1 (ca.     X     X     X      0.1:S     22/1/19     SOC multicargi, XMY + 1 (ca.     X     X     X      0.1:S     22/1/19     SOC multicargi, XMY + 1 (ca.     X     X     X      0.1:S     22/1/19     SOC multicargi, XMY + 1 (ca.     X     X     X      0.1:S     22/1/19     SOC multicargi, XMY + 1 (ca.     X     X     X      0.1:S     22/1/19     SOC multicargi, XMY + 1 (ca.     X     X     X      0.1:S     22/1/19     X     X     X     X     X      0.1:S     22/1/19     X     X     X     X     X      0.1:S     22/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Into:         SS 5         5         7         Into an anomaly for a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DDL     CHAIN OF CUSTODY     Water Filter       TIND:::     55 5 7 9     Water Filter     Water Filter       TIND:::     The second E characheon for example is in the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second fo                                                                                                                    |                                                    | 12                     | VENT NOTE NO.                                                                                                                                                                   | CONSIGNMI                           |                                                |   |
| SAMPLE ID     MATRIX     DATE     TIME     TIPE & PRESERVATIVE     PH       -0:4-0:5     Soil 21/1/4     Sockwill load; Low + 1 (cc.     X     X     X       -0:4-0:5     Soil 21/1/4     Sockwill load; Low + 1 (cc.     X     X     X       -0:4-0:5     25/1/4     Sockwill load; Low + 1 (cc.     X     X     X       -0:4-0:5     25/1/4     Sockwill load; Low + 1 (cc.     X     X     X       -0:4-0:5     25/1/4     Sockwill load; Low + 1 (cc.     X     X     X       -0:4-0:5     25/1/4     Sockwill load; Low + 1 (cc.     X     X     X       -0:0-1:5     21/1/9     Sockwill load; Low + 1 (cc.     X     X     X       -0:0-1:5     21/1/9     Sockwill load; Low + 1 (cc.     X     X     X       -0:0-1:5     21/1/9     Sockwill load; Low + 1 (cc.     X     X     X       -0:0-1:5     21/1/9     X     X     X     X     X       -0:0-1:5     22/1/19     X     X     X     X     X       -0:0-1:5     22/1/19     X     X     X     X     X       -0:0-1:5     22/1/19     X     X     X     X     X       -0:0-1:6     X     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IND:         SS 5         T. Ч         IABORTION PARCH NO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UPL     CHAIN OF CUSTODY     WBORATORY BATCH NO:<br>Softer 12 STATUS     WBORATORY BATCH NO:<br>Softer 12 ST                                                                                                                                                                                                                                                                           | COOLER SEAL - Yes No                               | RAMES                  |                                                                                                                                                                                 |                                     | 0                                              |   |
| SAMPLE ID     MATRIX     OATE     TIME     TIPE & PRESERVATIVE     PH      1-1-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1    0-1      0-1    0-1    0-1    0-1    0-1    0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DDL     CHAIN OF CUSTODY     WIND       TIND::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FOR RECEIVING LAB LISE ONLY.                       |                        | METHOD OF SHIPMENT:                                                                                                                                                             |                                     | DATE: 7                                        |   |
| SMPLEID         IMMINX         OATE         TIME         TIPE & PRESERVATIVE         PR           SH12 - C- 4 - C- S         Soil         21/1/9         Sogend local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local local l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Noncer Name:     Control Ecolution precived by hubble same:     Laboration precived by hubble same:       Name:     Control Ecolution precived by hubble same:     Internets:       Name:     Control Ecolution precived by hubble same:     Internets:       Name:     Control Ecolution     Internets:       Name:     Control Ecolution     Internets:       Name:     Name:     Internets:       Name:     Internets:     Internets:       Name:     Name:     Internets:       Name:     Name:     Internets:       Name:     Name:     Internets:       Name:     Name:     Name:       Name: </td <td>LJ JODI     STORE No.:     STORE No.:     STORE No.:     LABORATORY BATCH NO.:       RNDEE NAME:     (Lad As wood)     E chu cathon pre unct high view     LABORATORY BATCH NO.:       RNDEE Strange     2235 000   Perth: 08 9488 0000   Bridsane: 07 3112 5688     CENERED RY:     No.:       END ERDORT &amp; INVOICE TO (11) administry@lag.com.au: (2) DDEMAdAMC.     @ DEMAGAMENTE:     No.:       SMARE NO     SMARE NO::     No.:     No.:       SMARE NO::     SMARE NO::     SMARE NO::     No.:       SMARE NO::     SMARE</td> <td></td> <td></td> <td>Jav + 1 a</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LJ JODI     STORE No.:     STORE No.:     STORE No.:     LABORATORY BATCH NO.:       RNDEE NAME:     (Lad As wood)     E chu cathon pre unct high view     LABORATORY BATCH NO.:       RNDEE Strange     2235 000   Perth: 08 9488 0000   Bridsane: 07 3112 5688     CENERED RY:     No.:       END ERDORT & INVOICE TO (11) administry@lag.com.au: (2) DDEMAdAMC.     @ DEMAGAMENTE:     No.:       SMARE NO     SMARE NO::     No.:     No.:       SMARE NO::     SMARE NO::     SMARE NO::     No.:       SMARE NO::     SMARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                        | Jav + 1 a                                                                                                                                                                       |                                     |                                                |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LJ JOD     CHAIN OF CUSTODY     The NED OF TAXAGE     LABORTORY BATCH NO:<br>NUME VIENCE Science of 3112 2688       INDEE Science To 2325 0500 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 9488 0000 Texts: 08 94888 0000                                                                |                                                    |                        | -   '                                                                                                                                                                           | *                                   | H16 - 2.0_                                     |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Non-construction     Solution     Solution     Non-construction     Non-cons     Non-construction     Non-cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAIN OF CUSTODY       PROTECTION:     SST 7-9       REDICT NAME:     Called Science of Biologner of Status       REDICT NAME:     Called Science of Status       REDICT NAME:     Called Science of Status       REDICT NAME:     Called Science of Status       REDICT NAME:     Called Science of Status       REDICT NAME:     Called Science of Status       REDICT No.11     Called Science of Status       REDICT No.12     Status       REDICT No.12     Status       REDICT No.12     Status       REDICT No.12     Status       REDICT No.12     Status       REDICT No.12     Status       REDICT No.12     Status       SAMPLEID     Matter       SAMPLEID     Sample Science       SAMPLEID     Sample Science       SAMPLEID     Sample Science <td></td> <td></td> <td>*</td> <td></td> <td>HIGT 1-5-1.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                        | *                                                                                                                                                                               |                                     | HIGT 1-5-1.                                    |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NOLET MANE:     CALL CALLON:     VALUE MADE IN ALL SUMPLIES:     INDER TRANSPORT & LADOR TORY BATCH NO::       NATE RECED BY:     CLU CALLON:     VALUE MADE IN ALL SUMPLIES:     INDER TRANSPORT & INFORMATION OF TAILINGS       NATE RECED BY:     CLU CALLON:     VALUE:     td=""><td>CHAIN OF CUSTODY       MOLETING:       SOURT IN CLAUSES TO PERTON DISCUSSION PROVINCE IN ADDRATORY BATCH NO.:       INVERSION PROVINCE TO CLI ADDRATORY BATCH NO.:       CONDENT SUBJECT ON DISCUSSION Province TO RESERVATIVE       SOURT DISCUSSION PROVINCE TO CLI ADDRATORY BATCH NO.:       CONDENT SUBJECT ON DISCUSSION PROVINCE TO CLI ADDRATORY BATCH NO.:       CONDENT SUBJECT ON DISCUSSION PROVINCE TO CLI ADDRATORY BATCH NO.:       SOURTED NOTE: TO CLI ADDRATORY DISCUSSION ADDRATORY BATCH NO.:       CONDENT SUBJECT ON DISCUSSION ADDRATORY DISCUSSION ADDRATORY BATCH NO.:       SOURTED NOTE: TO CLI ADDRATORY DISCUSSION ADDRATORY BATCH NO.:       SOURTED NOTE: TO CLI ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY BATCH NO.:       SOURTED NOTE: TO CLI ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATO</td><td><u>x</u></td><td>1</td><td></td><td></td><td>1416 - 61</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHAIN OF CUSTODY       MOLETING:       SOURT IN CLAUSES TO PERTON DISCUSSION PROVINCE IN ADDRATORY BATCH NO.:       INVERSION PROVINCE TO CLI ADDRATORY BATCH NO.:       CONDENT SUBJECT ON DISCUSSION Province TO RESERVATIVE       SOURT DISCUSSION PROVINCE TO CLI ADDRATORY BATCH NO.:       CONDENT SUBJECT ON DISCUSSION PROVINCE TO CLI ADDRATORY BATCH NO.:       CONDENT SUBJECT ON DISCUSSION PROVINCE TO CLI ADDRATORY BATCH NO.:       SOURTED NOTE: TO CLI ADDRATORY DISCUSSION ADDRATORY BATCH NO.:       CONDENT SUBJECT ON DISCUSSION ADDRATORY DISCUSSION ADDRATORY BATCH NO.:       SOURTED NOTE: TO CLI ADDRATORY DISCUSSION ADDRATORY BATCH NO.:       SOURTED NOTE: TO CLI ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY BATCH NO.:       SOURTED NOTE: TO CLI ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATORY DISCUSSION ADDRATO                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>x</u>                                           | 1                      |                                                                                                                                                                                 |                                     | 1416 - 61                                      |   |
| SAMPLEID         MATRIX         DATE         TIME         TIPE & RESERVATIVE         PH           SH12 - 0 - 4 - 0 - 5         Soil 21/1/19         Soil 21/119         Soil 21/119         Soil 21/119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SARDECT NAME:     CALASS. WOOC     E ALL CALACON     P Y e C AN CH     HABORATORY BATCH NO.:       NATE NEEDED BY:     CALASS. WOOC     E ALL CALASS. WOOL     E ALL CALASS. WOOL     SAMPLERS:     [V] / // N       NATE NEEDED BY:     CALASS. WOOL     From the organization of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LI JODL     CHAIN OF CUSTOPY     HAIR OF CUSTOPY     HAIR AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | -                      |                                                                                                                                                                                 |                                     | H16-C.4-                                       |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROLET INME:         SS 5 7 4         LABORATORY BATCH NO:         ABORATORY BATCH NO:         ABORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAIN OF CUSTODY       NOTE TIME:     SSTE S T T       INTEREEDED BY:     SSTE NAME:     LABORATORY BATCH NO::       INTER REDED BY:     SAMPLIES:     N/T     NATE NEEDED BY:     SAMPLIES:     N/T     NATE NEEDED BY:     SAMPLIES:     N/T     N/T     N/T       SAMPLIES     N/T     SAMPLIES     N/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                        |                                                                                                                                                                                 | 1                                   | 416 0-                                         |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROLET NO.:         S 5 5 7 9         Laboratory Dre Curvet Normalian Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther Strengther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAIN OF CUSTODY       TAIL OF CUSTODY       NITE NEEDE BY:     Soft F-F       MERCET NAME:     Soft F-F       MARENEEDE BY:     CALCASTON precurvet light when shares of 3112 2688       POINTE NUVOLE TO: (1) administry@lbg.com.au; (2) DD:     Soft P-F       NOTE TINKE     MARENERS:     NTT NE       Soft P-F       CLEVEN DOT B states of 3112 2688       POINT NUVOLE TO: (1) administry@lbg.com.au; (2) DD:     AMENEN:       Soft P-F       Soft P-F       Soft P-F       CLEVEN DOT B states of 3112 2688       POINT NUVOLE TO: (1) administry@lbg.com.au; (2) DD:       Soft P-F       Soft P-F </td <td></td> <td></td> <td></td> <td>t</td> <td>15-2.2-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                        |                                                                                                                                                                                 | t                                   | 15-2.2-                                        |   |
| SAMPLEID     MATRIX     DATE     TIME     TIME RESERVATIVE     PH       SH12 - 0: 4 - 0: 5     S01     21/1/14     SOC(mull loog - lown't lice     PH     State - 0: 15     12/1/14     SOC(mull loog - lown't lice     PH       SH13 - 0: -0: 15     25/1/16     V     V     SOC mull loog - lown't lice     X     Y     State - 0: 15     Soci - 0: 15     Soci - 0: 15     12/1/14     Soci - 0: 15     Soci - 0: 15     12/1/15     Soci - 0: 15     Soci - 0: 15     12/1/15     Soci - 0: 15     Soci - 0: 15     12/1/15     Soci - 0: 15     Soci - 0: 15     12/1/15     Soci - 0: 15     Soci - 0: 15     12/1/15     Soci - 0: 15     X     X     X     X     X     X       H13 - 0: -0: -15     21/1/15     Soci - 0: 15     21/1/15     Soci - 0: 15     X     X     X     X     X       H13 - 0: -0: -15     21/1/15     Soci - 0: 15     21/1/15     X     X     X     X     X       H13 - 0: -0: -15     21/1/15     X     X     X     X     X     X     X       H14 - 0: -0: -15     21/1/15     X     X     X     X     X     X     X       H14 - 0: -0: -15     21/1/15     X     X <t< td=""><td>ROLET ND:         SS 5 7 9         Изованов риски содион риски содион риски соди при сили с нул ули изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите</td><td>LUDDL     CHAIN OF CUSTODY     TYN 2a F       ROLECT NAME:     UALS SUDOCI E CLU Califon precinct high glass     IMBORATORY BATCH NO:<br/>SAMPLEDB BY:     IMBORATORY BATCH NO:<br/>SAM</td><td></td><td></td><td></td><td></td><td>115-1-5-1-</td></t<> | ROLET ND:         SS 5 7 9         Изованов риски содион риски содион риски соди при сили с нул ули изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите но:         Изованов вите                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LUDDL     CHAIN OF CUSTODY     TYN 2a F       ROLECT NAME:     UALS SUDOCI E CLU Califon precinct high glass     IMBORATORY BATCH NO:<br>SAMPLEDB BY:     IMBORATORY BATCH NO:<br>SAM                                                                                                                                                                                                                                                                                                                    |                                                    |                        |                                                                                                                                                                                 |                                     | 115-1-5-1-                                     |   |
| SAMPLEID         MATRX         DATE         TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROLECT NO.:     SSS 7-9     LABORATORY BATCHNO!     LABORATORY BATCHNO!       ATE NEEDED BY:     Charles Stronger Co. Science of Distance: 07 3112 2688     SAMPLERS:     North Stronger Co. Science of Distance: 07 3112 2688       END REPORT & INVOICE TO: (1) admining Weights com au; (2) DD EMAGA/CP.     OL EVEL: NEPM (2013)     SCIEnt Network of Distance: 07 3112 2688       SAMPLEID     MATRIX     DATE     TIME     TYPE & PRESERVATIVE     SCIEnt Network of Distance: 07 3112 2688       SAMPLEID     MATRIX     DATE     TIME     TYPE & PRESERVATIVE     SCIEnt Network of Distance: 07 3112 2688       SAMPLEID     MATRIX     DATE     TIME     TYPE & PRESERVATIVE     SCIEnt Network of Distance: 07 3112 2688       SAMPLEID     MATRIX     DATE     TIME     TYPE & PRESERVATIVE     SCIEnt Network of Distance: 07 3112 2688       SAMPLEID     MATRIX     DATE     TYPE & PRESERVATIVE     SCIEnt Network of Distance: 07 3112 2688       SAMPLEID     MATRIX     DATE     TYPE & PRESERVATIVE     SCIEnt Network of Distance: 07 312 2689       SAMPLEID     MATRIX     DATE     SCIEnt Network of Distance: 07 312 2689     SCIEnt Network of Distance: 07 312 2689       SAMPLEID     MATRIX     DATE     SCIEnt Network of Distance: 07 312 2689     SCIEnt Network of Distance: 07 312 2689     SCIEnt Network of Distance: 07 312 2689       SAMPLEID     SCIEnt Network of Distance: 07 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHAIN OF CUSTODY       TODET NME: Use SS 7-9       NOTE TIME: SS 7-9       NOTE: NEPM (2013)       NOTE: NEPM (2013) <th colspa<="" td=""><td></td><td></td><td></td><td></td><td>T</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <td></td> <td></td> <td></td> <td></td> <td>T</td> |                        |                                                                                                                                                                                 |                                     |                                                | T |
| SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE DH<br>12 - 0: 4 - 0: 5 Soil 21/1/19 SOCIAL bod ; low tice of the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the strategy in the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECT NOL: SST 7 9<br>ECT NAME: Charles in Social Education precinct High that the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the fight of the figh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHAIN OF CUSTODY     "T'NY 20 F       CHAIN OF CUSTODY       CHAIN OF CUSTODY       INTER CUSTODY       CHAIN OF CUSTODY       INTER CUSTOPY       CHAIN OF CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY       INTER CUSTOPY   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                  |                        |                                                                                                                                                                                 | 1                                   | 115-0.4-0.                                     |   |
| SAMPLEID     MATRIX     DATE     TIME     TYPE & PRESERVATIVE     PH       12 - 0:4 - 0:5     Soil     21/1/19     Soomi boas is bort tice.     PH     Sover tice.     Sovertice.     Sover tice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ECT NOL: SST-9<br>ECT NAME: (Д. L.S. V. OC) E J. L. (L. C.H.CH, precinct High J. H.W.) SAMPLER: NUMBER STORY BATCH NO.:<br>NEEDED BY: J. (L. Baninsweiber Com.au; (2). D.D.E.M.A.M.C.<br>SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE pH<br>12 - 0-4 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X<br>3 - 0 - 7 - 0. SSL 2/1/19 SOCIAL bod ; Joor + I CA X X 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4 SSL 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       Labor for the second prectice of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the second precedence of the se                                                                                                                                                                      |                                                    |                        |                                                                                                                                                                                 | 21/1/15                             | 1010                                           |   |
| SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>12-0:4-0:5 Soil 21/1/19 SOC MI bag i bar tice ph<br>12-0:4-0:5 Soil 21/1/19 SOC MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bag i bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:4-0:5 Soc MI bar tice ph<br>3-0:5 Soc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ECT NO.:     5577     Constraints     Laboration prechack high that have a precision of an analysis of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precision of a precis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTOPY BATCH NO:       REPORT & INVOICE TO: (1) administry@jbsg.com.au; (2). D.D.E.M.A.M.C.       Sampleio       SAMPLEIO       MATRIX       SAMPLEIO       SAMPLEIO       SAMPLEIO       NATRIX       CHAIN ONE       PH       IS Soci 1       12 - C- 4 - C S       Soci 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                        |                                                                                                                                                                                 | Ł                                   | -1-1.1                                         |   |
| SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>12-0:4-0:5 Soil 21/1/19 SOG Will bag . Critice PH<br>13-0:7-0:8 Sog . Critice PH<br>3-0:7-0:8 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 Sog . Critice PH<br>3-0:7-1:3 So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ECT NO.:     55579     Current of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHAIN OF CUSTODY       CHAIN OF CUSTODY       CHAIN OF CUSTODY         REFORD RECORD For Concrete the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second                                                                             | X                                                  |                        | T                                                                                                                                                                               |                                     | A-0.6-                                         |   |
| SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>H12-0.4-0.5 Soil 21/1/19 SOCMI bag : bar tice PH<br>H13-0.4-0.5 Soil 21/1/19 SOCMI bag : bar tice PH<br>H13-0.7-0.15 25/1/19 SOCMI bag : bar tice PH<br>H13-0.7-0.15 25/1/19 SOCMI bag : bar tice PH<br>H13-0.7-1.0.8 32<br>H13-1.2-1.3 44<br>H13-0.4-0.5 82<br>H13-0.4-0.5 0.5 82<br>H13-0.4-0.5 82<br>H13-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROLECT NO.:       SST 7 4       LABORATORY BATCH NO.:         ATE NEEDED BY:       Chock 5 x 0 00 / Berth: 08 9488 0100   Brisbane: 07 3112 2688       IABORATORY BATCH NO.:         HONE:       SAMPLERS:       CL // C / S       Samplers:       CL EVEL: NEFM (2013)         END REPORT & INVOICE TO: (1) admininsw@)bsg.com.au; (2).       D.D.D.E.M.G.M.AC.C@]bsg.com.au; (3).       D.M.M.N.S.C.M.Q.L.V/M.G.B.B.G.G.M.au       CL EVEL: NEFM (2013)         SAMPLEID       MATRIX       DATE       TIME       TYPE & PRESERVATIVE       SAMPLERS:       SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHAIN OF CUSTODY       SSS 7.9       LABORATORY BATCH NO:       BY: 575       SSS 7.9       INDUCTOR       CHAIN OF CUSTODY       SSS 7.9       INDUCTOR       SSS 7.9       INDUCTOR       CHAIN OF CUSTODY       INDUCTORY BATCH NO:       INDUCTORY INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY       INDUCTORY <tr< td=""><td></td><td></td><td>_</td><td></td><td>4-0-0-</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                        | _                                                                                                                                                                               |                                     | 4-0-0-                                         |   |
| SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>H 12 - 0 - 4 - 0 - 5 Sci 1 21/1/19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 0 - 0 - 1 5 25//19 500 mi bcg : box + i ce ph<br>H 13 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROLECT NO.:     S S S T 9     LABORATORY BATCH NO.:       ATE NEEDED BY:     SAMPLERS     CLACK SWOOD (Perth: 08 9488 0100   Brisbane: 07 3112 2688     SAMPLERS:     RU/VI     CLEVEL: NEPM (2013)       HONE:     Store TO: (1) adminisw@ibsg.com.au; (2) D.D.E.M.G.M.C.C@ibsg.com.au; (3)M.N.D.C.M.G.L.M.M.@ibsg.com.au     CLEVEL: NEPM (2013)       MONE:     Samplerio     Store Store Colligonality (2) D.D.E.M.G.M.C.C@ibsg.com.au; (3)M.N.D.C.M.G.L.M.M.@ibsg.com.au     CLEVEL: NEPM (2013)       MATRIX     DATE     TIME     TYPE & PRESERVATIVE     Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHAIN OF CUSTODY       SSS79       IMBORATORY BATCH NO.:       BY: 575       SYS79       IMBORATORY BATCH NO.:       SYS79       IMBORATORY BATCH NO.:       SYS79       SYS79       SYS79       IMBORATORY BATCH NO.:       SYS79       SYS79       SYS79       IMBORATORY BATCH NO.:       SYS79       SYS79       IMBORATORY BATCH NO.:       SYS79       SYS79       IMBORATORY BATCH NO.:       SYS79       SYS79       IMPLE ARESERVATIVE       IMPLE ARESERVATIVE <td></td> <td></td> <td>0++1</td> <td></td> <td>15-1.2-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                        | 0++1                                                                                                                                                                            |                                     | 15-1.2-                                        |   |
| HIZ-C-4-C.S SCI ZI/IA DATE TIME TYPE & PRESERVATIVE PH STATUS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROLECT NO.:     SST 7 9     LABORATORY BATCH NO.:       ROLECT NAME:     Charleston of Education of Precinct High Jchul SAMPLERS:     LABORATORY BATCH NO.:       ATE NEEDED BY:     Stop     Samplers:     CLEVEL: NEPM (2013)       HONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688     OC LEVEL: NEPM (2013)       END REPORT & INVOICE TO: (1) administry@jbsg.com.au; (2).     D.D.E.M.Q.A.C.C@jbsg.com.au; (3).     D.M.N.S.C.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.M.Q.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | X<br>T                 | Ł                                                                                                                                                                               |                                     | +13-0.+-                                       |   |
| SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2-1-1.1 SGI 21/1/19 SOOMI BCG : DON'T I CO. PH<br>2-1-1.1 SGI 21/1/19 SOOMI BCG : DON'T I CO. PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & PRESERVATIVE PH<br>2 SAMPLEID MATRIX DATE TIME TYPE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPLE & SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CT NO.:     SSS 7 7     LABORATORY BATCH NO.:     LABORATORY BATCH NO.:       CT NAME:     CLALSWOOD     E CLAL COLALON     DV RELINEY     SAMPLERS:     N/1       VEEDED BY:     STD     SAMPLERS:     N/1     SAMPLERS:     N/1       E: Sydney:     02 8245 0300   Perth:     08 9488 0100   Brisbane:     07 3112 2688       REPORT & INVOICE TO:     1) adminnsw@ibsg.com.au;     (2) DD.e.M.Q.A.C.C.     OC LEVEL:     NEM (2013)       REPORT & INVOICE TO:     1) adminnsw@ibsg.com.au;     (2) DD.e.M.Q.A.C.C.     @ibsg.com.au;     (3)M.N.N.C.W.Q.L.M.A.G.L.M.A.G.C.       SAMPLE ID     MATRIX     DATE     TIME     TIPE & PRESERVATIVE     DATE     SAMPLE ID       SAMPLE ID     MATRIX     DATE     TIME     TIPE & PRESERVATIVE     DATE     SAMPLE ID       2 - 0 - 1 - 1     -0     -1.1     -0     -0     -0     -0     -0       2 - 0 - 1 - 1     -0     -0     -0     -0     -0     -0     -0     -0       2 - 0 - 1 - 1     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0     -0 <td>CHAIN OF CUSTODY</td> <td></td> <td></td> <td></td> <td>1</td> <td>H13-0.4-0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                        |                                                                                                                                                                                 | 1                                   | H13-0.4-0                                      |   |
| Z-1-1.1 VATRIX DATE TIME TYPE & PRESERVATIVE PH<br>Z-0.4-C. S SCI 1 21/1/19 SOCIAL BCG . DON'T I CO PH<br>Z-1-1.1 SAMPLE ID<br>Z-1-1.1 ZI/1/19 SOCIAL BCG . DON'T I CO PH<br>Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CT NO.:     S S S Y Y     LABORATORY BATCH NO.:       CT NAME:     CLaution prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity prechicity p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHAIN OF CUSTODY         S5579         LALESWOOD Ecluscotion president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president president presid                                                                                                                        |                                                    |                        |                                                                                                                                                                                 | 1 25/1/19                           | SH13-0-                                        |   |
| 12 - C, A - C, S SCI 71/1/2<br>MATRIX DATE TIME TYPE & PRESERVATIVE PH STATESTS ANALYSISS<br>ANALYSISS ANALYSISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E CLU COURTON D' L'ANCLE HAN JOHN SAMPLERS: 12/11/1<br>9488 0100   Brisbane: 07 3112 2688<br>W@Jbsg.com.au; (2) . D.D.E.M.Q.M.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                  | -                      | - Lincol                                                                                                                                                                        | 2                                   | 2-1-1.1                                        |   |
| MATRIX DATE TIME TYPE & PRESERVATIVE OF STATUS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E CLU COURTON DIVE CLINCE High John SAMPLERS: 12/10-<br>9488 0100   Brisbane: 07 3112 2688<br>W@Jbsg.com.au; (2) .D.D.E.M.Q.A.M.C@Jbsg.com.au; (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHAIN OF CUSTODY       CHAIN OF CUSTODY         SSSSY       SSSSY         BY:       SSSSY         SSSSY       Education precinct high school samplers: River         BY:       SSSSY         SSSSY       Samplers: River         SSSSS       Samplers: River         SSSSS       Samplers: River         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSS       SSSSS         SSSSSSS       SSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NEPH                                               |                        |                                                                                                                                                                                 | 10 71                               | 12-0.4-0.5                                     |   |
| 1000 AVALYSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Echy Carton precinct High John SAMPLERS: 2/100   Brisbane: 07 3112 2688<br>W@jbsg.com.au; (2) .D.D.e.M.Q.A.M.O@jbsg.com.au; (3)M.N.C.U.(C.L.M.M.@jbsg.com.au & Chopmen @ Jose Com.au; (2)@jbsg.com.au; (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | 121                    | TYPE & PRESERVATIVE                                                                                                                                                             | DATE                                | SAMPLE ID                                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Echu cation precinct High John Samplers: 12/124<br>9488 0100   Brisbane: 07 3112 2688<br>w@jbsg.com.au; (2) .D.D.e.M.Q.M.C@jbsg.com.au; (3) .J.M.N.C.M.Q.L.M.M.@jbsg.com.au Q.C.Laupungunga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | SHI40                  |                                                                                                                                                                                 |                                     |                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LABORATORY BATCH NO .:<br>LABORATORY BATCH NO .:<br>QC LEVEL: NEPM (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAIN OF CUSTODY<br>55579<br>CHAIN OF CUSTODY<br>LABORATORY BATCH NO.:<br>DO CLEVEL: NEPM (2013)<br>CHAIN OF CUSTODY<br>CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                        | )   Brisbane: 07 3112 2688                                                                                                                                                      | 1) pdminpcu@ibc                     | SEND REPORT & INVOICE TO: /                    |   |
| SEND REPORT & INVOICE TO: (1) administration of the control of 3112 2688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Latsinged Education precinct light that campies 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSS79 CHAIN OF CUSTODY ""T'M 20 fo with and the complete ""T'M 20 fo with and the complete ""T'M 20 fo with a for the complete ""T'M 20 fo with a for the complete ""T'M 20 fo with a for the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete the complete t |                                                    | QC LEVEL: NEPM (2      |                                                                                                                                                                                 |                                     | PHONE: Sudney: 02 02/15 0200                   |   |
| C LEVEL: NEPM (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | LABORATORY BATCH NO .: | Drechict                                                                                                                                                                        | T                                   | 0                                              |   |
| ABORATORY BATCH NO.:<br>AMPLERS: 12/1/17<br>C LEVEL: NEPM (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                  |                        |                                                                                                                                                                                 | 4                                   | N                                              |   |

|                                                                            |                                                                            | LABORATORY BATCH NO .   |                                           |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|-------------------------------------------|
| DATE NEEDED BY:                                                            | Foundation precinct Hynninus                                               | -                       |                                           |
| PHONE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688 | 8 9488 0100   Brisbane: 07 3112 2688                                       | CC LEVEL: NEPIVI (2013) |                                           |
| COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:                         | (1) adminnsw@jbsg.com.au; (2) \\\&A~A^A.C@jbsg.com.au;<br>\GE OR DISPOSAL: | (3) MNeujain            | @jbsg.com.au & Chammen & Jb Sg. com. our. |
|                                                                            |                                                                            | DCB1                    | TYPE CP<br>ASSESTIOS<br>ANALYSIS          |
| SAMPLE ID MATRIX                                                           | DATE TIME TYPE & PRESERVATIVE DH                                           | XZ                      | N TIFIC,                                  |
| 3417-0-0-15 5011                                                           | 4100                                                                       |                         | +                                         |
| B+117-0-4-0.5 1                                                            |                                                                            | X                       |                                           |
| 417-10-1-1                                                                 | ŧ                                                                          |                         | ×                                         |
| BH17-1-5-1-6                                                               | Jew + ice                                                                  |                         |                                           |
| H10-0-0-1                                                                  | 7 20                                                                       |                         |                                           |
| -0.4-0.                                                                    |                                                                            |                         |                                           |
| 1                                                                          | Ł                                                                          | X<br>Y                  | <                                         |
| 18-1-1.1                                                                   | Jan tice                                                                   |                         |                                           |
| F                                                                          | Scoul bag tour tice                                                        |                         |                                           |
| 9-0.4-0.5                                                                  | 1                                                                          | ×××                     |                                           |
| H19-                                                                       | t                                                                          |                         | >                                         |
| 1-1-0.1-1.1                                                                | Jaw +i ce                                                                  |                         |                                           |
| 20-6-0.0                                                                   | 500mlload Jan +ice                                                         |                         |                                           |
| P                                                                          | 1                                                                          |                         |                                           |
| 20-1-1.                                                                    | 4                                                                          | XX                      | <                                         |
| 20- 1-2-1-                                                                 | Jan tice                                                                   |                         |                                           |
| x121 0.4.0.X                                                               | Soomibeg, lartice                                                          | XXX                     | X                                         |
| 8421-1-1.1                                                                 | t                                                                          |                         |                                           |
| RELINQUISHED BY:                                                           | METHOD OF SHIPMENT:                                                        | RECEIVED RV-            |                                           |
| OF: JBS&G                                                                  | TRANSPORT CO                                                               |                         | COOLER SEAL - Yes No Intact               |
| NAME: DATE:<br>OF:                                                         | CONSIGNMENT NOTE NO.                                                       | NAME: DATE:             | COOLER SEAL - Yes No Intact Broken        |

|                                                                                               |                                    | CHAIN OF                                                                                                                                                               | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chiefins Ears               | JBS&G                       |
|-----------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|
| PROJECT NAME: CLOCK                                                                           | mpa paons                          | 0.000                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                             |
| DATE NEEDED BY: 510                                                                           |                                    | Currenter) Mechact Hithichou                                                                                                                                           | OC LEVEL NEDM 120121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                             |
| SEND REPORT & INVOICE TO: /1                                                                  | Perth: 08 9488 0100                | Perth: 08 9488 0100   Brisbane: 07 3112 2688                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:                                            | ) adminnsw@jbsg.co<br>or disposal: | (1) adminnsw@jbsg.com.au; (2)(1),2.X.Q.X.O@jbsg.com.au;<br>GE OR DISPOSAL:                                                                                             | m.au; (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bsg.com.au & Charpmane      | 1659.cem.au.                |
|                                                                                               |                                    |                                                                                                                                                                        | 1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | 2                           |
| SAMPLE ID                                                                                     | MATRIX DATE                        | TIME TYPE & PRESERVATIVE DH                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIFICATI                    |                             |
| BH22-0-0.15 8                                                                                 | 501/ 22/1/19                       | 0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                           | NOTES:                      |
| H22-0.4-0.5                                                                                   |                                    | -                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| REAL PLANT                                                                                    |                                    |                                                                                                                                                                        | XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <                           |                             |
| 23-0.4-0                                                                                      |                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| 8423-1-1.1                                                                                    |                                    |                                                                                                                                                                        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                           |                             |
| 23-1.3-1-                                                                                     |                                    | £                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| 1725-1.4-1                                                                                    |                                    | Jan + 1 ce                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| 5724-010-1U                                                                                   |                                    | Socul beg. Jartice                                                                                                                                                     | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                             |
|                                                                                               |                                    | (                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| BH24-1.4-1.5                                                                                  |                                    | 4                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| H29-0-0.15                                                                                    |                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| BH25-0-5-0.8                                                                                  |                                    | Journal and Journal and All                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| 8425-1.1-1.2                                                                                  |                                    | Jan Tile                                                                                                                                                               | X<br>X<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                             |
| 5H26-0-0.15                                                                                   |                                    | 150                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| 6 04-                                                                                         |                                    | 4                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| 1-7-1-07-02                                                                                   | <                                  | ž                                                                                                                                                                      | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                             |
| REINO                                                                                         |                                    | Jan tice                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                             |
| NAME: MAY DATE: 24                                                                            | 2011 ALA CONSIGNI                  | METHOD OF SHIPMENT;<br>CONSIGNMENT NOTE NO.                                                                                                                            | RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FOR RECEIVING LAB USE ONLY: | SE ONLY:                    |
| 98                                                                                            |                                    | RT CO.                                                                                                                                                                 | DATE: DITIUNS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           | Intact Broken               |
| DATE:                                                                                         | CONSIGNMENT                        | CONSIGNMENT NOTE NO.                                                                                                                                                   | NAME: DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COOLER TEMP deg c V·S C     | Broken                      |
| Container & Preservative Codes: P = Plastic; J :<br>IMSO FormsO13 - Chain of Custody - Concis | = Soil Jar; B = Glass Bottle; N =  | Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd;; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial: VS | oric Acid Prsvd Vial: VS = Sulfarin Acid Decod Vial. C - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COOLER TEMP deg C 637       | tes t                       |
|                                                                                               |                                    |                                                                                                                                                                        | C = C (IBIA DASI I DIRUGUENTI DI CONTENTI |                             | = Sterile Bottle; O = Other |

| PROJECT NO .: 555 70                                                       | 1                                 |                                     |                                         | I ABODATOBY DATA TO                                              |                                                                    |
|----------------------------------------------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|
| che                                                                        | kinood Ed                         | Education                           | Pretimet                                | CAMPLEDS.                                                        |                                                                    |
| DATE NEEDED BY:                                                            |                                   |                                     | ALLOUND IN THE PROPERTY OF              | OC LEVEL: NEPM (20                                               |                                                                    |
| PHUNE: Sydney: 02 8245 0300   Perth: 08 9488 0100   Brisbane: 07 3112 2688 | Perth: 08 9488                    | 0100   Bris                         | bane: 07 3112 2688                      |                                                                  |                                                                    |
| COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:                         | L) adminnsw@jbs<br>E OR DISPOSAL: | g.com.au;                           | (2) UVERCEV 0 @jbsg                     | COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:               | bsg.com.au RChapmana Josq coman                                    |
|                                                                            |                                   |                                     |                                         | 2929<br>2929<br>2929<br>2923<br>2923<br>24189<br>24189<br>21249M | Age                                                                |
| SAMPLE ID                                                                  | MATRIX DATE                       | TIME                                | TYPE & PRESERVATIVE                     | -                                                                | ENTIFIC<br>PM/W                                                    |
| 7-0-0.1S                                                                   | 5011 25/1/19                      | 2                                   | scoulbag Jartice                        |                                                                  | +                                                                  |
| 51-2+-0.4-0-3                                                              |                                   |                                     | 13                                      | * *                                                              | X                                                                  |
| RH771.2-1-A                                                                | 4                                 |                                     | ŧ                                       |                                                                  |                                                                    |
| 2-0-0-                                                                     | 21/100                            | Q                                   | +                                       |                                                                  |                                                                    |
| SH28- 0.4-0.5                                                              | 1                                 |                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                  |                                                                    |
| 6+28-1-1.1                                                                 | -                                 |                                     | Ł                                       | ×<br>×                                                           |                                                                    |
| H2                                                                         | PURA D                            | R                                   | Jew +ice                                |                                                                  |                                                                    |
| 9-0                                                                        | 24/1/1                            | 0                                   | \$500mlbag Jav tico                     | X<br>X<br>X                                                      | <u> </u>                                                           |
|                                                                            |                                   |                                     |                                         |                                                                  |                                                                    |
| TOC C                                                                      |                                   |                                     |                                         | XY                                                               | ¥                                                                  |
| B 1730- C.4 -0.5                                                           | *                                 |                                     | £                                       |                                                                  |                                                                    |
|                                                                            |                                   |                                     |                                         |                                                                  |                                                                    |
|                                                                            |                                   |                                     |                                         |                                                                  |                                                                    |
|                                                                            |                                   |                                     | METHOD OF SHIPMENT:                     | RECEIVED BY:                                                     | FOR RECEIVING LAR LICE ONLY.                                       |
|                                                                            | TRA                               | TRANSPORT CO.                       | IOTENO.                                 | DATE: 251100                                                     | COOLER SEAL - Yes.                                                 |
| DATE:                                                                      | CON                               | CONSIGNMENT NOTE NO<br>TRANSPORT CO | OTE NO.                                 | NAME: DATE:                                                      | DATE: CONSIGNMENT NOTE NO. NAME: DATE: COULER SEAL - Yes No Intact |

Nibha Vaidya; COC NSW RE: \*\*FW: COCs Job Number 55579 Subject: Subject:

From: Milad Voujaim [mailto:mnoujaim@jbsg.com.au] Sent: Friday, 25 January 2019 6:41 PM To: Nibha Vaidya

Subject: Re: COCs Job Number 55579

EXTERNAL EMAIL\*

неу Иірћа,

Can we also do asbestos identification on BH13-frag. It was left out of the COC.

Thank you

Get Outlook for iOS

From: Nibha Vaidya <<u>mossidya@eurofins.com</u>> Sent: Friday, January 25, 2019 5:50 PM To: Milad Noujaim

Subject: RE: COCs Job Number 55579

Great, thanks Milad.

Kind Regards,

Vibha Vaidya Phone : +61 2 9900 8415 Mobile : +61 499 900 805 Email : <u>NibhaVaidya@eurofins.com</u>

-----Original Message-----From: Milad Noujaim [mailto:mnoujaim@jbsg.com.au]

#637804



# Certificate of Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000



NATA Accredited Accreditation Number 1261 Site Number 18217

| Attention:<br>Report<br>Project Name<br>Project ID<br>Received Date<br>Date Reported | Daniel Denaro<br>637804-AID<br>CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL<br>55579<br>Jan 25, 2019<br>Feb 04, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methodology:<br>Asbestos Fibre<br>Identification                                     | Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.<br>NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unknown Mineral<br>Fibres                                                            | Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as<br>Electron Microscopy, to confirm unequivocal identity.<br>NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the<br>optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an<br>independent technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subsampling Soil<br>Samples                                                          | The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed.<br>NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bonded asbestos-<br>containing material<br>(ACM)                                     | The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.                                                                                                                                                                                                                                                        |
| Limit of Reporting                                                                   | The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH. |





Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project NameCHATSWOOD EDUCATION PRECINCT HIGH SCHOOLProject ID55579Date SampledJan 21, 2019 to Jan 25, 2019Report637804-AID

| Client Sample ID | Eurofins   mgt<br>Sample No.                               | Date Sampled | Sample Description                                                                       | Result                                                                                                                                                     |
|------------------|------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BH01_0-0.15      | 19-Ja24069                                                 | Jan 21, 2019 | Approximate Sample 617g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                     |
| BH02A_0-0.15     | 19-Ja24070                                                 | Jan 24, 2019 | Approximate Sample 516g<br>Sample consisted of: Dark brown coarse-grained soil and rocks | No respirable fibres detected.<br>No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH03_0.4-0.5     | 19-Ja24071                                                 | Jan 21, 2019 | Approximate Sample 629g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected.                                   |
| BH04_0.2-0.3     | 19-Ja24072                                                 | Jan 21, 2019 | Approximate Sample 484g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected.                                   |
| BH05_1.0-1.1     | 19-Ja24073                                                 | Jan 21, 2019 | Approximate Sample 874g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected.                                   |
| BH06_0.4-0.5     | 19-Ja24074                                                 | Jan 21, 2019 | Approximate Sample 669g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected.                                   |
| BH07_0.5-0.6     | Hoz 0.5 0.6 10 1224075 Ion 24 2010 Approximate Sample 763g |              | Approximate Sample 763g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected.                                   |





NATA Accredited Accreditation Number 1261 Site Number 18217

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled                   | Sample Description                                                                       | Result                                                                                 |
|------------------|------------------------------|--------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| BH08_0-0.15      | 19-Ja24076                   | Jan 25, 2019                   | Approximate Sample 722g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected. |
|                  |                              |                                |                                                                                          | No respirable fibres detected.                                                         |
| BH09_0.4-0.5     | 19-Ja24077                   | Jan 21, 2019                   | Approximate Sample 669g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected. |
|                  |                              |                                |                                                                                          | No respirable fibres detected.                                                         |
| BH10_1-1.1       | 19-Ja24078                   | Jan 21, 2019                   | Approximate Sample 715g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected. |
|                  |                              |                                | granner consister on 210 millional constant constant                                     | No respirable fibres detected.                                                         |
| BH11_0-0.15      | 19-Ja24079                   | Jan 21, 2019                   | Approximate Sample 636g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.    |
|                  |                              |                                | bample consisted of. Drown coarse granted soil and rocks                                 | No respirable fibres detected.                                                         |
| BH12_0.4-0.5     | 19-Ja24080                   | Jan 21, 2019                   | Approximate Sample 599g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.    |
|                  |                              |                                | Sample consisted of. Brown coarse-grained soil and locks                                 | No respirable fibres detected.                                                         |
| BH13_0.7-0.8     | 19-Ja24081                   | Jan 25, 2019                   | Approximate Sample 669g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected. |
|                  |                              |                                | Cample consisted of Drown course granted con and rooks                                   | No respirable fibres detected.                                                         |
| BH14_0-0.15      | 19-Ja24082                   | Jan 25, 2019                   | Approximate Sample 621g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.    |
|                  |                              |                                | granner consister on 210 millional constant constant                                     | No respirable fibres detected.                                                         |
| BH15_0-0.15      | 19-Ja24083                   | Jan 21, 2019                   | Approximate Sample 493g<br>Sample consisted of: Dark brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected. |
|                  |                              |                                |                                                                                          | No respirable fibres detected.                                                         |
| BH16_0.4-0.5     | 19-Ja24084                   | Jan 22, 2019                   | Approximate Sample 753g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.    |
|                  |                              |                                |                                                                                          | No respirable fibres detected.                                                         |
| BH17_0.4-0.5     | 19-Ja24085                   | Jan 22, 2019                   | Approximate Sample 676g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected. |
|                  |                              | No respirable fibres detected. |                                                                                          |                                                                                        |
| BH18_0.7-0.8     | 19-Ja24086                   | Jan 22, 2019                   | Approximate Sample 600g<br>Sample consisted of: Brown coarse-grained soil and rocks      | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected. |
|                  |                              |                                |                                                                                          | No respirable fibres detected.                                                         |





NATA Accredited Accreditation Number 1261 Site Number 18217

| Client Sample ID | Eurofins   mgt<br>Sample No.                                                        | Date Sampled | Sample Description                                                                  | Result                                                                                                                                                        |
|------------------|-------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BH19_0.4-0.5     | 19-Ja24087                                                                          | Jan 22, 2019 | Approximate Sample 742g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              |                                                                                     | No respirable fibres detected.                                                                                                                                |
| BH20_1-1.1       | 19-Ja24088                                                                          | Jan 22, 2019 | Approximate Sample 609g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              |                                                                                     | No respirable fibres detected.                                                                                                                                |
| BH21_0-0.15      | 19-Ja24089                                                                          | Jan 22, 2019 | Approximate Sample 708g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Synthetic mineral fibre detected.<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH22_1-1.1       | 19-Ja24090                                                                          | Jan 22, 2019 | Approximate Sample 489g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              |                                                                                     | No respirable fibres detected.                                                                                                                                |
| BH23_0.4-0.5     | 19-Ja24091                                                                          | Jan 22, 2019 | Approximate Sample 664g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.                                                                           |
|                  |                                                                                     |              | Cample consisted of brown coarse granted son and rocks                              | No respirable fibres detected.                                                                                                                                |
| BH24_0-0.15      | 19-Ja24092                                                                          | Jan 22, 2019 | Approximate Sample 798g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              |                                                                                     | No respirable fibres detected.                                                                                                                                |
| BH25_0.5-0.6     | 19-Ja24093                                                                          | Jan 22, 2019 | Approximate Sample 496g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              |                                                                                     | No respirable fibres detected.                                                                                                                                |
| BH26_1-1.1       | 19-Ja24094                                                                          | Jan 22, 2019 | Approximate Sample 552g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              |                                                                                     | No respirable fibres detected.                                                                                                                                |
| BH27_0.4-0.5     | 19-Ja24095                                                                          | Jan 25, 2019 | Approximate Sample 790g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              |                                                                                     | No respirable fibres detected.                                                                                                                                |
| BH28_1-1.1       | 19-Ja24096                                                                          | Jan 22, 2019 | Approximate Sample 465g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              | ,                                                                                   | No respirable fibres detected.                                                                                                                                |
| BH29_0-0.15      | Approximate Sample 654g<br>Sample consisted of: Brown coarse-grained soil and rocks |              | Approximate Sample 654g<br>Sample consisted of: Brown coarse-grained soil and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.                                                                        |
|                  |                                                                                     |              | ,                                                                                   | No respirable fibres detected.                                                                                                                                |





NATA Accredited Accreditation Number 1261 Site Number 18217

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                     | Result                                                                                                                   |
|------------------|------------------------------|--------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| BH30_0-0.15      | 19-Ja24098                   | Jan 24, 2019 | Approximate Sample 542g<br>Sample consisted of: Brown coarse-grained soil and rocks    | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH13-FRAG        | 19-Ja24099                   | Jan 24, 2019 | Approximate Sample 17g / 114x40x3mm<br>Sample consisted of: Grey fibre cement material | Chrysotile and amosite asbestos detected.                                                                                |



# **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description             | Testing Site | Extracted    | Holding Time |
|-------------------------|--------------|--------------|--------------|
| Asbestos - LTM-ASB-8020 | Sydney       | Jan 29, 2019 | Indefinite   |
| Asbestos - LTM-ASB-8020 | Sydney       | Jan 29, 2019 | Indefinite   |

|    | euro                                | ofins                               |                          | ABN –<br>e.mail<br>web : v | 50 005<br>: Enviro<br>vww.eu | 085 52<br>Sales@<br>rofins.co    | 1<br>eurofins<br>om.au    | s.com                           |           | Melbou<br>6 Monte<br>Danden<br>Phone :<br>NATA #<br>Site # 1 | erey Ro<br>long So<br>: +61 3<br>! 1261 | outh VIC<br>8564 50            |   | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwoo<br>Murarrie QLD<br>Phone : +61 7<br>NATA # 1261 3 | 4172<br>3902 4600                      | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |                                              |                      |
|----|-------------------------------------|-------------------------------------|--------------------------|----------------------------|------------------------------|----------------------------------|---------------------------|---------------------------------|-----------|--------------------------------------------------------------|-----------------------------------------|--------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|
| Ad | mpany Name:<br>dress:               | Level 1, 50 N<br>Sydney<br>NSW 2000 | U U                      |                            |                              |                                  | Re<br>Ph                  | rder N<br>eport<br>none:<br>ix: |           | -                                                            | 37804<br>2 824                          | 1<br>5 0300                    | 0 |                                                                                                                                        |                                                                             | Receive<br>Due:<br>Priority<br>Contact | :                                                                                                               | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De |                      |
|    | oject Name:<br>oject ID:            | CHATSWOO<br>55579                   | DD EDUCATIO              | ON PRECINCT I              | HIGH SCHOOL                  |                                  |                           |                                 |           |                                                              |                                         |                                |   |                                                                                                                                        |                                                                             | Eurofins   mgt A                       | Analytical Se                                                                                                   | ervices Ma                                   | nager : Nibha Vaidya |
|    |                                     |                                     | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD                         | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls       | Metals M8 | BTEX                                                         | Moisture Set                            | Total Recoverable Hydrocarbons |   |                                                                                                                                        |                                                                             |                                        |                                                                                                                 |                                              |                      |
|    | ourne Laborato                      |                                     |                          | 271                        |                              |                                  |                           | X                               | Х         | X                                                            | X                                       | Х                              | Х | Х                                                                                                                                      | Х                                                                           |                                        |                                                                                                                 |                                              |                      |
| -  | ney Laboratory -                    |                                     |                          |                            |                              | X                                | Х                         |                                 |           |                                                              |                                         |                                |   |                                                                                                                                        |                                                                             | -                                      |                                                                                                                 |                                              |                      |
|    | bane Laboratory                     |                                     |                          |                            |                              | -                                |                           |                                 |           |                                                              |                                         | $\left  - \right $             |   |                                                                                                                                        |                                                                             | 1                                      |                                                                                                                 |                                              |                      |
|    | n Laboratory - N<br>rnal Laboratory | A I A Site # 237                    | 36                       |                            |                              | -                                |                           | +                               |           |                                                              |                                         | $\left  - \right $             |   |                                                                                                                                        |                                                                             | -                                      |                                                                                                                 |                                              |                      |
| No | Sample ID                           | Sample Date                         | Sampling<br>Time         | Matrix                     | LAB ID                       |                                  |                           |                                 |           |                                                              |                                         |                                |   |                                                                                                                                        |                                                                             |                                        |                                                                                                                 |                                              |                      |
| 1  | BH01_0-0.15                         | Jan 21, 2019                        |                          | Soil                       | S19-Ja24069                  | Х                                |                           |                                 | х         |                                                              |                                         | Х                              | х | х                                                                                                                                      | х                                                                           |                                        |                                                                                                                 |                                              |                      |
| 2  | BH02A_0-0.15                        | Jan 24, 2019                        |                          | Soil                       | S19-Ja24070                  | Х                                |                           |                                 | х         | Х                                                            |                                         | Х                              |   | Х                                                                                                                                      |                                                                             |                                        |                                                                                                                 |                                              |                      |
| 3  |                                     | Jan 21, 2019                        |                          | Soil                       | S19-Ja24071                  | х                                |                           |                                 | х         |                                                              |                                         | х                              |   | Х                                                                                                                                      |                                                                             |                                        |                                                                                                                 |                                              |                      |
| 4  | BH04_0.2-0.3                        | Jan 21, 2019                        |                          | Soil                       | S19-Ja24072                  | х                                |                           |                                 | х         |                                                              |                                         | х                              | Х | Х                                                                                                                                      | х                                                                           |                                        |                                                                                                                 |                                              |                      |
| 5  | BH05_1.0-1.1                        | Jan 21, 2019                        |                          | Soil                       | S19-Ja24073                  | Х                                |                           |                                 | х         |                                                              |                                         | Х                              |   | Х                                                                                                                                      |                                                                             |                                        |                                                                                                                 |                                              |                      |
| 6  | _                                   | Jan 21, 2019                        |                          | Soil                       | S19-Ja24074                  | X                                |                           |                                 | х         |                                                              |                                         | х                              |   | Х                                                                                                                                      |                                                                             |                                        |                                                                                                                 |                                              |                      |
| 7  |                                     | Jan 24, 2019                        |                          | Soil                       | S19-Ja24075                  | X                                |                           |                                 | Х         |                                                              |                                         | Х                              |   | Х                                                                                                                                      |                                                                             |                                        |                                                                                                                 |                                              |                      |
| 8  |                                     | Jan 25, 2019                        |                          | Soil                       | S19-Ja24076                  | X                                |                           |                                 | Х         |                                                              |                                         | Х                              | Х | Х                                                                                                                                      | Х                                                                           |                                        |                                                                                                                 |                                              |                      |
| 9  | BH09_0.4-0.5                        | Jan 21, 2019                        |                          | Soil                       | S19-Ja24077                  | Х                                |                           |                                 | Х         | Х                                                            |                                         | Х                              |   | Х                                                                                                                                      |                                                                             | ]                                      |                                                                                                                 |                                              |                      |

| 🔅 eur                        | ofins                                                |                                   | ABN –<br>e.mail<br>web : v | 50 005<br>: Enviro<br>vww.eu | 085 52<br>Sales@<br>rofins.co | 1<br>eurofins<br>om.au       | s.com                            |                           | Melbou<br>6 Monte<br>Dander<br>Phone :<br>NATA #<br>Site # 1 | erey Ro<br>nong So<br>: +61 3<br># 1261 | outh VIC<br>8564 50 | 3175<br>000  | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwor<br>Murarrie QLD<br>Phone : +61 7<br>NATA # 1261 | 4172<br>3902 4600 | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +618 9251 9600<br>NATA # 1261<br>Site # 23736 |                      |
|------------------------------|------------------------------------------------------|-----------------------------------|----------------------------|------------------------------|-------------------------------|------------------------------|----------------------------------|---------------------------|--------------------------------------------------------------|-----------------------------------------|---------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|----------------------|
| Company Name<br>Address:     | : JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | stralia (NSW) P/L<br>⁄Iargaret St |                            |                              | Re<br>Ph                      | der N<br>port<br>none:<br>x: | #:                               | -                         | 37804<br>2 824                                               | 1<br>5 030(                             | 0                   |              |                                                                                                                                        | Receive<br>Due:<br>Priority<br>Contact                                    | :                 | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel Do                                                                   |                      |
| Project Name:<br>Project ID: | CHATSWOC<br>55579                                    | D EDUCATION PRECING               | CT HIGH SCHOOL             |                              |                               |                              |                                  |                           |                                                              |                                         |                     |              |                                                                                                                                        | Eurofins   mgt #                                                          | Analytical Se     | ervices Ma                                                                                                     | nager : Nibha Vaidya |
|                              | Sa                                                   | mple Detail                       |                            | Asbestos - WA guidelines     | Asbestos Absence /Presence    | HOLD                         | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls                                    | Metals M8                               | BTEX                | Moisture Set | Total Recoverable Hydrocarbons                                                                                                         |                                                                           |                   |                                                                                                                |                      |
| Melbourne Labor              | atory - NATA Site                                    | # 1254 & 14271                    |                            |                              |                               | X                            | х                                | Х                         | Х                                                            | х                                       | х                   | х            | Х                                                                                                                                      | -                                                                         |                   |                                                                                                                |                      |
| Sydney Laborato              |                                                      |                                   |                            | X                            | Х                             |                              |                                  |                           |                                                              |                                         |                     |              |                                                                                                                                        | -                                                                         |                   |                                                                                                                |                      |
| Brisbane Laborat             |                                                      |                                   |                            | -                            |                               |                              |                                  |                           |                                                              |                                         |                     |              |                                                                                                                                        | -                                                                         |                   |                                                                                                                |                      |
| 10 BH10_1-1.1                | - NATA Site # 237                                    | Soil                              | S19-Ja24078                | X                            |                               |                              | X                                |                           |                                                              | X                                       | x                   | x            | x                                                                                                                                      | -                                                                         |                   |                                                                                                                |                      |
| 11 BH11_0-0.15               | Jan 21, 2019<br>Jan 21, 2019                         | Soil                              | S19-Ja24078                | X                            |                               |                              | X                                |                           |                                                              | X                                       |                     | X            | ^                                                                                                                                      |                                                                           |                   |                                                                                                                |                      |
| 12 BH12_0.4-0.4              |                                                      | Soil                              | S19-Ja24080                | X                            |                               |                              | X                                |                           |                                                              | X                                       |                     | X            |                                                                                                                                        | -                                                                         |                   |                                                                                                                |                      |
| 13 BH13_0.7-0.4              |                                                      | Soil                              | S19-Ja24081                | X                            |                               |                              | X                                |                           |                                                              | X                                       |                     | X            |                                                                                                                                        |                                                                           |                   |                                                                                                                |                      |
| 14 BH14_0-0.15               |                                                      | Soil                              | S19-Ja24082                | х                            |                               |                              | х                                |                           |                                                              | х                                       |                     | х            |                                                                                                                                        | 1                                                                         |                   |                                                                                                                |                      |
| 15 BH15_0-0.15               |                                                      | Soil                              | S19-Ja24083                | Х                            |                               |                              | х                                |                           | х                                                            | Х                                       |                     | х            |                                                                                                                                        | 1                                                                         |                   |                                                                                                                |                      |
|                              |                                                      | Soil                              | S19-Ja24084                | Х                            |                               |                              | Х                                | х                         |                                                              | Х                                       |                     | х            |                                                                                                                                        | ]                                                                         |                   |                                                                                                                |                      |
| 17 BH17_0.4-0.               |                                                      | Soil                              | S19-Ja24085                | Х                            |                               |                              | Х                                |                           |                                                              | Х                                       |                     | Х            |                                                                                                                                        | ]                                                                         |                   |                                                                                                                |                      |
| 18 BH18_0.7-0.               |                                                      | Soil                              | S19-Ja24086                | Х                            |                               |                              | х                                |                           |                                                              | Х                                       |                     | х            |                                                                                                                                        | ]                                                                         |                   |                                                                                                                |                      |
| 19 BH19_0.4-0.               | 5 Jan 22, 2019                                       | Soil                              | S19-Ja24087                | Х                            |                               |                              | Х                                |                           |                                                              | Х                                       |                     | Х            |                                                                                                                                        |                                                                           |                   |                                                                                                                |                      |
| 20 BH20_1-1.1                | Jan 22, 2019                                         | Soil                              | S19-Ja24088                | Х                            |                               |                              | Х                                |                           |                                                              | Х                                       |                     | Х            |                                                                                                                                        |                                                                           |                   |                                                                                                                |                      |
| 21 BH21_0-0.15               | Jan 22, 2019                                         | Soil                              | S19-Ja24089                | Х                            |                               |                              | Х                                | х                         |                                                              | Х                                       |                     | Х            |                                                                                                                                        |                                                                           |                   |                                                                                                                |                      |

|          | euro                         |                                                    | ABN –<br>e.mail :<br>web : v     | 50 005<br>Enviros<br>vww.eur | 085 52 <sup>.</sup><br>Sales@<br>ofins.cc | 1<br>eurofins<br>om.au           | s.com                         |                           | Melbou<br>6 Monte<br>Dander<br>Phone :<br>NATA #<br>Site # 1 | erey Ro<br>iong So<br>: +61 3<br>: 1261 | outh VIC<br>8564 50 | C 3175<br>000                  | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood<br>Murarrie QLD 4<br>Phone : +61 7 3<br>NATA # 1261 S | 172<br>902 4600                        | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |                                              |                      |
|----------|------------------------------|----------------------------------------------------|----------------------------------|------------------------------|-------------------------------------------|----------------------------------|-------------------------------|---------------------------|--------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|
|          | mpany Name:<br>dress:        | JBS & G Aus<br>Level 1, 50 N<br>Sydney<br>NSW 2000 | stralia (NSW) P/L<br>/argaret St |                              |                                           | Re                               | der N<br>port ;<br>one:<br>x: |                           | -                                                            | 37804<br>2 824                          | 1<br>5 030(         | D                              |                                                                                                                                        |                                                                                  | Receive<br>Due:<br>Priority<br>Contact | :                                                                                                               | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De |                      |
|          | oject Name:<br>oject ID:     | CHATSWOC<br>55579                                  | DD EDUCATION PRECINCT            | HIGH SCHOOL                  |                                           |                                  |                               |                           |                                                              |                                         |                     |                                |                                                                                                                                        |                                                                                  | Eurofins   mgt #                       | Analytical Ser                                                                                                  | vices Ma                                     | nager : Nibha Vaidya |
|          |                              |                                                    | Asbestos - WA guidelines         | Asbestos Absence /Presence   | HOLD                                      | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides     | Polychlorinated Biphenyls | Metals M8                                                    | BTEX                                    | Moisture Set        | Total Recoverable Hydrocarbons |                                                                                                                                        |                                                                                  |                                        |                                                                                                                 |                                              |                      |
|          |                              |                                                    | # 1254 & 14271                   |                              |                                           |                                  | X                             | Х                         | X                                                            | Х                                       | Х                   | Х                              | Х                                                                                                                                      | Х                                                                                | -                                      |                                                                                                                 |                                              |                      |
|          | ey Laboratory                |                                                    |                                  |                              | X                                         | X                                |                               |                           |                                                              |                                         |                     |                                |                                                                                                                                        |                                                                                  |                                        |                                                                                                                 |                                              |                      |
|          | bane Laboratory              |                                                    |                                  |                              | -                                         |                                  |                               |                           |                                                              |                                         |                     |                                |                                                                                                                                        |                                                                                  | -                                      |                                                                                                                 |                                              |                      |
|          | Laboratory - N<br>BH22_1-1.1 |                                                    | Soil                             | S19-Ja24090                  | X                                         |                                  |                               | X                         |                                                              |                                         | х                   |                                | x                                                                                                                                      |                                                                                  |                                        |                                                                                                                 |                                              |                      |
| 22<br>23 |                              | Jan 22, 2019<br>Jan 22, 2019                       | Soil                             | S19-Ja24090<br>S19-Ja24091   | X                                         |                                  |                               | X                         |                                                              |                                         | X                   |                                | X                                                                                                                                      |                                                                                  | 4                                      |                                                                                                                 |                                              |                      |
| 23       | BH24_0-0.15                  | Jan 22, 2019                                       | Soil                             | S19-Ja24091                  | X                                         |                                  |                               | X                         |                                                              |                                         | X                   | Х                              | X                                                                                                                                      | х                                                                                | 4                                      |                                                                                                                 |                                              |                      |
| 25       |                              | Jan 22, 2019                                       | Soil                             | S19-Ja24092                  | X                                         |                                  |                               | X                         | x                                                            |                                         | X                   |                                | X                                                                                                                                      |                                                                                  | •                                      |                                                                                                                 |                                              |                      |
| 26       | BH26_1-1.1                   | Jan 22, 2019                                       | Soil                             | S19-Ja24094                  | X                                         |                                  |                               | X                         |                                                              |                                         | X                   |                                | X                                                                                                                                      |                                                                                  | 1                                      |                                                                                                                 |                                              |                      |
| 27       |                              | Jan 25, 2019                                       | Soil                             | S19-Ja24095                  | х                                         |                                  |                               | х                         |                                                              |                                         | х                   |                                | Х                                                                                                                                      |                                                                                  |                                        |                                                                                                                 |                                              |                      |
| 28       | BH28_1-1.1                   | Jan 22, 2019                                       | Soil                             | S19-Ja24096                  | Х                                         |                                  |                               | х                         |                                                              |                                         | х                   |                                | Х                                                                                                                                      |                                                                                  | ]                                      |                                                                                                                 |                                              |                      |
| 29       | BH29_0-0.15                  | Jan 24, 2019                                       | Soil                             | S19-Ja24097                  | Х                                         |                                  |                               | Х                         |                                                              | х                                       | Х                   |                                | х                                                                                                                                      |                                                                                  | ]                                      |                                                                                                                 |                                              |                      |
| 30       | BH30_0-0.15                  | Jan 24, 2019                                       | Soil                             | S19-Ja24098                  | Х                                         |                                  |                               | Х                         |                                                              |                                         | Х                   |                                | Х                                                                                                                                      |                                                                                  |                                        |                                                                                                                 |                                              |                      |
| 31       | BH13-FRAG                    | Jan 24, 2019                                       | Building<br>Materials            | S19-Ja24099                  |                                           | х                                |                               |                           |                                                              |                                         |                     |                                |                                                                                                                                        |                                                                                  |                                        |                                                                                                                 |                                              |                      |
| 32       | BH01_0.4-0.5                 | Jan 21, 2019                                       | Soil                             | S19-Ja24100                  |                                           |                                  | Х                             |                           |                                                              |                                         |                     |                                |                                                                                                                                        |                                                                                  | ]                                      |                                                                                                                 |                                              |                      |

|       | euro                             | ofins                                              |                                  | ABN –<br>e.mail<br>web : v | 50 005<br>: Enviro<br>www.eui | 085 52<br>Sales@<br>rofins.co | 1<br>eurofins<br>om.au            | s.com                     |                           |                | erey Ro<br>nong So<br>: +61 3<br># 1261 | outh VIC<br>8564 50 |                                | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwor<br>Murarrie QLD<br>Phone : +61 7<br>NATA # 1261 | 4172<br>7 3902 4600 | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |                      |
|-------|----------------------------------|----------------------------------------------------|----------------------------------|----------------------------|-------------------------------|-------------------------------|-----------------------------------|---------------------------|---------------------------|----------------|-----------------------------------------|---------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|
|       | mpany Name:<br>dress:            | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | stralia (NSW) P/L<br>Margaret St |                            |                               | Re<br>Ph                      | rder N<br>eport a<br>none:<br>ax: |                           | -                         | 37804<br>2 824 | 4<br>5 030                              | 0                   |                                |                                                                                                                                        | Receive<br>Due:<br>Priority<br>Contact                                    | :                   | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De                                                                    |                      |
|       | oject Name:<br>oject ID:         | CHATSWOC<br>55579                                  | D EDUCATION PR                   | ECINCT HIGH SCHOOL         |                               |                               |                                   |                           |                           |                |                                         |                     |                                |                                                                                                                                        | Eurofins   mgt A                                                          | Analytical S        | ervices Ma                                                                                                      | nager : Nibha Vaidya |
|       |                                  | Sa                                                 |                                  | Asbestos - WA guidelines   | Asbestos Absence /Presence    | HOLD                          | Polycyclic Aromatic Hydrocarbons  | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8      | BTEX                                    | Moisture Set        | Total Recoverable Hydrocarbons |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
| Melb  | ourne Laborato                   | ory - NATA Site                                    | # 1254 & 14271                   |                            |                               |                               | Х                                 | Х                         | Х                         | Х              | Х                                       | Х                   | Х                              | Х                                                                                                                                      |                                                                           |                     |                                                                                                                 |                      |
| Sydn  | ey Laboratory                    | - NATA Site # 1                                    | 8217                             |                            | Х                             | Х                             |                                   | <u> </u>                  | <u> </u>                  |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
| Brist | ane Laboratory                   | / - NATA Site #                                    | 20794                            |                            | <u> </u>                      | <u> </u>                      |                                   | <u> </u>                  |                           |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
|       | Laboratory - N                   |                                                    | 1 1                              |                            | 4                             | —                             | _                                 |                           |                           |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
|       | BH01_1.0-1.1                     | Jan 21, 2019                                       | Soil                             | S19-Ja24101                |                               | <u> </u>                      | X                                 | <u> </u>                  | <u> </u>                  |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
|       | BH01_1.4-1.5                     | Jan 21, 2019                                       | Soil                             | S19-Ja24102                | +                             | —                             | X                                 | ──                        | ──                        |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
|       | BH02_0-0.15<br>BH02A_0.4-<br>0.5 | Jan 24, 2019<br>Jan 24, 2019                       | Soil Soil                        | S19-Ja24103<br>S19-Ja24104 | +                             |                               | x<br>x                            | -                         |                           |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
| 37    | BH03_0-0.15                      | Jan 21, 2019                                       | Soil                             | S19-Ja24105                | +                             | 1                             | x                                 |                           |                           |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
|       |                                  | Jan 21, 2019                                       | Soil                             | S19-Ja24106                | 1                             | 1                             | X                                 | 1                         | 1                         |                | 1                                       |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
|       |                                  | Jan 21, 2019                                       | Soil                             | S19-Ja24107                | 1                             | 1                             | x                                 | 1                         | 1                         |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
|       |                                  | Jan 21, 2019                                       | Soil                             | S19-Ja24108                | 1                             |                               | х                                 |                           |                           |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
| 41    | <br>BH05_0-0.15                  | Jan 21, 2019                                       | Soil                             | S19-Ja24109                |                               |                               | Х                                 |                           |                           |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
| 42    | BH05_0.4-0.5                     | Jan 21, 2019                                       | Soil                             | S19-Ja24110                |                               |                               | Х                                 |                           |                           |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |
|       |                                  |                                                    |                                  |                            |                               |                               |                                   |                           |                           |                |                                         |                     |                                |                                                                                                                                        |                                                                           |                     |                                                                                                                 |                      |

|          | mgt mpany Name: JBS & G Australia (NSW) P/L Level 1, 50 Margaret St |                              |                          |                            |                            |                                  | 50 005<br>: Enviros<br>www.eur | 085 52 <sup>.</sup><br>Sales@<br>rofins.cc | 1<br>eurofins<br>om.au   | s.com    |                | Melbou<br>6 Monte<br>Dander<br>Phone :<br>NATA #<br>Site # 1 | erey Ro<br>long So<br>: +61 3<br>! 1261 | outh VIC<br>8564 50 |          | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwor<br>Murarrie QLD<br>Phone : +61 7<br>NATA # 1261 | 4172<br>7 3902 4600                          | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|----------|---------------------------------------------------------------------|------------------------------|--------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------|--------------------------------------------|--------------------------|----------|----------------|--------------------------------------------------------------|-----------------------------------------|---------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|          |                                                                     |                              | · · ·                    | /L                         |                            |                                  | Re                             | rder N<br>eport a<br>none:<br>ix:          | #:                       | -        | 37804<br>2 824 | 1<br>5 030(                                                  | D                                       |                     |          | Receive<br>Due:<br>Priority:<br>Contact                                                                                                | :                                                                         | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De |                                                                                                                 |
|          | oject Name:<br>oject ID:                                            | CHATSWOC<br>55579            | DD EDUCATION             | N PRECINCT                 | HIGH SCHOOL                |                                  |                                |                                            |                          |          |                |                                                              |                                         |                     |          | Eurofins   mgt /                                                                                                                       | Analytical S                                                              | ervices Ma                                   | nager : Nibha Vaidya                                                                                            |
|          |                                                                     |                              | Asbestos - WA guidelines | Asbestos Absence /Presence | HOLD                       | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides      | Polychlorinated Biphenyls                  | Metals M8                | BTEX     | Moisture Set   | Total Recoverable Hydrocarbons                               |                                         |                     |          |                                                                                                                                        |                                                                           |                                              |                                                                                                                 |
| Melb     | ourne Laborato                                                      | ory - NATA Site              | # 1254 & 1427            | ′1                         |                            |                                  |                                | Х                                          | Х                        | Х        | х              | Х                                                            | Х                                       | Х                   | х        |                                                                                                                                        |                                                                           |                                              |                                                                                                                 |
| Sydi     | ney Laboratory                                                      | - NATA Site # 1              | 8217                     |                            |                            | Х                                | Х                              |                                            |                          |          |                |                                                              |                                         |                     |          | _                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| Bris     | oane Laboratory                                                     | y - NATA Site #              | 20794                    |                            |                            | <u> </u>                         | $\vdash$                       | <u> </u>                                   | ļ'                       | <u> </u> |                |                                                              |                                         |                     | <u> </u> | _                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
|          | <mark>n Laboratory - N</mark>                                       |                              |                          |                            |                            | <b> </b>                         | —                              | —                                          | ļ'                       |          |                |                                                              |                                         |                     |          | 4                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 44       | BH06_0-0.15                                                         | Jan 21, 2019                 |                          | Soil                       | S19-Ja24112                | —                                | —                              | X                                          | ļ'                       |          | <u> </u>       |                                                              |                                         |                     |          | -                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 45       | BH06_1-1.1                                                          | Jan 21, 2019                 |                          | Soil                       | S19-Ja24113                | —                                | —                              | X                                          | <b>├</b> ── <sup> </sup> | —        |                |                                                              |                                         |                     | —        | -                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 46       | BH07_0-0.15                                                         | Jan 24, 2019                 |                          | Soil                       | S19-Ja24114                | +                                | —                              | X                                          | '                        | ──       |                |                                                              |                                         |                     | ──       | -                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 47       | BH08_0.4-0.5                                                        | Jan 25, 2019                 |                          | Soil                       | S19-Ja24115                | +                                | ┼──                            | X<br>X                                     | <u> </u>                 | ──       |                |                                                              |                                         |                     | ──       | -                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 48       | BH08_0.8-0.9<br>BH08_1.2-1.3                                        | Jan 25, 2019                 |                          | Soil<br>Soil               | S19-Ja24116<br>S19-Ja24117 | +                                | +                              | X<br>X                                     | <u> </u> '               | ┼──      |                |                                                              |                                         |                     | ┼──      | -                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 49<br>50 | BH08_1.2-1.3<br>BH08_1.5-1.6                                        | Jan 25, 2019<br>Jan 25, 2019 |                          | Soll<br>Soil               | S19-Ja24117<br>S19-Ja24118 | +                                | +                              | X                                          | <u> </u>                 | <u> </u> |                |                                                              |                                         |                     | <u> </u> | -                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 50<br>51 | BH09_0-0.15                                                         | Jan 21, 2019                 |                          | Soil                       | S19-Ja24118<br>S19-Ja24119 | +                                | +                              | X                                          |                          | <u> </u> |                |                                                              |                                         |                     | <u> </u> | -                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 52       | BH09_0-0.13<br>BH09_1-1.1                                           | Jan 21, 2019                 |                          | Soil                       | S19-Ja24119                | +                                | +                              | X                                          |                          |          |                |                                                              |                                         |                     |          | -                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
| 53       | BH10_0.05-                                                          | Jan 21, 2019                 |                          | Soil                       | S19-Ja24121                |                                  | <u> </u>                       | x                                          |                          |          |                |                                                              |                                         |                     |          | 1                                                                                                                                      |                                                                           |                                              |                                                                                                                 |
|          | 0.15                                                                |                              |                          |                            |                            | _                                |                                |                                            | ·                        |          |                |                                                              |                                         |                     |          |                                                                                                                                        |                                                                           |                                              |                                                                                                                 |

| 🔅 euro                       |                                                                 |                          |              |                            |   |              |                                   | 1<br>eurofins<br>om.au | s.com                     |                           |             | erey Ro<br>long So<br>+61 3<br>1261 | outh VIC<br>8564 50 |                                | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 |            |                                              | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|------------------------------|-----------------------------------------------------------------|--------------------------|--------------|----------------------------|---|--------------|-----------------------------------|------------------------|---------------------------|---------------------------|-------------|-------------------------------------|---------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Company Name:<br>Address:    | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000              | · · ·                    | /L           |                            |   | Re<br>Ph     | rder N<br>eport a<br>none:<br>ax: | #:                     |                           | 37804<br>2 824            | i<br>5 030( | )                                   |                     |                                | Receive<br>Due:<br>Priority<br>Contact                                                                                                 | :          | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De |                                                                                                                 |
| Project Name:<br>Project ID: | CHATSWOC<br>55579                                               | O EDUCATIO               | N PRECINC    | T HIGH SCHOOL              |   |              |                                   |                        |                           |                           |             |                                     |                     |                                | Eurofins   mgt A                                                                                                                       | Analytical | Services Ma                                  | nager : Nibha Vaidya                                                                                            |
|                              | Sample Detail<br>elbourne Laboratory - NATA Site # 1254 & 14271 |                          |              |                            |   |              |                                   |                        | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8   | BTEX                                | Moisture Set        | Total Recoverable Hydrocarbons |                                                                                                                                        |            |                                              |                                                                                                                 |
| Melbourne Laborato           | ry - NATA Site                                                  | <u># 1254 &amp; 1427</u> | 1            |                            |   |              | Х                                 | х                      | х                         | х                         | х           | Х                                   | х                   | Х                              |                                                                                                                                        |            |                                              |                                                                                                                 |
| Sydney Laboratory -          |                                                                 |                          |              |                            | Х | Х            | <u> </u>                          |                        |                           |                           |             |                                     |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
| Brisbane Laboratory          |                                                                 |                          |              |                            |   | —            | ──                                | ļ!                     |                           |                           |             |                                     |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
| Perth Laboratory - N         |                                                                 |                          |              |                            |   | ──           | +                                 | ──'                    |                           |                           |             |                                     |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
| 55 BH10_1.6-1.7              |                                                                 |                          | Soil         | S19-Ja24123                |   | ┼──          | X                                 |                        |                           |                           |             |                                     |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
|                              | Jan 21, 2019                                                    |                          | Soil<br>Soil | S19-Ja24124<br>S19-Ja24125 |   | +            | X<br>X                            |                        |                           |                           |             |                                     |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
|                              | Jan 21, 2019<br>Jan 21, 2019                                    |                          | Soil         | S19-Ja24125                | - | <del> </del> | X                                 | ┟──┦                   |                           |                           |             |                                     |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
| 59 BH12_0-0.15               | Jan 21, 2019                                                    |                          | Soil         | S19-Ja24120                | - | +            | X                                 |                        |                           |                           |             |                                     |                     |                                | 4                                                                                                                                      |            |                                              |                                                                                                                 |
|                              | Jan 25, 2019                                                    |                          | Soil         | S19-Ja24127                | 1 | +            | X                                 |                        |                           |                           |             |                                     |                     |                                | •                                                                                                                                      |            |                                              |                                                                                                                 |
|                              | Jan 25, 2019                                                    |                          | Soil         | S19-Ja24129                |   | 1            | X                                 |                        |                           |                           |             |                                     |                     |                                | 1                                                                                                                                      |            |                                              |                                                                                                                 |
|                              | Jan 25, 2019                                                    |                          | Soil         | S19-Ja24130                | 1 | <u>†</u>     | X                                 |                        |                           |                           |             |                                     |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
|                              | Jan 25, 2019                                                    |                          | Soil         | S19-Ja24131                |   | 1            | Х                                 |                        |                           |                           |             |                                     |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
| 64 BH14_1-1.1                | Jan 25, 2019                                                    |                          | Soil         | S19-Ja24132                |   | 1            | Х                                 |                        |                           |                           |             |                                     |                     |                                | 1                                                                                                                                      |            |                                              |                                                                                                                 |
|                              |                                                                 |                          | N - 'I       |                            |   |              | Х                                 |                        |                           |                           |             |                                     |                     |                                | 1                                                                                                                                      |            |                                              |                                                                                                                 |
| 65 BH15_0.4-0.5              | Jan 21, 2019                                                    | ۱   ۱                    | Soil         | S19-Ja24133                |   |              |                                   |                        |                           |                           |             |                                     |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |

| 🔅 euro                            |                                                                 |                            |              |                            |   |          |                                 | 1<br>eurofins<br>om.au           | s.com                     |                           | Melbou<br>6 Monte<br>Dander<br>Phone<br>NATA #<br>Site # 1 | erey Ro<br>nong So<br>: +61 3<br># 1261 | outh VIC<br>8564 50 |                                | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 |            |                                              | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|-----------------------------------|-----------------------------------------------------------------|----------------------------|--------------|----------------------------|---|----------|---------------------------------|----------------------------------|---------------------------|---------------------------|------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Company Name:<br>Address:         | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000              | · ,                        | L            |                            |   | Re<br>Ph | rder N<br>eport<br>none:<br>ax: |                                  |                           | 37804<br>2 824            | 1<br>5 030                                                 | 0                                       |                     |                                | Receive<br>Due:<br>Priority<br>Contact                                                                                                 | :          | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De |                                                                                                                 |
| Project Name:<br>Project ID:      | CHATSWOO<br>55579                                               | D EDUCATION                | I PRECINCT I | HIGH SCHOOL                |   |          |                                 |                                  |                           |                           |                                                            |                                         |                     |                                | Eurofins   mgt A                                                                                                                       | Analytical | Services Ma                                  | nager : Nibha Vaidya                                                                                            |
|                                   | Sample Detail<br>elbourne Laboratory - NATA Site # 1254 & 14271 |                            |              |                            |   |          |                                 | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8                                                  | втех                                    | Moisture Set        | Total Recoverable Hydrocarbons |                                                                                                                                        |            |                                              |                                                                                                                 |
| Melbourne Laborato                | ory - NATA Site                                                 | # 1254 & 1427 <sup>,</sup> | 1            |                            |   |          | Х                               | Х                                | Х                         | Х                         | Х                                                          | Х                                       | Х                   | х                              |                                                                                                                                        |            |                                              |                                                                                                                 |
| Sydney Laboratory -               |                                                                 |                            |              |                            | Х | Х        |                                 |                                  |                           |                           |                                                            |                                         |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
| Brisbane Laboratory               |                                                                 |                            |              |                            |   |          |                                 |                                  |                           |                           |                                                            |                                         |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
| Perth Laboratory - N              |                                                                 |                            |              | 1                          |   |          |                                 |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
| 67 BH15_1.5-1.6                   |                                                                 |                            | oil          | S19-Ja24135                |   |          | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
|                                   | Jan 21, 2019                                                    |                            | oil          | S19-Ja24136                |   |          | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
| 69 BH16_0-0.15                    | Jan 22, 2019                                                    |                            | ioil         | S19-Ja24137                |   |          | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | 1                                                                                                                                      |            |                                              |                                                                                                                 |
| 70 BH16_1-1.1                     | Jan 22, 2019                                                    |                            | ioil         | S19-Ja24138                |   |          | X                               |                                  |                           | -                         |                                                            |                                         |                     |                                | 4                                                                                                                                      |            |                                              |                                                                                                                 |
|                                   | Jan 22, 2019                                                    |                            | ioil         | S19-Ja24139                |   | -        | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | 4                                                                                                                                      |            |                                              |                                                                                                                 |
| 72 BH16_2.0-2.1                   | Jan 22, 2019                                                    |                            | ioil         | S19-Ja24140                |   | -        | X<br>X                          |                                  |                           | +                         |                                                            |                                         |                     |                                | 4                                                                                                                                      |            |                                              |                                                                                                                 |
| 73 BH17_0-0.15<br>74 BH17 1.0-1.1 | Jan 22, 2019                                                    |                            | ioil<br>ioil | S19-Ja24141                |   |          | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
|                                   | Jan 22, 2019                                                    |                            | oil          | S19-Ja24142                |   |          | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
| 75 BH17_1.5-1.6<br>76 BH18 0-0.15 | Jan 22, 2019                                                    |                            | oil          | S19-Ja24143<br>S19-Ja24144 |   |          | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
|                                   | Jan 22, 2019                                                    |                            | oil          | S19-Ja24144<br>S19-Ja24145 |   |          | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
|                                   | Jan 22, 2019                                                    |                            | oil<br>Ioil  |                            |   |          | X                               |                                  |                           |                           |                                                            |                                         |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                 |
| 78 BH18_1-1.1                     | Jan 22, 2019                                                    | 5                          |              | S19-Ja24146                |   |          | ^                               |                                  |                           |                           |                                                            |                                         |                     |                                | ]                                                                                                                                      |            |                                              |                                                                                                                 |

| 🔅 euro                          | ofins                                              | mgt                             |              |                                   | ABN –<br>e.mail<br>web : v | 50 005<br>: Enviro<br>vww.eu | 085 52<br>Sales@<br>rofins.co   | 1<br>eurofins<br>om.au           | s.com                     |                           |            | erey Ro<br>nong So<br>: +61 3<br># 1261 | outh VIC<br>8564 50 |                                | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 |            |                                              | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +618 9251 9600<br>NATA # 1261<br>Site # 23736 |
|---------------------------------|----------------------------------------------------|---------------------------------|--------------|-----------------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|------------|-----------------------------------------|---------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Company Name:<br>Address:       | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | tralia (NSW) P/I<br>largaret St | L            |                                   |                            | Re<br>Ph                     | rder N<br>eport<br>none:<br>ax: |                                  |                           | 37804<br>2 824            | 1<br>5 030 | 0                                       |                     |                                | Receive<br>Due:<br>Priority<br>Contact                                                                                                 | :          | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De |                                                                                                                |
| Project Name:<br>Project ID:    | CHATSWOO<br>55579                                  | D EDUCATION                     | I PRECINCT H | IGH SCHOOL                        |                            |                              |                                 |                                  |                           |                           |            |                                         |                     |                                | Eurofins   mgt A                                                                                                                       | Analytical | Services Ma                                  | nager : Nibha Vaidya                                                                                           |
|                                 | Sar                                                | nple Detail                     |              |                                   | Asbestos - WA guidelines   | Asbestos Absence /Presence   | HOLD                            | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8  | BTEX                                    | Moisture Set        | Total Recoverable Hydrocarbons |                                                                                                                                        |            |                                              |                                                                                                                |
| Melbourne Laborato              | ory - NATA Site                                    | # 1254 & 14271                  |              |                                   |                            |                              | Х                               | Х                                | Х                         | Х                         | Х          | х                                       | Х                   | Х                              |                                                                                                                                        |            |                                              |                                                                                                                |
| Sydney Laboratory -             | - NATA Site # 18                                   | 8217                            |              |                                   | Х                          | Х                            |                                 |                                  |                           |                           |            |                                         |                     |                                |                                                                                                                                        |            |                                              |                                                                                                                |
| Brisbane Laboratory             |                                                    |                                 |              |                                   |                            |                              |                                 |                                  |                           |                           |            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                |
| Perth Laboratory - N            |                                                    |                                 |              |                                   |                            |                              |                                 |                                  |                           |                           |            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                |
|                                 | Jan 22, 2019                                       |                                 |              | S19-Ja24147                       |                            |                              | X                               |                                  |                           |                           |            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                |
| 80 BH19_0.7-0.8                 | Jan 22, 2019                                       |                                 |              | S19-Ja24148                       |                            |                              | X                               |                                  |                           |                           |            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                |
| 81 BH19_1-1.1                   | Jan 22, 2019                                       |                                 |              | S19-Ja24149                       |                            |                              | X                               |                                  |                           |                           |            |                                         |                     |                                | 4                                                                                                                                      |            |                                              |                                                                                                                |
| 82 BH20_0-0.15                  | Jan 22, 2019                                       |                                 |              | S19-Ja24150                       |                            |                              | X                               |                                  |                           | -                         |            |                                         |                     |                                | 4                                                                                                                                      |            |                                              |                                                                                                                |
| 83 BH20_0.4-0.5                 | Jan 22, 2019                                       |                                 |              | S19-Ja24151                       |                            |                              | X                               |                                  |                           |                           |            |                                         | <u> </u>            |                                | -                                                                                                                                      |            |                                              |                                                                                                                |
| 84 BH20_1.5-1.6                 | Jan 22, 2019                                       |                                 |              | S19-Ja24152                       | +                          | -                            | X<br>X                          |                                  | <u> </u>                  | +                         |            |                                         |                     |                                | {                                                                                                                                      |            |                                              |                                                                                                                |
|                                 | Jan 22, 2019                                       |                                 |              | S19-Ja24153                       |                            |                              | X                               |                                  |                           |                           |            |                                         |                     |                                | {                                                                                                                                      |            |                                              |                                                                                                                |
| 86 BH21_1-1.1<br>87 BH22_0-0.15 | Jan 22, 2019                                       |                                 |              | S19-Ja24154                       |                            |                              | X                               |                                  |                           |                           |            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                |
|                                 | Jan 22, 2019                                       |                                 |              | S19-Ja24155                       |                            |                              | X                               |                                  |                           |                           |            |                                         |                     |                                | {                                                                                                                                      |            |                                              |                                                                                                                |
|                                 | Jan 22, 2019                                       |                                 |              | <u>S19-Ja24156</u><br>S19-Ja24157 |                            |                              | X                               |                                  |                           |                           |            |                                         |                     |                                | {                                                                                                                                      |            |                                              |                                                                                                                |
|                                 | Jan 22, 2019                                       |                                 |              | S19-Ja24157<br>S19-Ja24158        |                            |                              | X                               |                                  |                           |                           |            |                                         |                     |                                | {                                                                                                                                      |            |                                              |                                                                                                                |
| 90 BH23_1-1.1                   | Jan 22, 2019                                       | 5                               |              | 519-Ja24158                       |                            | I                            | ^                               |                                  | L                         |                           | 1          | 1                                       | I                   | 1                              | J                                                                                                                                      |            |                                              |                                                                                                                |

| 🔅 euro                              | ofins                                              | mgt                              |              |                            | ABN –<br>e.mail :<br>web : v | 50 005<br>: Enviro<br>vww.eu | 085 52<br>Sales@<br>rofins.co   | 1<br>eurofins<br>om.au           | s.com                     |                           | Melbou<br>6 Monte<br>Dander<br>Phone<br>NATA #<br>Site # 1 | erey Ro<br>nong So<br>: +61 3<br># 1261 | outh VIC<br>8564 50 |                                | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 |            |                                              | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|-------------------------------------|----------------------------------------------------|----------------------------------|--------------|----------------------------|------------------------------|------------------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Company Name:<br>Address:           | JBS & G Aus<br>Level 1, 50 N<br>Sydney<br>NSW 2000 | stralia (NSW) P/<br>⁄largaret St | L            |                            |                              | Re<br>Ph                     | rder N<br>eport<br>none:<br>ix: | #:                               |                           | 37804<br>2 824            | 1<br>5 030                                                 | 0                                       |                     |                                | Receive<br>Due:<br>Priority<br>Contact                                                                                                 | :          | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De |                                                                                                                 |
| Project Name:<br>Project ID:        | CHATSWOO<br>55579                                  | D EDUCATION                      | I PRECINCT H | IIGH SCHOOL                |                              |                              |                                 |                                  |                           |                           |                                                            |                                         |                     |                                | Eurofins   mgt A                                                                                                                       | Analytical | Services Ma                                  | nager : Nibha Vaidya                                                                                            |
|                                     | Sar                                                | mple Detail                      |              |                            | Asbestos - WA guidelines     | Asbestos Absence /Presence   | HOLD                            | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8                                                  | BTEX                                    | Moisture Set        | Total Recoverable Hydrocarbons |                                                                                                                                        |            |                                              |                                                                                                                 |
| Melbourne Laborato                  | ory - NATA Site                                    | # 1254 & 14271                   | 1            |                            |                              |                              | Х                               | Х                                | Х                         | Х                         | Х                                                          | х                                       | Х                   | Х                              | ]                                                                                                                                      |            |                                              |                                                                                                                 |
| Sydney Laboratory -                 | - NATA Site # 18                                   | 8217                             |              |                            | Х                            | Х                            |                                 |                                  |                           |                           |                                                            |                                         |                     |                                | _                                                                                                                                      |            |                                              |                                                                                                                 |
| Brisbane Laboratory                 |                                                    |                                  |              |                            |                              |                              |                                 |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
| Perth Laboratory - N                |                                                    |                                  |              |                            |                              |                              |                                 |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
| 91 BH23_1.3-1.4                     |                                                    |                                  | oil          | S19-Ja24159                |                              |                              | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
| 92 BH23_1.7-1.8                     | Jan 22, 2019                                       |                                  | ioil         | S19-Ja24160                |                              |                              | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | 4                                                                                                                                      |            |                                              |                                                                                                                 |
| 93 BH24_0.4-0.5                     | Jan 22, 2019                                       |                                  |              | S19-Ja24161                |                              |                              | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
| 94 BH24_1-1.1                       | Jan 22, 2019                                       |                                  |              | S19-Ja24162                |                              |                              | X                               |                                  |                           |                           |                                                            |                                         | <u> </u>            |                                | -                                                                                                                                      |            |                                              |                                                                                                                 |
|                                     | Jan 22, 2019                                       |                                  | ioil<br>ioil | S19-Ja24163                | +                            | -                            | X<br>X                          | +                                |                           | -                         |                                                            |                                         |                     |                                | {                                                                                                                                      |            |                                              |                                                                                                                 |
| 96 BH25_0-0.15<br>97 BH25_1.1-1.2   | Jan 22, 2019                                       |                                  |              | S19-Ja24164<br>S19-Ja24165 |                              |                              | X                               | 1                                |                           |                           |                                                            |                                         |                     |                                | {                                                                                                                                      |            |                                              |                                                                                                                 |
| 97 BH25_1.1-1.2<br>98 BH26_0-0.15   | Jan 22, 2019<br>Jan 22, 2019                       |                                  | oil          | S19-Ja24165<br>S19-Ja24166 | -                            |                              | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | {                                                                                                                                      |            |                                              |                                                                                                                 |
| 98 BH26_0-0.15<br>99 BH26_0.4-0.5   | Jan 22, 2019<br>Jan 22, 2019                       |                                  | Soil         | S19-Ja24166<br>S19-Ja24167 | +                            |                              | X                               |                                  |                           |                           |                                                            |                                         |                     |                                | 1                                                                                                                                      |            |                                              |                                                                                                                 |
| 100 BH26_1.5-1.6                    | Jan 22, 2019<br>Jan 22, 2019                       |                                  |              | S19-Ja24167<br>S19-Ja24168 |                              |                              | X                               | +                                |                           | +                         |                                                            |                                         |                     |                                | 1                                                                                                                                      |            |                                              |                                                                                                                 |
| 100 BH26_1.3-1.6<br>101 BH27_0-0.15 | Jan 22, 2019<br>Jan 25, 2019                       |                                  |              | S19-Ja24168<br>S19-Ja24169 | +                            |                              | X                               | +                                |                           | +                         |                                                            |                                         |                     |                                | 1                                                                                                                                      |            |                                              |                                                                                                                 |
| 101 BH27_0-0.15<br>102 BH27_1-1.1   | Jan 25, 2019<br>Jan 25, 2019                       |                                  | Soil         | S19-Ja24169<br>S19-Ja24170 | +                            |                              | X                               | +                                |                           |                           |                                                            |                                         |                     |                                | 1                                                                                                                                      |            |                                              |                                                                                                                 |
|                                     | Jaii 20, 2019                                      | 5                                |              | 319-Jaz4170                | 1                            |                              | ^                               | 1                                |                           |                           | I                                                          |                                         | I                   |                                | ]                                                                                                                                      |            |                                              |                                                                                                                 |

| 🔅 euro                                     | ofins                               | mgt            |                      | ABN –<br>e.mail<br>web : v | 50 005<br>: Enviro<br>www.eu | 085 52<br>Sales@<br>rofins.co   | 1<br>eurofins<br>om.au           | s.com                     |                           |             | erey Ro<br>nong So<br>: +61 3<br># 1261 | outh VIC<br>8564 5 |                                | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood P<br>Murarrie QLD 417<br>Phone : +61 7 390<br>NATA # 1261 Site | 72<br>02 4600                                | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|--------------------------------------------|-------------------------------------|----------------|----------------------|----------------------------|------------------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|-------------|-----------------------------------------|--------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Company Name:<br>Address:<br>Project Name: | Level 1, 50 N<br>Sydney<br>NSW 2000 |                | PRECINCT HIGH SCHOOL |                            | Re<br>Ph                     | rder N<br>eport<br>none:<br>ax: | #:                               | -                         | 3780<br>2 824             | 4<br>15 030 | 0                                       |                    |                                | Receive<br>Due:<br>Priority<br>Contact                                                                                                 | F<br>: 5                                                                                  | Jan 25, 2<br>Feb 4, 20<br>5 Day<br>Daniel De |                                                                                                                 |
| Project ID:                                | 55579                               |                |                      |                            |                              |                                 |                                  |                           |                           |             |                                         |                    |                                | Eurofins   mgt A                                                                                                                       | Analytical Serv                                                                           | ices Ma                                      | nager : Nibha Vaidya                                                                                            |
|                                            | Sa                                  | mple Detail    |                      | Asbestos - WA guidelines   | Asbestos Absence /Presence   | HOLD                            | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8   | BTEX                                    | Moisture Set       | Total Recoverable Hydrocarbons |                                                                                                                                        |                                                                                           |                                              |                                                                                                                 |
| Melbourne Laborator                        | ry - NATA Site                      | # 1254 & 14271 |                      |                            |                              | X                               | Х                                | Х                         | Х                         | х           | X                                       | Х                  | х                              |                                                                                                                                        |                                                                                           |                                              |                                                                                                                 |
| Sydney Laboratory -                        | NATA Site # 1                       | 8217           |                      | Х                          | Х                            |                                 |                                  |                           |                           |             |                                         |                    |                                | ]                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
| Brisbane Laboratory                        |                                     |                |                      |                            |                              |                                 |                                  |                           |                           |             |                                         |                    |                                | -                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
| Perth Laboratory - NA                      |                                     |                |                      |                            |                              |                                 |                                  |                           |                           |             |                                         |                    |                                | -                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
|                                            | Jan 25, 2019                        | So             |                      |                            | -                            | X                               |                                  |                           |                           |             |                                         |                    |                                | -                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
|                                            | Jan 22, 2019<br>Jan 22, 2019        | So<br>So       |                      | +                          |                              | X<br>X                          |                                  |                           |                           |             |                                         |                    |                                | {                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
|                                            | Jan 22, 2019<br>Jan 22, 2019        | So             |                      |                            |                              | X                               |                                  |                           |                           |             |                                         |                    |                                | 1                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
|                                            | Jan 24, 2019                        | So             |                      |                            |                              | X                               |                                  |                           |                           |             |                                         |                    |                                | 1                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
|                                            | Jan 24, 2019                        | So             |                      |                            |                              | x                               |                                  |                           |                           |             |                                         |                    |                                | 1                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
| 109 BH27_0.7-0.8 J                         | Jan 24, 2019                        | So             | il \$19-Ja24177      |                            |                              | Х                               |                                  |                           |                           |             |                                         |                    |                                | ]                                                                                                                                      |                                                                                           |                                              |                                                                                                                 |
| Test Counts                                |                                     |                |                      | 30                         | 1                            | 78                              | 30                               | 5                         | 2                         | 30          | 5                                       | 30                 | 5                              |                                                                                                                                        |                                                                                           |                                              |                                                                                                                 |



## Internal Quality Control Review and Glossary General

#### 1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

#### Units

| % w/w: weight for weight | ght basis                                                                                                                              | grams per kilogram                                                                                                                                                     |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filter loading:          |                                                                                                                                        | fibres/100 graticule areas                                                                                                                                             |
| Reported Concentration   | in:                                                                                                                                    | fibres/mL                                                                                                                                                              |
| Flowrate:                |                                                                                                                                        | L/min                                                                                                                                                                  |
| Terms                    |                                                                                                                                        |                                                                                                                                                                        |
| Dry                      | Sample is dried by heating prior to analysis                                                                                           |                                                                                                                                                                        |
| LOR                      | Limit of Reporting                                                                                                                     |                                                                                                                                                                        |
| COC                      | Chain of Custody                                                                                                                       |                                                                                                                                                                        |
| SRA                      | Sample Receipt Advice                                                                                                                  |                                                                                                                                                                        |
| ISO                      | International Standards Organisation                                                                                                   |                                                                                                                                                                        |
| AS                       | Australian Standards                                                                                                                   |                                                                                                                                                                        |
| WA DOH                   |                                                                                                                                        | ralia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated<br>Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011) |
| NEPM                     | National Environment Protection (Assessment of Site Contamination                                                                      | ion) Measure, 2013 (as amended)                                                                                                                                        |
| ACM                      | Asbestos Containing Materials. Asbestos contained within a non-a<br>NEPM, ACM is generally restricted to those materials that do not p | asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the<br>bass a 7mm x 7mm sieve.                                              |
| AF                       | Asbestos Fines. Asbestos containing materials, including friable, v<br>equivalent to "non-bonded / friable".                           | veathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as                                                                           |
| FA                       | Fibrous Asbestos. Asbestos containing materials in a friable and/o<br>materials that do not pass a 7mm x 7mm sieve.                    | or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those                                                                     |
| Friable                  | Asbestos-containing materials of any size that may be broken or o<br>outside of the laboratory's remit to assess degree of friability. | rrumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is                                                                           |
| Trace Analysis           | Analytical procedure used to detect the presence of respirable fibr                                                                    | es in the matrix.                                                                                                                                                      |



# Comments

Ja24072, Ja24083, Ja24090. Ja24093, Ja24096: Sample received was less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

## **Qualifier Codes/Comments**

Code Description N/A Not applicable

#### Asbestos Counter/Identifier:

Laxman Dias

Senior Analyst-Asbestos (NSW)

#### Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, coss, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins | mgt be liable for coss, coss, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins | mgt be liable for coss, coss, damages, net used and the standed line liable of the standed line and loss in final to the standed line and loss in final to the standed line and loss in final standed line and loss in final standed line and loss in final standed line and loss in final standed line and loss in final standed line and loss in the samples as received.



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Daniel Denaro

Report Project name Project ID Received Date 637804-S CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL 55579 Jan 25, 2019

| Client Sample ID                                  |           |       | BH01_0-0.15  | BH02A_0-0.15 | BH03_0.4-0.5 | <sup>G01</sup> BH04_0.2-<br>0.3 |
|---------------------------------------------------|-----------|-------|--------------|--------------|--------------|---------------------------------|
| Sample Matrix                                     |           |       | Soil         | Soil         | Soil         | Soil                            |
| Eurofins   mgt Sample No.                         |           |       | S19-Ja24069  | S19-Ja24070  | S19-Ja24071  | S19-Ja24072                     |
| Date Sampled                                      |           |       | Jan 21, 2019 | Jan 24, 2019 | Jan 21, 2019 | Jan 21, 2019                    |
| Test/Reference                                    | LOR       | Unit  |              |              |              |                                 |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |       |              |              |              |                                 |
| TRH C6-C9                                         | 20        | mg/kg | < 20         | -            | -            | < 40                            |
| TRH C10-C14                                       | 20        | mg/kg | < 20         | -            | -            | < 20                            |
| TRH C15-C28                                       | 50        | mg/kg | 150          | -            | -            | < 50                            |
| TRH C29-C36                                       | 50        | mg/kg | 110          | -            | -            | < 50                            |
| TRH C10-36 (Total)                                | 50        | mg/kg | 260          | -            | -            | < 50                            |
| втех                                              |           |       |              |              |              |                                 |
| Benzene                                           | 0.1       | mg/kg | < 0.1        | -            | -            | < 0.2                           |
| Toluene                                           | 0.1       | mg/kg | < 0.1        | -            | -            | < 0.2                           |
| Ethylbenzene                                      | 0.1       | mg/kg | < 0.1        | -            | -            | < 0.2                           |
| m&p-Xylenes                                       | 0.2       | mg/kg | < 0.2        | -            | -            | < 0.4                           |
| o-Xylene                                          | 0.1       | mg/kg | < 0.1        | -            | -            | < 0.2                           |
| Xylenes - Total                                   | 0.3       | mg/kg | < 0.3        | -            | -            | < 0.6                           |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | 92           | -            | -            | 76                              |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |       |              |              |              |                                 |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | < 0.5        | -            | -            | < 1                             |
| TRH C6-C10                                        | 20        | mg/kg | < 20         | -            | -            | < 40                            |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20        | mg/kg | < 20         | -            | -            | < 40                            |
| TRH >C10-C16                                      | 50        | mg/kg | < 50         | -            | -            | < 50                            |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | < 50         | -            | -            | < 50                            |
| TRH >C16-C34                                      | 100       | mg/kg | 220          | -            | -            | < 100                           |
| TRH >C34-C40                                      | 100       | mg/kg | < 100        | -            | -            | < 100                           |
| TRH >C10-C40 (total)*                             | 100       | mg/kg | 220          | -            | -            | < 100                           |
| Polycyclic Aromatic Hydrocarbons                  |           |       |              |              |              |                                 |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5       | mg/kg | 1.3          | < 0.5        | < 0.5        | < 0.5                           |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5       | mg/kg | 1.6          | 0.6          | 0.6          | 0.6                             |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5       | mg/kg | 1.8          | 1.2          | 1.2          | 1.2                             |
| Acenaphthene                                      | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                           |
| Acenaphthylene                                    | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                           |
| Anthracene                                        | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                           |
| Benz(a)anthracene                                 | 0.5       | mg/kg | 1.3          | < 0.5        | < 0.5        | < 0.5                           |
| Benzo(a)pyrene                                    | 0.5       | mg/kg | 1.0          | < 0.5        | < 0.5        | < 0.5                           |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5       | mg/kg | 0.6          | < 0.5        | < 0.5        | < 0.5                           |
| Benzo(g.h.i)perylene                              | 0.5       | mg/kg | 0.5          | < 0.5        | < 0.5        | < 0.5                           |
| Benzo(k)fluoranthene                              | 0.5       | mg/kg | 0.8          | < 0.5        | < 0.5        | < 0.5                           |
| Chrysene                                          | 0.5       | mg/kg | 1.6          | < 0.5        | < 0.5        | < 0.5                           |



| Client Sample ID                    |      |       | BH01_0-0.15  | BH02A_0-0.15 | BH03_0.4-0.5 | <sup>G01</sup> BH04_0.2-<br>0.3 |
|-------------------------------------|------|-------|--------------|--------------|--------------|---------------------------------|
| Sample Matrix                       |      |       | Soil         | Soil         | Soil         | Soil                            |
| Eurofins   mgt Sample No.           |      |       | S19-Ja24069  | S19-Ja24070  | S19-Ja24071  | S19-Ja24072                     |
| Date Sampled                        |      |       | Jan 21, 2019 | Jan 24, 2019 | Jan 21, 2019 | Jan 21, 2019                    |
| Test/Reference                      | LOR  | Unit  | ,            | ,            | ,            | ,                               |
| Polycyclic Aromatic Hydrocarbons    | Lon  | Orine |              |              |              |                                 |
| Dibenz(a.h)anthracene               | 0.5  | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                           |
| Fluoranthene                        | 0.5  | mg/kg | 2.8          | 0.8          | < 0.5        | < 0.5                           |
| Fluorene                            | 0.5  | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                           |
| Indeno(1.2.3-cd)pyrene              | 0.5  | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                           |
| Naphthalene                         | 0.5  | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                           |
| Phenanthrene                        | 0.5  | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5                           |
| Pyrene                              | 0.5  | mg/kg | 3.1          | 0.8          | < 0.5        | < 0.5                           |
| Total PAH*                          | 0.5  | mg/kg | 11.7         | 1.6          | < 0.5        | < 0.5                           |
| 2-Fluorobiphenyl (surr.)            | 1    | %     | 53           | 53           | 53           | 83                              |
| p-Terphenyl-d14 (surr.)             | 1    | %     | 65           | 92           | 71           | 63                              |
| Organochlorine Pesticides           |      |       |              |              |              |                                 |
| Chlordanes - Total                  | 0.1  | mg/kg | -            | < 0.1        | -            | -                               |
| 4.4'-DDD                            | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| 4.4'-DDE                            | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| 4.4'-DDT                            | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| a-BHC                               | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Aldrin                              | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| b-BHC                               | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| d-BHC                               | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Dieldrin                            | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Endosulfan I                        | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Endosulfan II                       | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Endosulfan sulphate                 | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Endrin                              | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Endrin aldehyde                     | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Endrin ketone                       | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| g-BHC (Lindane)                     | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Heptachlor                          | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Heptachlor epoxide                  | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Hexachlorobenzene                   | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Methoxychlor                        | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Toxaphene                           | 1    | mg/kg | -            | < 1          | -            | -                               |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | -            | < 0.05       | -            | -                               |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | -            | < 0.1        | -            | -                               |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | -            | < 0.1        | -            | -                               |
| Dibutylchlorendate (surr.)          | 1    | %     | -            | 98           | -            | -                               |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | -            | 90           | -            | -                               |
| Heavy Metals                        |      |       |              |              |              |                                 |
| Arsenic                             | 2    | mg/kg | 5.1          | 5.3          | 2.8          | 3.9                             |
| Cadmium                             | 0.4  | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4                           |
| Chromium                            | 5    | mg/kg | 8.8          | 14           | 87           | 8.7                             |
| Copper                              | 5    | mg/kg | 11           | 36           | 32           | 22                              |
| Lead                                | 5    | mg/kg | 39           | 37           | 11           | 47                              |
| Mercury                             | 0.1  | mg/kg | < 0.1<br>< 5 | < 0.1<br>5.8 | < 0.1<br>97  | < 0.1<br>8.9                    |
| NickelZinc                          | 5    | mg/kg | < 5<br>88    |              | 64           | 44                              |
|                                     | ə    | mg/kg | 00           | 71           | 04           | 44                              |
| % Moisture                          | 1    | %     | 17           | 14           | 16           | 26                              |



| Client Sample ID<br>Sample Matrix                 |          |                | BH05_1.0-1.1<br>Soil | BH06_0.4-0.5<br>Soil | BH07_0.5-0.6<br>Soil | BH08_0-0.15<br>Soil |
|---------------------------------------------------|----------|----------------|----------------------|----------------------|----------------------|---------------------|
| Eurofins   mgt Sample No.                         |          |                | S19-Ja24073          | S19-Ja24074          | S19-Ja24075          | S19-Ja24076         |
| Date Sampled                                      |          |                | Jan 21, 2019         | Jan 21, 2019         | Jan 24, 2019         | Jan 25, 2019        |
| Test/Reference                                    | LOR      | Linit          | Jan 21, 2013         | Jan 21, 2013         | Jan 24, 2013         | Jan 25, 2015        |
| Total Recoverable Hydrocarbons - 1999 NEPM Frac   | -        | Unit           |                      |                      |                      |                     |
|                                                   |          |                |                      |                      |                      | . 20                |
| TRH C6-C9                                         | 20<br>20 | mg/kg          |                      | -                    | -                    | < 20                |
| TRH C10-C14<br>TRH C15-C28                        | 50       | mg/kg          |                      |                      | -                    | < 20<br>< 50        |
| TRH C13-C28<br>TRH C29-C36                        | 50       | mg/kg          |                      | -                    | -                    | < 50                |
| TRH C10-36 (Total)                                | 50       | mg/kg<br>mg/kg |                      |                      | -                    | < 50                |
| BTEX                                              | 50       | iiig/kg        | -                    | -                    | -                    | < 30                |
|                                                   | 0.1      | mallea         |                      |                      |                      | .0.1                |
| Benzene                                           |          | mg/kg          | -                    | -                    | -                    | < 0.1               |
| Toluene                                           | 0.1      | mg/kg          | -                    | -                    | -                    | < 0.1               |
| Ethylbenzene                                      | 0.1      | mg/kg          | -                    | -                    | -                    | < 0.1               |
| m&p-Xylenes                                       | 0.2      | mg/kg          | -                    | -                    | -                    | < 0.2               |
| o-Xylene                                          | 0.1      | mg/kg          | -                    | -                    | -                    | < 0.1               |
| Xylenes - Total                                   | 0.3      | mg/kg          | -                    | -                    | -                    | < 0.3               |
| 4-Bromofluorobenzene (surr.)                      | 1        | %              | -                    | -                    | -                    | 87                  |
| Total Recoverable Hydrocarbons - 2013 NEPM Frac   |          |                |                      |                      |                      |                     |
| Naphthalene <sup>N02</sup>                        | 0.5      | mg/kg          | -                    | -                    | -                    | < 0.5               |
| TRH C6-C10                                        | 20       | mg/kg          | -                    | -                    | -                    | < 20                |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20       | mg/kg          | -                    | -                    | -                    | < 20                |
| TRH >C10-C16                                      | 50       | mg/kg          | -                    | -                    | -                    | < 50                |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50       | mg/kg          | -                    | -                    | -                    | < 50                |
| TRH >C16-C34                                      | 100      | mg/kg          | -                    | -                    | -                    | < 100               |
| TRH >C34-C40                                      | 100      | mg/kg          | -                    | -                    | -                    | < 100               |
| TRH >C10-C40 (total)*                             | 100      | mg/kg          | -                    | -                    | -                    | < 100               |
| Polycyclic Aromatic Hydrocarbons                  |          |                |                      |                      |                      |                     |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5      | mg/kg          | 0.6                  | 0.6                  | 0.6                  | 0.6                 |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5      | mg/kg          | 1.2                  | 1.2                  | 1.2                  | 1.2                 |
| Acenaphthene                                      | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Acenaphthylene                                    | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Anthracene                                        | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Benz(a)anthracene                                 | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Benzo(a)pyrene                                    | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Benzo(g.h.i)perylene                              | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Benzo(k)fluoranthene                              | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Chrysene                                          | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Dibenz(a.h)anthracene                             | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Fluoranthene                                      | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Fluorene                                          | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Indeno(1.2.3-cd)pyrene                            | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Naphthalene                                       | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Phenanthrene                                      | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Pyrene                                            | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| Total PAH*                                        | 0.5      | mg/kg          | < 0.5                | < 0.5                | < 0.5                | < 0.5               |
| 2-Fluorobiphenyl (surr.)                          | 1        | %              | 57                   | 56                   | 51                   | 50                  |
| p-Terphenyl-d14 (surr.)                           | 1        | %              | 59                   | 85                   | 77                   | 54                  |



| Client Sample ID<br>Sample Matrix<br>Eurofins   mgt Sample No.<br>Date Sampled |     |       | BH05_1.0-1.1<br>Soil<br>S19-Ja24073<br>Jan 21, 2019 | BH06_0.4-0.5<br>Soil<br>S19-Ja24074<br>Jan 21, 2019 | BH07_0.5-0.6<br>Soil<br>S19-Ja24075<br>Jan 24, 2019 | BH08_0-0.15<br>Soil<br>S19-Ja24076<br>Jan 25, 2019 |
|--------------------------------------------------------------------------------|-----|-------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Test/Reference                                                                 | LOR | Unit  |                                                     |                                                     |                                                     |                                                    |
| Heavy Metals                                                                   |     |       |                                                     |                                                     |                                                     |                                                    |
| Arsenic                                                                        | 2   | mg/kg | 6.7                                                 | 17                                                  | 11                                                  | 6.3                                                |
| Cadmium                                                                        | 0.4 | mg/kg | < 0.4                                               | < 0.4                                               | < 0.4                                               | < 0.4                                              |
| Chromium                                                                       | 5   | mg/kg | < 5                                                 | 32                                                  | 14                                                  | 15                                                 |
| Copper                                                                         | 5   | mg/kg | 18                                                  | 11                                                  | 23                                                  | 27                                                 |
| Lead                                                                           | 5   | mg/kg | 23                                                  | 60                                                  | 24                                                  | 40                                                 |
| Mercury                                                                        | 0.1 | mg/kg | < 0.1                                               | < 0.1                                               | < 0.1                                               | 0.5                                                |
| Nickel                                                                         | 5   | mg/kg | < 5                                                 | 6.6                                                 | 5.6                                                 | < 5                                                |
| Zinc                                                                           | 5   | mg/kg | < 5                                                 | 33                                                  | 27                                                  | 100                                                |
| % Moisture                                                                     | 1   | %     | 11                                                  | 19                                                  | 13                                                  | 13                                                 |

| Client Sample ID                                  |           |       | BH09_0.4-0.5 | BH10_1-1.1   | BH11_0-0.15  | BH12_0.4-0.5 |
|---------------------------------------------------|-----------|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                                     |           |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.                         |           |       | S19-Ja24077  | S19-Ja24078  | S19-Ja24079  | S19-Ja24080  |
| Date Sampled                                      |           |       | Jan 21, 2019 | Jan 21, 2019 | Jan 21, 2019 | Jan 21, 2019 |
| Test/Reference                                    | LOR       | Unit  |              |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |       |              |              |              |              |
| TRH C6-C9                                         | 20        | mg/kg | -            | < 20         | -            | -            |
| TRH C10-C14                                       | 20        | mg/kg | -            | < 20         | -            | -            |
| TRH C15-C28                                       | 50        | mg/kg | -            | < 50         | -            | -            |
| TRH C29-C36                                       | 50        | mg/kg | -            | < 50         | -            | -            |
| TRH C10-36 (Total)                                | 50        | mg/kg | -            | < 50         | -            | -            |
| втех                                              |           |       |              |              |              |              |
| Benzene                                           | 0.1       | mg/kg | -            | < 0.1        | -            | -            |
| Toluene                                           | 0.1       | mg/kg | -            | < 0.1        | -            | -            |
| Ethylbenzene                                      | 0.1       | mg/kg | -            | < 0.1        | -            | -            |
| m&p-Xylenes                                       | 0.2       | mg/kg | -            | < 0.2        | -            | -            |
| o-Xylene                                          | 0.1       | mg/kg | -            | < 0.1        | -            | -            |
| Xylenes - Total                                   | 0.3       | mg/kg | -            | < 0.3        | -            | -            |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | -            | 92           | -            | -            |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions | _     |              |              |              |              |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | -            | < 0.5        | -            | -            |
| TRH C6-C10                                        | 20        | mg/kg | -            | < 20         | -            | -            |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20        | mg/kg | -            | < 20         | -            | -            |
| TRH >C10-C16                                      | 50        | mg/kg | -            | < 50         | -            | -            |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | -            | < 50         | -            | -            |
| TRH >C16-C34                                      | 100       | mg/kg | -            | < 100        | -            | -            |
| TRH >C34-C40                                      | 100       | mg/kg | -            | < 100        | -            | -            |
| TRH >C10-C40 (total)*                             | 100       | mg/kg | -            | < 100        | -            | -            |
| Polycyclic Aromatic Hydrocarbons                  |           |       |              |              |              |              |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5       | mg/kg | 0.6          | 0.6          | 0.6          | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5       | mg/kg | 1.2          | 1.2          | 1.2          | 1.2          |
| Acenaphthene                                      | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Acenaphthylene                                    | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Anthracene                                        | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benz(a)anthracene                                 | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                                    | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |



| Client Sample ID<br>Sample Matrix     |      |                | BH09_0.4-0.5<br>Soil | BH10_1-1.1<br>Soil | BH11_0-0.15<br>Soil | BH12_0.4-0.5<br>Soil |
|---------------------------------------|------|----------------|----------------------|--------------------|---------------------|----------------------|
| Eurofins   mgt Sample No.             |      |                | S19-Ja24077          | S19-Ja24078        | S19-Ja24079         | S19-Ja24080          |
| Date Sampled                          |      |                | Jan 21, 2019         | Jan 21, 2019       | Jan 21, 2019        | Jan 21, 2019         |
| •                                     |      | 11.21          | Jan 21, 2019         | Jan 21, 2019       | Jan 21, 2019        | Jan 21, 2019         |
| Test/Reference                        | LOR  | Unit           |                      |                    |                     |                      |
| Polycyclic Aromatic Hydrocarbons      | 0.5  |                | 0.5                  | 0.5                | 0.5                 | 0.5                  |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5  | mg/kg          | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Benzo(g.h.i)perylene                  | 0.5  | mg/kg          | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Benzo(k)fluoranthene                  | 0.5  | mg/kg          | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Chrysene                              | 0.5  | mg/kg          | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Dibenz(a.h)anthracene<br>Fluoranthene | 0.5  | mg/kg          | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
|                                       | 0.5  | mg/kg          | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Fluorene                              | 0.5  | mg/kg          | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Indeno(1.2.3-cd)pyrene                | 0.5  | mg/kg          | < 0.5<br>< 0.5       | < 0.5              | < 0.5               | < 0.5                |
| Naphthalene                           | 0.5  | mg/kg          | < 0.5                |                    |                     |                      |
| Phenanthrene Pyrene                   | 0.5  | mg/kg<br>mg/kg | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| Pyrene<br>Total PAH*                  | 0.5  | mg/kg          | < 0.5                | < 0.5              | < 0.5               | < 0.5                |
| 2-Fluorobiphenyl (surr.)              | 0.5  | mg/кg%         | < 0.5<br>84          | < 0.5              | < 0.5               | < 0.5<br>95          |
| p-Terphenyl-d14 (surr.)               | 1    | %              | 72                   | 95                 | 66                  | 110                  |
| Organochlorine Pesticides             |      | /0             | 12                   | 90                 | 00                  |                      |
| Chlordanes - Total                    | 0.1  | ma/ka          | < 0.1                |                    |                     |                      |
| 4.4'-DDD                              | 0.05 | mg/kg<br>mg/kg | < 0.1                | -                  | -                   |                      |
| 4.4-DDD<br>4.4'-DDE                   | 0.05 |                | < 0.05               |                    | -                   | -                    |
| 4.4'-DDE<br>4.4'-DDT                  | 0.05 | mg/kg          | < 0.05               |                    | -                   |                      |
| a-BHC                                 | 0.05 | mg/kg<br>mg/kg | < 0.05               |                    | -                   | -                    |
| Aldrin                                | 0.05 | mg/kg          | < 0.05               | _                  | -                   | -                    |
| b-BHC                                 | 0.05 | mg/kg          | < 0.05               | _                  | -                   | -                    |
| d-BHC                                 | 0.05 | mg/kg          | < 0.05               | _                  | -                   | -                    |
| Dieldrin                              | 0.05 | mg/kg          | < 0.05               |                    |                     | -                    |
| Endosulfan I                          | 0.05 | mg/kg          | < 0.05               | _                  |                     | -                    |
| Endosulfan II                         | 0.05 | mg/kg          | < 0.05               | _                  | _                   | _                    |
| Endosulfan sulphate                   | 0.05 | mg/kg          | < 0.05               | _                  | _                   | _                    |
| Endrin                                | 0.05 | mg/kg          | < 0.05               | _                  | _                   | _                    |
| Endrin aldehyde                       | 0.05 | mg/kg          | < 0.05               | _                  | _                   |                      |
| Endrin ketone                         | 0.05 | mg/kg          | < 0.05               | _                  | _                   |                      |
| g-BHC (Lindane)                       | 0.05 | mg/kg          | < 0.05               | -                  | -                   | -                    |
| Heptachlor                            | 0.05 | mg/kg          | < 0.05               | -                  | -                   | -                    |
| Heptachlor epoxide                    | 0.05 | mg/kg          | < 0.05               | -                  | -                   | -                    |
| Hexachlorobenzene                     | 0.05 | mg/kg          | < 0.05               | -                  | -                   | -                    |
| Methoxychlor                          | 0.05 | mg/kg          | < 0.05               | -                  | -                   | -                    |
| Toxaphene                             | 1    | mg/kg          | < 1                  | -                  | -                   | -                    |
| Aldrin and Dieldrin (Total)*          | 0.05 | mg/kg          | < 0.05               | -                  | -                   | -                    |
| DDT + DDE + DDD (Total)*              | 0.05 | mg/kg          | < 0.05               | -                  | -                   | -                    |
| Vic EPA IWRG 621 OCP (Total)*         | 0.1  | mg/kg          | < 0.1                | -                  | -                   | -                    |
| Vic EPA IWRG 621 Other OCP (Total)*   | 0.1  | mg/kg          | < 0.1                | -                  | -                   | -                    |
| Dibutylchlorendate (surr.)            | 1    | %              | 119                  | -                  | -                   | -                    |
| Tetrachloro-m-xylene (surr.)          | 1    | %              | 109                  | -                  | -                   | -                    |
| Heavy Metals                          |      | ·              |                      |                    |                     |                      |
| Arsenic                               | 2    | mg/kg          | 7.0                  | 13                 | 5.0                 | 9.2                  |
| Cadmium                               | 0.4  | mg/kg          | < 0.4                | 1.0                | < 0.4               | < 0.4                |
| Chromium                              | 5    | mg/kg          | 12                   | 16                 | 12                  | 15                   |
| Copper                                | 5    | mg/kg          | 14                   | 26                 | 18                  | 22                   |
| Lead                                  | 5    | mg/kg          | 27                   | 110                | 49                  | 24                   |
| Mercury                               | 0.1  | mg/kg          | < 0.1                | < 0.1              | < 0.1               | < 0.1                |



| Client Sample ID<br>Sample Matrix |     |       | BH09_0.4-0.5<br>Soil | BH10_1-1.1<br>Soil | BH11_0-0.15<br>Soil | BH12_0.4-0.5<br>Soil |
|-----------------------------------|-----|-------|----------------------|--------------------|---------------------|----------------------|
| Eurofins   mgt Sample No.         |     |       | S19-Ja24077          | S19-Ja24078        | S19-Ja24079         | S19-Ja24080          |
| Date Sampled                      |     |       | Jan 21, 2019         | Jan 21, 2019       | Jan 21, 2019        | Jan 21, 2019         |
| Test/Reference                    | LOR | Unit  |                      |                    |                     |                      |
| Heavy Metals                      |     |       |                      |                    |                     |                      |
| Nickel                            | 5   | mg/kg | 6.8                  | 7.9                | 12                  | 10                   |
| Zinc                              | 5   | mg/kg | 38                   | 690                | 150                 | 77                   |
|                                   |     |       |                      |                    |                     |                      |
| % Moisture                        | 1   | %     | 14                   | 13                 | 18                  | 14                   |

| Client Sample ID                      |      |        | BH13_0.7-0.8  | BH14_0-0.15   | BH15_0-0.15   | BH16_0.4-0.5  |
|---------------------------------------|------|--------|---------------|---------------|---------------|---------------|
| Sample Matrix                         |      |        | Soil          | Soil          | Soil          | Soil          |
| Eurofins   mgt Sample No.             |      |        | S19-Ja24081   | S19-Ja24082   | S19-Ja24083   | S19-Ja24084   |
| Date Sampled                          |      |        | Jan 25, 2019  | Jan 25, 2019  | Jan 21, 2019  | Jan 22, 2019  |
| Test/Reference                        | LOR  | Unit   | 0000 20, 2010 | 0411 20, 2010 | 0411 21, 2010 | 0411 22, 2010 |
| Polycyclic Aromatic Hydrocarbons      | LOK  | Unit   |               |               |               |               |
|                                       | 0.5  | mallea | :05           | :05           | - 0 F         | - 0 F         |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Benzo(a)pyrene TEQ (medium bound) *   | 0.5  | mg/kg  | 0.6           | 0.6           | 0.6           | 0.6           |
| Benzo(a)pyrene TEQ (upper bound) *    | 0.5  | mg/kg  | 1.2           | 1.2           | 1.2           | 1.2           |
| Acenaphthene                          | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Acenaphthylene                        | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Anthracene                            | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Benz(a)anthracene                     | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
|                                       | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Benzo(g.h.i)perylene                  | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Benzo(k)fluoranthene                  | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Chrysene                              | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Dibenz(a.h)anthracene                 | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Fluoranthene                          | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Fluorene                              | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Indeno(1.2.3-cd)pyrene                | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Naphthalene                           | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Phenanthrene                          | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Pyrene                                | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Total PAH*                            | 0.5  | mg/kg  | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| 2-Fluorobiphenyl (surr.)              | 1    | %      | 61            | 64            | 107           | 78            |
| p-Terphenyl-d14 (surr.)               | 1    | %      | 60            | 91            | 90            | 54            |
| Organochlorine Pesticides             |      |        |               |               |               |               |
| Chlordanes - Total                    | 0.1  | mg/kg  | -             | -             | -             | < 0.1         |
| 4.4'-DDD                              | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| 4.4'-DDE                              | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| 4.4'-DDT                              | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| a-BHC                                 | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| Aldrin                                | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| b-BHC                                 | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| d-BHC                                 | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| Dieldrin                              | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| Endosulfan I                          | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| Endosulfan II                         | 0.05 | mg/kg  | -             | -             | -             | < 0.05        |
| Endosulfan sulphate                   | 0.05 | mg/kg  | _             | -             | -             | < 0.05        |
| Endrin                                | 0.05 | mg/kg  | _             | -             | -             | < 0.05        |
| Endrin aldehyde                       | 0.05 | mg/kg  | _             | -             | -             | < 0.05        |



| Client Sample ID                    |      |       | BH13_0.7-0.8 | BH14_0-0.15  | BH15_0-0.15  | BH16_0.4-0.5 |
|-------------------------------------|------|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                       |      |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.           |      |       | S19-Ja24081  | S19-Ja24082  | S19-Ja24083  | S19-Ja24084  |
| Date Sampled                        |      |       | Jan 25, 2019 | Jan 25, 2019 | Jan 21, 2019 | Jan 22, 2019 |
| Test/Reference                      | LOR  | Unit  |              |              |              |              |
| Organochlorine Pesticides           |      |       |              |              |              |              |
| Endrin ketone                       | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| g-BHC (Lindane)                     | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Heptachlor                          | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Heptachlor epoxide                  | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Hexachlorobenzene                   | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Methoxychlor                        | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Toxaphene                           | 1    | mg/kg | -            | -            | -            | < 1          |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | -            | -            | -            | < 0.05       |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | -            | -            | -            | < 0.1        |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | -            | -            | -            | < 0.1        |
| Dibutylchlorendate (surr.)          | 1    | %     | -            | -            | -            | 96           |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | -            | -            | -            | 110          |
| Polychlorinated Biphenyls           |      |       |              |              |              |              |
| Aroclor-1016                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1221                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1232                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1242                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1248                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1254                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Aroclor-1260                        | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Total PCB*                          | 0.1  | mg/kg | -            | -            | < 0.1        | -            |
| Dibutylchlorendate (surr.)          | 1    | %     | -            | -            | 81           | -            |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | -            | -            | 90           | -            |
| Heavy Metals                        |      |       |              |              |              |              |
| Arsenic                             | 2    | mg/kg | 5.7          | 6.9          | 2.9          | 6.6          |
| Cadmium                             | 0.4  | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4        |
| Chromium                            | 5    | mg/kg | 14           | 17           | 10           | 11           |
| Copper                              | 5    | mg/kg | 17           | 21           | 18           | 26           |
| Lead                                | 5    | mg/kg | 17           | 43           | 22           | 37           |
| Mercury                             | 0.1  | mg/kg | < 0.1        | 0.1          | < 0.1        | < 0.1        |
| Nickel                              | 5    | mg/kg | 6.7          | 9.7          | 6.1          | 5.8          |
| Zinc                                | 5    | mg/kg | 22           | 70           | 61           | 43           |
|                                     | · ·  |       |              |              |              |              |
| % Moisture                          | 1    | %     | 17           | 16           | 32           | 10           |

| Client Sample ID<br>Sample Matrix<br>Eurofins   mgt Sample No. |      |       | BH17_0.4-0.5<br>Soil<br>S19-Ja24085 | BH18_0.7-0.8<br>Soil<br>S19-Ja24086 | BH19_0.4-0.5<br>Soil<br>S19-Ja24087 | BH20_1-1.1<br>Soil<br>S19-Ja24088 |
|----------------------------------------------------------------|------|-------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|
| Date Sampled                                                   | 1.05 |       | Jan 22, 2019                        | Jan 22, 2019                        | Jan 22, 2019                        | Jan 22, 2019                      |
| Test/Reference Polycyclic Aromatic Hydrocarbons                | LOR  | Unit  |                                     |                                     |                                     |                                   |
| Benzo(a)pyrene TEQ (lower bound) *                             | 0.5  | mg/kg | < 0.5                               | < 0.5                               | < 0.5                               | < 0.5                             |
| Benzo(a)pyrene TEQ (medium bound) *                            | 0.5  | mg/kg | 0.6                                 | 0.6                                 | 0.6                                 | 0.6                               |
| Benzo(a)pyrene TEQ (upper bound) *                             | 0.5  | mg/kg | 1.2                                 | 1.2                                 | 1.2                                 | 1.2                               |
| Acenaphthene                                                   | 0.5  | mg/kg | < 0.5                               | < 0.5                               | < 0.5                               | < 0.5                             |
| Acenaphthylene                                                 | 0.5  | mg/kg | < 0.5                               | < 0.5                               | < 0.5                               | < 0.5                             |
| Anthracene                                                     | 0.5  | mg/kg | < 0.5                               | < 0.5                               | < 0.5                               | < 0.5                             |



| Client Sample ID                      |     |       | BH17_0.4-0.5 | BH18_0.7-0.8 | BH19_0.4-0.5 | BH20_1-1.1   |
|---------------------------------------|-----|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                         |     |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.             |     |       | S19-Ja24085  | S19-Ja24086  | S19-Ja24087  | S19-Ja24088  |
| Date Sampled                          |     |       | Jan 22, 2019 | Jan 22, 2019 | Jan 22, 2019 | Jan 22, 2019 |
| Test/Reference                        | LOR | Unit  |              |              |              |              |
| Polycyclic Aromatic Hydrocarbons      | •   |       |              |              |              |              |
| Benz(a)anthracene                     | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                        | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                  | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                  | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Chrysene                              | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                 | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Fluoranthene                          | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Fluorene                              | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Naphthalene                           | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Phenanthrene                          | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Pyrene                                | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Total PAH*                            | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| 2-Fluorobiphenyl (surr.)              | 1   | %     | 118          | 101          | 111          | 140          |
| p-Terphenyl-d14 (surr.)               | 1   | %     | 137          | 93           | 117          | 109          |
| Heavy Metals                          |     |       |              |              |              |              |
| Arsenic                               | 2   | mg/kg | 4.6          | 4.8          | 2.1          | 15           |
| Cadmium                               | 0.4 | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4        |
| Chromium                              | 5   | mg/kg | 42           | 47           | 12           | 20           |
| Copper                                | 5   | mg/kg | 12           | 17           | 10           | 14           |
| Lead                                  | 5   | mg/kg | 60           | 29           | 14           | 30           |
| Mercury                               | 0.1 | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1        |
| Nickel                                | 5   | mg/kg | < 5          | 41           | 11           | < 5          |
| Zinc                                  | 5   | mg/kg | 28           | 52           | 49           | 13           |
|                                       |     |       |              |              |              |              |
| % Moisture                            | 1   | %     | 23           | 17           | 17           | 31           |

| Client Sample ID<br>Sample Matrix                |      |       | BH21_0-0.15<br>Soil | BH22_1-1.1<br>Soil | BH23_0.4-0.5<br>Soil | BH24_0-0.15<br>Soil |
|--------------------------------------------------|------|-------|---------------------|--------------------|----------------------|---------------------|
| Eurofins   mgt Sample No.                        |      |       | S19-Ja24089         | S19-Ja24090        | S19-Ja24091          | S19-Ja24092         |
| Date Sampled                                     |      |       | Jan 22, 2019        | Jan 22, 2019       | Jan 22, 2019         | Jan 22, 2019        |
| Test/Reference                                   | LOR  | Unit  |                     |                    |                      |                     |
| Total Recoverable Hydrocarbons - 1999 NEPM Fract | ions |       |                     |                    |                      |                     |
| TRH C6-C9                                        | 20   | mg/kg | -                   | -                  | -                    | < 20                |
| TRH C10-C14                                      | 20   | mg/kg | -                   | -                  | -                    | < 20                |
| TRH C15-C28                                      | 50   | mg/kg | -                   | -                  | -                    | < 50                |
| TRH C29-C36                                      | 50   | mg/kg | -                   | -                  | -                    | 130                 |
| TRH C10-36 (Total)                               | 50   | mg/kg | -                   | -                  | -                    | 130                 |
| втех                                             |      |       |                     |                    |                      |                     |
| Benzene                                          | 0.1  | mg/kg | -                   | -                  | -                    | < 0.1               |
| Toluene                                          | 0.1  | mg/kg | -                   | -                  | -                    | < 0.1               |
| Ethylbenzene                                     | 0.1  | mg/kg | -                   | -                  | -                    | < 0.1               |
| m&p-Xylenes                                      | 0.2  | mg/kg | -                   | -                  | -                    | < 0.2               |
| o-Xylene                                         | 0.1  | mg/kg | -                   | -                  | -                    | < 0.1               |
| Xylenes - Total                                  | 0.3  | mg/kg | -                   | -                  | -                    | < 0.3               |
| 4-Bromofluorobenzene (surr.)                     | 1    | %     | -                   | -                  | -                    | 75                  |



| Client Sample ID<br>Sample Matrix                 |      |                | BH21_0-0.15<br>Soil | BH22_1-1.1<br>Soil    | BH23_0.4-0.5<br>Soil | BH24_0-0.15<br>Soil |
|---------------------------------------------------|------|----------------|---------------------|-----------------------|----------------------|---------------------|
| Eurofins   mgt Sample No.                         |      |                | S19-Ja24089         | S19-Ja24090           | S19-Ja24091          | S19-Ja24092         |
| Date Sampled                                      |      |                | Jan 22, 2019        | Jan 22, 2019          | Jan 22, 2019         | Jan 22, 2019        |
| Test/Reference                                    | LOR  | Unit           | 0uii 22, 2010       | 0411 <u>22</u> , 2010 | our 22, 2010         | jouri 22, 2010      |
| Total Recoverable Hydrocarbons - 2013 NEPM Fi     | -    | Unit           |                     |                       |                      |                     |
| Naphthalene <sup>N02</sup>                        | 0.5  | mg/kg          | -                   |                       |                      | < 0.5               |
| TRH C6-C10                                        | 20   | mg/kg          | -                   | -                     | -                    | < 20                |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20   | mg/kg          | -                   | -                     | -                    | < 20                |
| TRH >C10-C16                                      | 50   | mg/kg          | -                   | -                     | -                    | < 50                |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50   | mg/kg          | -                   | -                     | -                    | < 50                |
| TRH >C16-C34                                      | 100  | mg/kg          | -                   | -                     | -                    | 120                 |
| TRH >C34-C40                                      | 100  | mg/kg          | -                   | -                     | -                    | 130                 |
| TRH >C10-C40 (total)*                             | 100  | mg/kg          | -                   | -                     | -                    | 250                 |
| Polycyclic Aromatic Hydrocarbons                  |      |                |                     |                       |                      |                     |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5  | mg/kg          | 0.6                 | 0.6                   | 0.6                  | 0.6                 |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5  | mg/kg          | 1.2                 | 1.2                   | 1.2                  | 1.2                 |
| Acenaphthene                                      | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Acenaphthylene                                    | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Anthracene                                        | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Benz(a)anthracene                                 | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Benzo(a)pyrene                                    | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Benzo(b&j)fluoranthene <sup>№7</sup>              | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Benzo(g.h.i)perylene                              | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Benzo(k)fluoranthene                              | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Chrysene                                          | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Dibenz(a.h)anthracene                             | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Fluoranthene                                      | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Fluorene                                          | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Indeno(1.2.3-cd)pyrene                            | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Naphthalene                                       | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Phenanthrene                                      | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Pyrene                                            | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| Total PAH*                                        | 0.5  | mg/kg          | < 0.5               | < 0.5                 | < 0.5                | < 0.5               |
| 2-Fluorobiphenyl (surr.)                          | 1    | %              | 73                  | 53                    | 68                   | 76                  |
| p-Terphenyl-d14 (surr.)                           | 1    | %              | 63                  | 93                    | 77                   | 88                  |
| Organochlorine Pesticides                         |      | 1              |                     |                       |                      | -                   |
| Chlordanes - Total                                | 0.1  | mg/kg          | < 0.1               | -                     | -                    | -                   |
| 4.4'-DDD                                          | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| 4.4'-DDE                                          | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| 4.4'-DDT                                          | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| a-BHC                                             | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| Aldrin                                            | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| b-BHC                                             | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| d-BHC                                             | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| Dieldrin<br>Endesulfen I                          | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| Endosulfan I<br>Endosulfan II                     | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| Endosulfan sulphate                               | 0.05 | mg/kg<br>mg/kg | < 0.05              | -                     | -                    | -                   |
| Endosulian suphate                                | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| Endrin aldehyde                                   | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| Endrin ketone                                     | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| g-BHC (Lindane)                                   | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |
| Heptachlor                                        | 0.05 | mg/kg          | < 0.05              | -                     | -                    | -                   |



| Client Sample ID                    |      |       | BH21_0-0.15  | BH22_1-1.1   | BH23_0.4-0.5 | BH24_0-0.15  |  |
|-------------------------------------|------|-------|--------------|--------------|--------------|--------------|--|
| Sample Matrix                       |      |       | Soil         | Soil         | Soil         | Soil         |  |
| Eurofins   mgt Sample No.           |      |       | S19-Ja24089  | S19-Ja24090  | S19-Ja24091  | S19-Ja24092  |  |
| Date Sampled                        |      |       | Jan 22, 2019 | Jan 22, 2019 | Jan 22, 2019 | Jan 22, 2019 |  |
| Test/Reference                      | LOR  | Unit  |              |              |              |              |  |
| Organochlorine Pesticides           |      |       |              |              |              |              |  |
| Heptachlor epoxide                  | 0.05 | mg/kg | < 0.05       | -            | -            | -            |  |
| Hexachlorobenzene                   | 0.05 | mg/kg | < 0.05       | -            | -            | -            |  |
| Methoxychlor                        | 0.05 | mg/kg | < 0.05       | -            | -            | -            |  |
| Toxaphene                           | 1    | mg/kg | < 1          | -            | -            | -            |  |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | < 0.05       | -            | -            | -            |  |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | < 0.05       | -            | -            | -            |  |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | < 0.1        | -            | -            | -            |  |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | < 0.1        | -            | -            | -            |  |
| Dibutylchlorendate (surr.)          | 1    | %     | 83           | -            | -            | -            |  |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | 88           | -            | -            | -            |  |
| Heavy Metals                        |      |       |              |              |              |              |  |
| Arsenic                             | 2    | mg/kg | 6.2          | 15           | 12           | 2.6          |  |
| Cadmium                             | 0.4  | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4        |  |
| Chromium                            | 5    | mg/kg | 17           | 24           | 16           | 12           |  |
| Copper                              | 5    | mg/kg | 33           | 16           | 10           | 16           |  |
| Lead                                | 5    | mg/kg | 63           | 24           | 28           | 25           |  |
| Mercury                             | 0.1  | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| Nickel                              | 5    | mg/kg | 9.6          | < 5          | < 5          | 7.5          |  |
| Zinc                                | 5    | mg/kg | 160          | 23           | < 5          | 55           |  |
|                                     |      |       |              |              |              |              |  |
| % Moisture                          | 1    | %     | 10           | 20           | 16           | 16           |  |

| Client Sample ID                      |     |       | BH25_0.5-0.6 | BH26_1-1.1   | BH27_0.4-0.5 | BH28_1-1.1   |
|---------------------------------------|-----|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                         |     |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.             |     |       | S19-Ja24093  | S19-Ja24094  | S19-Ja24095  | S19-Ja24096  |
| Date Sampled                          |     |       | Jan 22, 2019 | Jan 22, 2019 | Jan 25, 2019 | Jan 22, 2019 |
| Test/Reference                        | LOR | Unit  |              |              |              |              |
| Polycyclic Aromatic Hydrocarbons      |     |       |              |              |              |              |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *   | 0.5 | mg/kg | 0.6          | 0.6          | 0.6          | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *    | 0.5 | mg/kg | 1.2          | 1.2          | 1.2          | 1.2          |
| Acenaphthene                          | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Acenaphthylene                        | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Anthracene                            | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benz(a)anthracene                     | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                        | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                  | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                  | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Chrysene                              | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                 | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Fluoranthene                          | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Fluorene                              | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Naphthalene                           | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Phenanthrene                          | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Pyrene                                | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Total PAH*                            | 0.5 | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |



| Client Sample ID                    |      |       | BH25_0.5-0.6 | BH26_1-1.1   | BH27_0.4-0.5 | BH28_1-1.1                          |  |
|-------------------------------------|------|-------|--------------|--------------|--------------|-------------------------------------|--|
| Sample Matrix                       |      |       | Soil         | Soil         | Soil         | Soil<br>S19-Ja24096<br>Jan 22, 2019 |  |
| Eurofins   mgt Sample No.           |      |       | S19-Ja24093  | S19-Ja24094  | S19-Ja24095  |                                     |  |
| Date Sampled                        |      |       | Jan 22, 2019 | Jan 22, 2019 | Jan 25, 2019 |                                     |  |
| Test/Reference                      | LOR  | Unit  |              |              |              |                                     |  |
| Polycyclic Aromatic Hydrocarbons    |      | 0     |              |              |              |                                     |  |
| 2-Fluorobiphenyl (surr.)            | 1    | %     | 74           | 71           | 51           | 51                                  |  |
| p-Terphenyl-d14 (surr.)             | 1    | %     | 69           | 87           | 54           | 76                                  |  |
| Organochlorine Pesticides           |      | 70    |              | 0.           |              |                                     |  |
| Chlordanes - Total                  | 0.1  | mg/kg | < 0.1        | _            | _            | _                                   |  |
| 4.4'-DDD                            | 0.05 | mg/kg | < 0.05       | _            | _            | _                                   |  |
| 4.4'-DDE                            | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| 4.4'-DDT                            | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| a-BHC                               | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Aldrin                              | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| b-BHC                               | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| d-BHC                               | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Dieldrin                            | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Endosulfan I                        | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Endosulfan II                       | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Endosulfan sulphate                 | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Endrin                              | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Endrin aldehyde                     | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Endrin ketone                       | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| g-BHC (Lindane)                     | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Heptachlor                          | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Heptachlor epoxide                  | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Hexachlorobenzene                   | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Methoxychlor                        | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Toxaphene                           | 1    | mg/kg | < 1          | -            | -            | -                                   |  |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | < 0.05       | -            | -            | -                                   |  |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | < 0.1        | -            | -            | -                                   |  |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | < 0.1        | -            | -            | -                                   |  |
| Dibutylchlorendate (surr.)          | 1    | %     | 100          | -            | -            | -                                   |  |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | 91           | -            | -            | -                                   |  |
| Heavy Metals                        |      |       |              |              |              |                                     |  |
| Arsenic                             | 2    | mg/kg | 14           | 10           | 7.1          | 7.5                                 |  |
| Cadmium                             | 0.4  | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4                               |  |
| Chromium                            | 5    | mg/kg | 27           | 17           | 16           | 14                                  |  |
| Copper                              | 5    | mg/kg | 14           | 18           | 20           | 10                                  |  |
| Lead                                | 5    | mg/kg | 26           | 44           | 47           | 22                                  |  |
| Mercury                             | 0.1  | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1                               |  |
| Nickel                              | 5    | mg/kg | 7.1          | < 5          | 5.2          | < 5                                 |  |
| Zinc                                | 5    | mg/kg | 15           | 21           | 60           | 5.2                                 |  |
| % Moisture                          | 1    | %     | 20           | 27           | 12           | 18                                  |  |



| Client Sample ID                      |     |          | BH29_0-0.15  | BH30_0-0.15   |
|---------------------------------------|-----|----------|--------------|---------------|
| Sample Matrix                         |     |          | Soil         | Soil          |
| Eurofins   mgt Sample No.             |     |          | S19-Ja24097  | S19-Ja24098   |
| Date Sampled                          |     |          | Jan 24, 2019 | Jan 24, 2019  |
| · ·                                   |     | 1.1.4.14 | Jan 24, 2019 | Jall 24, 2019 |
| Test/Reference                        | LOR | Unit     |              |               |
| Polycyclic Aromatic Hydrocarbons      |     |          |              |               |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Benzo(a)pyrene TEQ (medium bound) *   | 0.5 | mg/kg    | 0.6          | 0.6           |
| Benzo(a)pyrene TEQ (upper bound) *    | 0.5 | mg/kg    | 1.2          | 1.2           |
| Acenaphthene                          | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Acenaphthylene                        | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Anthracene                            | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Benz(a)anthracene                     | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Benzo(a)pyrene                        | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Benzo(g.h.i)perylene                  | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Benzo(k)fluoranthene                  | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Chrysene                              | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Dibenz(a.h)anthracene                 | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Fluoranthene                          | 0.5 | mg/kg    | < 0.5        | < 0.5         |
|                                       | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Indeno(1.2.3-cd)pyrene                | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Naphthalene                           | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Phenanthrene                          | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Pyrene                                | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| Total PAH*                            | 0.5 | mg/kg    | < 0.5        | < 0.5         |
| 2-Fluorobiphenyl (surr.)              | 1   | %        | 107          | 63            |
| p-Terphenyl-d14 (surr.)               | 1   | %        | 98           | 87            |
| Polychlorinated Biphenyls             |     |          |              |               |
| Aroclor-1016                          | 0.1 | mg/kg    | < 0.1        | -             |
| Aroclor-1221                          | 0.1 | mg/kg    | < 0.1        | -             |
| Aroclor-1232                          | 0.1 | mg/kg    | < 0.1        | -             |
| Aroclor-1242                          | 0.1 | mg/kg    | < 0.1        | -             |
| Aroclor-1248                          | 0.1 | mg/kg    | < 0.1        | -             |
| Aroclor-1254                          | 0.1 | mg/kg    | < 0.1        | -             |
| Aroclor-1260                          | 0.1 | mg/kg    | < 0.1        | -             |
| Total PCB*                            | 0.1 | mg/kg    | < 0.1        | -             |
| Dibutylchlorendate (surr.)            | 1   | %        | 129          | -             |
| Tetrachloro-m-xylene (surr.)          | 1   | %        | 77           | -             |
| Heavy Metals                          |     |          |              |               |
| Arsenic                               | 2   | mg/kg    | 4.5          | 8.4           |
| Cadmium                               | 0.4 | mg/kg    | < 0.4        | < 0.4         |
| Chromium                              | 5   | mg/kg    | 42           | 12            |
| Copper                                | 5   | mg/kg    | 23           | 19            |
| Lead                                  | 5   | mg/kg    | 26           | 69            |
| Mercury                               | 0.1 | mg/kg    | < 0.1        | < 0.1         |
| Nickel                                | 5   | mg/kg    | 44           | < 5           |
| Zinc                                  | 5   | mg/kg    | 41           | 51            |
|                                       |     |          |              |               |
| % Moisture                            | 1   | %        | 9.7          | 16            |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                            | Testing Site | Extracted    | Holding Time |
|------------------------------------------------------------------------|--------------|--------------|--------------|
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                   | Melbourne    | Jan 31, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Jan 31, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne    | Jan 31, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |              |              |              |
| BTEX                                                                   | Melbourne    | Jan 31, 2019 | 14 Day       |
| - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                       | Melbourne    | Jan 31, 2019 | 14 Day       |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water               |              |              |              |
| Organochlorine Pesticides                                              | Melbourne    | Jan 31, 2019 | 14 Day       |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |              |
| Polychlorinated Biphenyls                                              | Melbourne    | Jan 31, 2019 | 28 Days      |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |              |              |              |
| Metals M8                                                              | Melbourne    | Jan 31, 2019 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS   |              |              |              |
| % Moisture                                                             | Melbourne    | Jan 29, 2019 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                                        |              |              |              |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Ad<br>Pr | Company Name:<br>Address:JBS & G Australia (NSW) P/L<br>Level 1, 50 Margaret St<br>Sydney<br> |              |                  |        |             | Order No.:<br>Report #: 637804<br>Phone: 02 8245 0300<br>Fax: |                            |      |                                  |                           |                           |           |      |              | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |                                                           |
|----------|-----------------------------------------------------------------------------------------------|--------------|------------------|--------|-------------|---------------------------------------------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|
|          | Sample Detail<br>Melbourne Laboratory - NATA Site # 1254 & 14271                              |              |                  |        |             | Asbestos - WA guidelines                                      | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | BTEX | Moisture Set | Total Recoverable Hydrocarbons                                                       | Eurofins   mgt Analytical Services Manager : Nibha Vaidya |
|          |                                                                                               |              |                  | 71     |             |                                                               |                            | X    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                                                                                    | -                                                         |
|          | ney Laboratory                                                                                |              |                  |        |             | Х                                                             | Х                          |      |                                  |                           |                           |           |      |              |                                                                                      |                                                           |
|          | bane Laboratory                                                                               |              |                  |        |             |                                                               | <u> </u>                   |      |                                  |                           |                           |           |      |              |                                                                                      | -                                                         |
|          | h Laboratory - N<br>rnal Laboratory                                                           |              | 50               |        |             |                                                               | <u> </u>                   |      | <u> </u>                         |                           |                           |           |      |              |                                                                                      |                                                           |
| No       | Sample ID                                                                                     | Sample Date  | Sampling<br>Time | Matrix | LAB ID      |                                                               |                            |      |                                  |                           |                           |           |      |              |                                                                                      |                                                           |
| 1        | BH01_0-0.15                                                                                   | Jan 21, 2019 |                  | Soil   | S19-Ja24069 | Х                                                             |                            |      | х                                |                           |                           | х         | Х    | х            | х                                                                                    |                                                           |
| 2        | BH02A_0-0.15                                                                                  | Jan 24, 2019 |                  | Soil   | S19-Ja24070 | х                                                             |                            |      | х                                | х                         |                           | х         |      | х            |                                                                                      |                                                           |
| 3        | BH03_0.4-0.5                                                                                  | Jan 21, 2019 |                  | Soil   | S19-Ja24071 | Х                                                             |                            |      | х                                |                           |                           | Х         |      | х            |                                                                                      |                                                           |
| 4        | BH04_0.2-0.3                                                                                  | Jan 21, 2019 |                  | Soil   | S19-Ja24072 | х                                                             |                            |      | х                                |                           |                           | х         | Х    | х            | х                                                                                    |                                                           |
| 5        | BH05_1.0-1.1                                                                                  | Jan 21, 2019 |                  | Soil   | S19-Ja24073 | х                                                             |                            |      | х                                |                           |                           | х         |      | х            |                                                                                      |                                                           |
| 6        | BH06_0.4-0.5                                                                                  |              |                  | Soil   | S19-Ja24074 | Х                                                             |                            |      | Х                                |                           |                           | Х         |      | Х            |                                                                                      |                                                           |
| 7        | BH07_0.5-0.6                                                                                  |              |                  | Soil   | S19-Ja24075 | Х                                                             |                            |      | х                                |                           |                           | Х         |      | х            |                                                                                      |                                                           |
| 8        |                                                                                               | Jan 25, 2019 |                  | Soil   | S19-Ja24076 | Х                                                             |                            |      | х                                |                           |                           | Х         | Х    | х            | Х                                                                                    |                                                           |
| 9        | BH09_0.4-0.5                                                                                  | Jan 21, 2019 |                  | Soil   | S19-Ja24077 | Х                                                             |                            |      | Х                                | Х                         |                           | Х         |      | Х            |                                                                                      |                                                           |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name:<br>Address:<br>Project Name:<br>Project ID: | Address:       Level 1, 50 Margaret St         Sydney       Sydney         NSW 2000       Stroject Name:         CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL |      |             |                          | Order No.:<br>Report #: 637804<br>Phone: 02 8245 0300<br>Fax: |      |                                  |                           |                           |           | 0    |              |                                | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|--------------------------|---------------------------------------------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|--------------------------------------------------------------------------------------|
|                                                           | Sample Detail                                                                                                                                             |      |             | Asbestos - WA guidelines | Asbestos Absence /Presence                                    | НОГД | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | BTEX | Moisture Set | Total Recoverable Hydrocarbons |                                                                                      |
|                                                           | ry - NATA Site # 1254 & 14                                                                                                                                | 4271 |             | N N                      | X                                                             | Х    | Х                                | Х                         | Х                         | Х         | X    | Х            | Х                              |                                                                                      |
| Sydney Laboratory -<br>Brisbane Laboratory                |                                                                                                                                                           |      |             | X                        | Х                                                             |      |                                  |                           |                           |           |      |              |                                | -                                                                                    |
| Perth Laboratory - NA                                     |                                                                                                                                                           |      |             |                          |                                                               |      |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                                              | Soil | S19-Ja24078 | Х                        |                                                               |      | Х                                |                           |                           | Х         | Х    | Х            | Х                              | ]                                                                                    |
| 11 BH11_0-0.15                                            | Jan 21, 2019                                                                                                                                              | Soil | S19-Ja24079 | Х                        |                                                               |      | Х                                |                           |                           | х         |      | Х            |                                | ]                                                                                    |
| 12 BH12_0.4-0.5                                           | Jan 21, 2019                                                                                                                                              | Soil | S19-Ja24080 | Х                        |                                                               |      | Х                                |                           |                           | х         |      | х            |                                |                                                                                      |
|                                                           | Jan 25, 2019                                                                                                                                              | Soil | S19-Ja24081 | Х                        |                                                               |      | Х                                |                           |                           | х         |      | Х            |                                |                                                                                      |
|                                                           | Jan 25, 2019                                                                                                                                              | Soil | S19-Ja24082 | Х                        |                                                               |      | Х                                |                           |                           | Х         |      | Х            |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                                              | Soil | S19-Ja24083 | Х                        |                                                               |      | Х                                |                           | Х                         | Х         |      | Х            |                                |                                                                                      |
|                                                           | Jan 22, 2019                                                                                                                                              | Soil | S19-Ja24084 | Х                        |                                                               |      | Х                                | Х                         |                           | Х         |      | Х            |                                | 4                                                                                    |
| 17 BH17_0.4-0.5                                           |                                                                                                                                                           | Soil | S19-Ja24085 | Х                        |                                                               |      | Х                                |                           |                           | Х         |      | Х            |                                | 4                                                                                    |
|                                                           | Jan 22, 2019                                                                                                                                              | Soil | S19-Ja24086 | Х                        |                                                               |      | Х                                |                           |                           | Х         |      | Х            |                                |                                                                                      |
|                                                           | Jan 22, 2019                                                                                                                                              | Soil | S19-Ja24087 | Х                        |                                                               |      | Х                                |                           |                           | Х         |      | Х            |                                | -                                                                                    |
|                                                           | Jan 22, 2019                                                                                                                                              | Soil | S19-Ja24088 | Х                        |                                                               |      | Х                                |                           |                           | Х         |      | Х            |                                | -                                                                                    |
| 21 BH21_0-0.15                                            | Jan 22, 2019                                                                                                                                              | Soil | S19-Ja24089 | Х                        |                                                               |      | Х                                | Х                         |                           | Х         |      | Х            |                                |                                                                                      |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name:<br>Address:<br>Project Name:<br>Project ID: | Address:       Level 1, 50 Margaret St         Sydney       NSW 2000         Project Name:       CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL |                                  |      |                                  |                           | Order No.:<br>Report #: 637804<br>Phone: 02 8245 0300<br>Fax: |           |      |              |                                |   |   | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------|----------------------------------|---------------------------|---------------------------------------------------------------|-----------|------|--------------|--------------------------------|---|---|--------------------------------------------------------------------------------------|
|                                                           | -                                                                                                                                         |                                  |      |                                  |                           |                                                               |           |      |              |                                |   |   | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                            |
|                                                           | Asbestos - WA guidelines                                                                                                                  | Asbestos Absence / Presence      | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls                                     | Metals M8 | BTEX | Moisture Set | Total Recoverable Hydrocarbons |   |   |                                                                                      |
|                                                           | ry - NATA Site # 1254 & 14                                                                                                                | 271                              |      |                                  | X                         | Х                                                             | Х         | Х    | Х            | Х                              | Х | Х |                                                                                      |
| Sydney Laboratory -                                       |                                                                                                                                           |                                  | X    | Х                                |                           |                                                               |           |      |              |                                |   |   |                                                                                      |
| Brisbane Laboratory                                       |                                                                                                                                           |                                  |      |                                  |                           |                                                               |           |      |              |                                |   |   |                                                                                      |
| Perth Laboratory - NA<br>22 BH22_1-1.1                    | Jan 22, 2019                                                                                                                              | Soil S19-Ja24090                 | ) X  |                                  |                           | х                                                             |           |      | x            |                                | х |   |                                                                                      |
| 23 BH23_0.4-0.5                                           |                                                                                                                                           | Soil S19-Ja2409                  |      |                                  |                           | X                                                             |           |      | X            |                                | X |   |                                                                                      |
|                                                           | Jan 22, 2019                                                                                                                              | Soil S19-Ja2409                  |      |                                  |                           | X                                                             |           |      | X            | х                              | X | х |                                                                                      |
|                                                           | Jan 22, 2019                                                                                                                              | Soil S19-Ja2409                  |      |                                  |                           | X                                                             | x         |      | X            |                                | X |   |                                                                                      |
|                                                           | Jan 22, 2019                                                                                                                              | Soil S19-Ja24094                 |      |                                  |                           | х                                                             |           |      | х            |                                | х |   |                                                                                      |
|                                                           | Jan 25, 2019                                                                                                                              | Soil S19-Ja2409                  |      |                                  |                           | х                                                             |           |      | х            |                                | х |   |                                                                                      |
|                                                           | Jan 22, 2019                                                                                                                              | Soil S19-Ja2409                  |      |                                  |                           | х                                                             |           |      | х            |                                | х |   |                                                                                      |
|                                                           | Jan 24, 2019                                                                                                                              | Soil S19-Ja2409                  | 7 X  |                                  |                           | Х                                                             |           | Х    | х            |                                | Х |   |                                                                                      |
| 30 BH30_0-0.15                                            | Jan 24, 2019                                                                                                                              | Soil S19-Ja2409                  | 3 X  |                                  |                           | Х                                                             |           |      | Х            |                                | Х |   |                                                                                      |
|                                                           | Jan 24, 2019                                                                                                                              | Building S19-Ja2409<br>Materials | )    | х                                |                           |                                                               |           |      |              |                                |   |   |                                                                                      |
| 32 BH01_0.4-0.5                                           | Jan 21, 2019                                                                                                                              | Soil S19-Ja2410                  | )    |                                  | Х                         |                                                               |           |      |              |                                |   |   |                                                                                      |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name:<br>Address:<br>Project Name:<br>Project ID: | Address:       Level 1, 50 Margaret St         Sydney       NSW 2000         Project Name:       CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL |      |             |   |   |   | o.:<br>#:                        |                           | 37804<br>2 824            | 5 030(    | D    |              |                                | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|---|---|---|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|--------------------------------------------------------------------------------------|
|                                                           | Sample Detail                                                                                                                             |      |             |   |   |   | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | BTEX | Moisture Set | Total Recoverable Hydrocarbons |                                                                                      |
| Melbourne Laborato                                        |                                                                                                                                           |      |             |   |   | Х | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |                                                                                      |
| Sydney Laboratory -                                       |                                                                                                                                           |      |             | Х | Х |   |                                  |                           |                           |           |      |              |                                |                                                                                      |
| Brisbane Laboratory<br>Perth Laboratory - N               |                                                                                                                                           |      |             |   |   |   |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 33 BH01_1.0-1.1                                           |                                                                                                                                           | Soil | S19-Ja24101 |   |   | x |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 34 BH01_1.4-1.5                                           |                                                                                                                                           | Soil | S19-Ja24101 |   |   | X |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                                           | Jan 24, 2019                                                                                                                              | Soil | S19-Ja24103 |   |   | х |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                                           | Jan 24, 2019                                                                                                                              | Soil | S19-Ja24104 |   |   | х |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 37 BH03_0-0.15                                            | Jan 21, 2019                                                                                                                              | Soil | S19-Ja24105 |   |   | х |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                              | Soil | S19-Ja24106 |   |   | х |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                              | Soil | S19-Ja24107 |   |   | х |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                              | Soil | S19-Ja24108 |   |   | x |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                              | Soil | S19-Ja24109 |   |   | х |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                              | Soil | S19-Ja24110 |   |   | X |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 43 BH05_1.4-1.5                                           | Jan 21, 2019                                                                                                                              | Soil | S19-Ja24111 |   |   | Х |                                  |                           |                           |           |      |              |                                |                                                                                      |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name:<br>Address:<br>Project Name: | ress: Level 1, 50 Margaret St<br>Sydney<br>NSW 2000 |                            |      |                                  |                           |                           |           | 37804<br>2 824 | l<br>5 030   | 0                              |   |   | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|--------------------------------------------|-----------------------------------------------------|----------------------------|------|----------------------------------|---------------------------|---------------------------|-----------|----------------|--------------|--------------------------------|---|---|--------------------------------------------------------------------------------------|
| Project ID:                                |                                                     |                            |      |                                  |                           |                           |           |                |              |                                |   |   | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                            |
|                                            | Asbestos - WA guidelines                            | Asbestos Absence /Presence | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | BTEX           | Moisture Set | Total Recoverable Hydrocarbons |   |   |                                                                                      |
|                                            | y - NATA Site # 1254 & 14                           | 271                        | x    | x                                | X                         | Х                         | Х         | X              | Х            | Х                              | Х | Х |                                                                                      |
| Sydney Laboratory -<br>Brisbane Laboratory |                                                     |                            | ^    | ^                                |                           |                           |           |                |              |                                |   |   |                                                                                      |
| Perth Laboratory - N/                      |                                                     |                            |      |                                  |                           |                           |           |                |              |                                |   |   |                                                                                      |
|                                            | Jan 21, 2019                                        | Soil S19-Ja24112           |      |                                  | x                         |                           |           |                |              |                                |   |   |                                                                                      |
|                                            | Jan 21, 2019                                        | Soil S19-Ja24113           |      |                                  | X                         |                           |           |                |              |                                |   |   |                                                                                      |
|                                            | Jan 24, 2019                                        | Soil S19-Ja24114           |      |                                  | х                         |                           |           |                |              |                                |   |   |                                                                                      |
| 47 BH08_0.4-0.5                            |                                                     | Soil S19-Ja24115           |      |                                  | х                         |                           |           |                |              |                                |   |   |                                                                                      |
| 48 BH08_0.8-0.9                            |                                                     | Soil S19-Ja24116           |      |                                  | Х                         |                           |           |                |              |                                |   |   |                                                                                      |
| 49 BH08_1.2-1.3                            | Jan 25, 2019                                        | Soil S19-Ja24117           |      |                                  | Х                         |                           |           |                |              |                                |   |   |                                                                                      |
| 50 BH08_1.5-1.6                            | Jan 25, 2019                                        | Soil S19-Ja24118           |      |                                  | Х                         |                           |           |                |              |                                |   |   |                                                                                      |
| 51 BH09_0-0.15                             | Jan 21, 2019                                        | Soil S19-Ja24119           |      |                                  | Х                         |                           |           |                |              |                                |   |   |                                                                                      |
| 52 BH09_1-1.1                              | Jan 21, 2019                                        | Soil S19-Ja24120           |      |                                  | х                         |                           |           |                |              |                                |   |   |                                                                                      |
| 53 BH10_0.05-<br>0.15                      | Jan 21, 2019                                        | Soil S19-Ja24121           |      |                                  | x                         |                           |           |                |              |                                |   |   |                                                                                      |
| 54 BH10_0.4-0.5                            | Jan 21, 2019                                        | Soil S19-Ja24122           |      |                                  | Х                         |                           |           |                |              |                                |   |   |                                                                                      |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name:<br>Address:<br>Project Name:<br>Project ID: | Address:       Level 1, 50 Margaret St         Sydney       Sydney         NSW 2000       CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL |     |                      |                          | Re                         | der N<br>port #<br>one:<br>x: |                                  | -                         | 37804<br>2 824            | 1<br>5 030( | 0    |              |                                | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|--------------------------|----------------------------|-------------------------------|----------------------------------|---------------------------|---------------------------|-------------|------|--------------|--------------------------------|--------------------------------------------------------------------------------------|
|                                                           | Sample Detail                                                                                                                      |     |                      | Asbestos - WA guidelines | Asbestos Absence /Presence | НОГД                          | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8   | BTEX | Moisture Set | Total Recoverable Hydrocarbons |                                                                                      |
| Melbourne Laborator                                       | y - NATA Site # 1254 & 142                                                                                                         | 271 |                      |                          |                            | Х                             | Х                                | Х                         | Х                         | Х           | Х    | Х            | Х                              |                                                                                      |
| Sydney Laboratory -                                       |                                                                                                                                    |     |                      | Х                        | Х                          |                               |                                  |                           |                           |             |      |              |                                |                                                                                      |
| Brisbane Laboratory                                       |                                                                                                                                    |     |                      |                          |                            |                               |                                  |                           |                           |             |      |              |                                |                                                                                      |
| Perth Laboratory - NA                                     |                                                                                                                                    |     |                      |                          |                            |                               |                                  |                           |                           |             |      |              |                                |                                                                                      |
| 55 BH10_1.6-1.7                                           |                                                                                                                                    | 1   | -Ja24123             |                          |                            | X                             |                                  |                           |                           |             |      |              |                                |                                                                                      |
| 56 BH11_0.4-0.5                                           |                                                                                                                                    |     | -Ja24124             |                          |                            | X                             |                                  |                           |                           |             |      |              |                                |                                                                                      |
| 57 BH11_1.3-1.4                                           |                                                                                                                                    |     | -Ja24125             |                          |                            | X<br>X                        |                                  |                           |                           |             |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019<br>Jan 21, 2019                                                                                                       | 1   | -Ja24126<br>-Ja24127 |                          |                            | X                             |                                  |                           |                           |             |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019<br>Jan 25, 2019                                                                                                       |     | -Ja24127<br>-Ja24128 |                          |                            | X                             |                                  |                           |                           |             |      |              |                                |                                                                                      |
|                                                           | Jan 25, 2019 Jan 25, 2019                                                                                                          |     | -Ja24128<br>-Ja24129 |                          |                            | X                             |                                  |                           |                           |             |      |              |                                |                                                                                      |
| 62 BH13_1.2-1.3                                           |                                                                                                                                    |     | -Ja24129<br>-Ja24130 |                          |                            | X                             |                                  |                           |                           |             |      | -            |                                |                                                                                      |
| 63 BH14_0.6-0.7                                           |                                                                                                                                    |     | -Ja24130<br>-Ja24131 |                          |                            | X                             |                                  |                           |                           |             |      |              |                                |                                                                                      |
|                                                           | Jan 25, 2019                                                                                                                       |     | -Ja24132             |                          |                            | X                             |                                  |                           |                           |             |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                       |     | -Ja24133             |                          |                            | X                             |                                  |                           |                           |             |      |              |                                |                                                                                      |
|                                                           | Jan 21, 2019                                                                                                                       | 1   | -Ja24134             |                          |                            | х                             |                                  |                           |                           |             |      |              |                                |                                                                                      |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name:<br>Address:                  |                         |              |                 |   |   |      | lo.:<br>#:                       |                           | 37804<br>2 824            |           | 0    |              |                                | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|--------------------------------------------|-------------------------|--------------|-----------------|---|---|------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|--------------------------------------------------------------------------------------|
| Project Name:<br>Project ID:               | 55579                   | ATION PRECIP | NCT HIGH SCHOOL |   |   |      |                                  |                           |                           |           |      |              |                                | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                            |
| Sample Detail                              |                         |              |                 |   |   | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | BTEX | Moisture Set | Total Recoverable Hydrocarbons |                                                                                      |
|                                            | ry - NATA Site # 1254 & | 14271        |                 | x | x | X    | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              | -                                                                                    |
| Sydney Laboratory -<br>Brisbane Laboratory |                         |              |                 | ~ | ~ |      |                                  |                           |                           |           |      |              |                                |                                                                                      |
| Perth Laboratory - N                       |                         |              |                 |   |   |      |                                  |                           |                           |           |      |              |                                | •                                                                                    |
| 67 BH15_1.5-1.6                            |                         | Soil         | S19-Ja24135     |   |   | х    |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 68 BH15_2.2-2.3                            |                         | Soil         | S19-Ja24136     |   |   | Х    |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 69 BH16_0-0.15                             | Jan 22, 2019            | Soil         | S19-Ja24137     |   |   | х    |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                            | Jan 22, 2019            | Soil         | S19-Ja24138     |   |   | Х    |                                  |                           |                           |           |      |              |                                | -                                                                                    |
| 71 BH16_1.5-1.6                            |                         | Soil         | S19-Ja24139     |   |   | Х    |                                  |                           |                           |           |      |              |                                | 4                                                                                    |
|                                            | Jan 22, 2019            | Soil         | S19-Ja24140     |   |   | Х    |                                  |                           |                           |           |      |              |                                | -                                                                                    |
|                                            | Jan 22, 2019            | Soil         | S19-Ja24141     |   |   | X    |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                            | Jan 22, 2019            | Soil         | S19-Ja24142     |   |   | X    |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 75 BH17_1.5-1.6                            |                         | Soil         | S19-Ja24143     |   |   | X    |                                  |                           |                           |           |      |              |                                |                                                                                      |
|                                            | Jan 22, 2019            | Soil         | S19-Ja24144     |   |   | X    |                                  |                           | L                         |           |      |              |                                | -                                                                                    |
| 77 BH18_0.4-0.5                            |                         | Soil         | S19-Ja24145     |   |   | Х    |                                  |                           |                           |           |      |              |                                | 4                                                                                    |
| 78 BH18_1-1.1                              | Jan 22, 2019            | Soil         | S19-Ja24146     |   |   | Х    |                                  |                           |                           |           |      |              |                                |                                                                                      |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name:<br>Address:                                        |              |              |                |          |          |      | o.:<br>#:                        |                           | 37804<br>2 824            | 1<br>5 030 | 0    |              |                                | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|------------------------------------------------------------------|--------------|--------------|----------------|----------|----------|------|----------------------------------|---------------------------|---------------------------|------------|------|--------------|--------------------------------|--------------------------------------------------------------------------------------|
| Project Name:<br>Project ID:                                     | 55579        | ATION PRECIN | CT HIGH SCHOOL |          |          |      |                                  |                           |                           |            |      |              |                                | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                            |
| Sample Detail<br>Melbourne Laboratory - NATA Site # 1254 & 14271 |              |              |                |          |          | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8  | BTEX | Moisture Set | Total Recoverable Hydrocarbons |                                                                                      |
|                                                                  |              | . 14271      |                | x        | x        | X    | Х                                | Х                         | Х                         | Х          | Х    | X            | Х                              |                                                                                      |
| Sydney Laboratory -<br>Brisbane Laboratory                       |              |              |                | <u>^</u> |          |      |                                  |                           |                           |            |      |              |                                |                                                                                      |
| Perth Laboratory - N                                             |              |              |                |          |          |      |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24147    |          |          | х    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24148    |          |          | Х    |                                  |                           |                           |            |      |              |                                |                                                                                      |
| 81 BH19_1-1.1                                                    | Jan 22, 2019 | Soil         | S19-Ja24149    |          |          | Х    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24150    |          |          | х    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24151    |          |          | X    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24152    |          |          | X    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24153    |          |          | Х    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24154    |          | <u> </u> | Х    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24155    |          |          | Х    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24156    |          |          | Х    |                                  |                           |                           |            |      |              |                                |                                                                                      |
|                                                                  | Jan 22, 2019 | Soil         | S19-Ja24157    |          | <u> </u> | Х    |                                  |                           |                           |            |      | L            |                                |                                                                                      |
| 90 BH23_1-1.1                                                    | Jan 22, 2019 | Soil         | S19-Ja24158    |          |          | Х    |                                  |                           |                           |            |      |              |                                |                                                                                      |

| 🔅 eurofins |     |
|------------|-----|
|            | mgt |

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name:<br>Address:                                                                          |                          |                            |             |                                  |                           |                           | o.:<br>#: |      | 37804<br>2 824 | 1<br>5 030                     | 0 |   |   | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|----------------------------------------------------------------------------------------------------|--------------------------|----------------------------|-------------|----------------------------------|---------------------------|---------------------------|-----------|------|----------------|--------------------------------|---|---|---|--------------------------------------------------------------------------------------|
| Project Name:         CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL           Project ID:         55579 |                          |                            |             |                                  |                           |                           |           |      |                |                                |   |   |   | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                            |
|                                                                                                    | Asbestos - WA guidelines | Asbestos Absence /Presence | НОГр        | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | BTEX | Moisture Set   | Total Recoverable Hydrocarbons |   |   |   |                                                                                      |
| Melbourne Laborator                                                                                |                          |                            |             |                                  |                           | X                         | Х         | X    | Х              | Х                              | X | Х | Х | -                                                                                    |
| Sydney Laboratory -                                                                                |                          |                            |             | Х                                | Х                         |                           |           |      |                |                                |   |   |   | -                                                                                    |
| Brisbane Laboratory<br>Perth Laboratory - NA                                                       |                          | 14                         |             |                                  |                           |                           |           |      |                |                                |   |   |   |                                                                                      |
| 91 BH23_1.3-1.4                                                                                    |                          | Soil                       | S19-Ja24159 |                                  |                           | x                         |           |      |                |                                |   |   |   | -                                                                                    |
|                                                                                                    | Jan 22, 2019             | Soil                       | S19-Ja24160 |                                  |                           | X                         |           |      |                |                                |   |   |   |                                                                                      |
|                                                                                                    | Jan 22, 2019             | Soil                       | S19-Ja24161 |                                  |                           | Х                         |           |      |                |                                |   |   |   |                                                                                      |
| 94 BH24_1-1.1                                                                                      | Jan 22, 2019             | Soil                       | S19-Ja24162 |                                  |                           | Х                         |           |      |                |                                |   |   |   |                                                                                      |
| 95 BH24_1.4-1.5                                                                                    | Jan 22, 2019             | Soil                       | S19-Ja24163 |                                  |                           | Х                         |           |      |                |                                |   |   |   |                                                                                      |
| 96 BH25_0-0.15                                                                                     | Jan 22, 2019             | Soil                       | S19-Ja24164 |                                  |                           | х                         |           |      |                |                                |   |   |   |                                                                                      |
| 97 BH25_1.1-1.2                                                                                    | Jan 22, 2019             | Soil                       | S19-Ja24165 |                                  |                           | х                         |           |      |                |                                |   |   |   |                                                                                      |
|                                                                                                    | Jan 22, 2019             | Soil                       | S19-Ja24166 |                                  |                           | Х                         |           |      |                |                                |   |   |   |                                                                                      |
|                                                                                                    | Jan 22, 2019             | Soil                       | S19-Ja24167 |                                  |                           | X                         |           |      |                |                                |   |   |   |                                                                                      |
| 100 BH26_1.5-1.6                                                                                   |                          | Soil                       | S19-Ja24168 |                                  |                           | X                         |           |      |                |                                |   |   |   | 4                                                                                    |
|                                                                                                    | Jan 25, 2019             | Soil                       | S19-Ja24169 |                                  |                           | X                         |           |      |                |                                |   |   |   | 4                                                                                    |
| 102 BH27_1-1.1                                                                                     | Jan 25, 2019             | Soil                       | S19-Ja24170 |                                  |                           | Х                         |           |      |                |                                |   |   |   |                                                                                      |

| 🔅 eurof | fins |
|---------|------|
|         | mgt  |

E.

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Address:<br>Project Name: | JBS & G Australia (NSW)<br>Level 1, 50 Margaret St<br>Sydney<br>NSW 2000<br>CHATSWOOD EDUCATIO<br>55579 |          | SCHOOL   |                          | Re                         | der N<br>port #<br>one:<br>x: |                                  |                           | 37804<br>2 824:           |           | 0    |              |                                | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|---------------------------|---------------------------------------------------------------------------------------------------------|----------|----------|--------------------------|----------------------------|-------------------------------|----------------------------------|---------------------------|---------------------------|-----------|------|--------------|--------------------------------|--------------------------------------------------------------------------------------|
|                           | Sample Detail                                                                                           |          |          | Asbestos - WA guidelines | Asbestos Absence /Presence | НОГО                          | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Polychlorinated Biphenyls | Metals M8 | BTEX | Moisture Set | Total Recoverable Hydrocarbons |                                                                                      |
| Melbourne Laboratory      | - NATA Site # 1254 & 142                                                                                | 271      |          |                          |                            | Х                             | Х                                | Х                         | Х                         | Х         | Х    | Х            | Х                              |                                                                                      |
| Sydney Laboratory - N     |                                                                                                         |          |          | Х                        | Х                          |                               |                                  |                           |                           |           |      |              |                                |                                                                                      |
| Brisbane Laboratory -     | NATA Site # 20794                                                                                       |          |          |                          |                            |                               |                                  |                           |                           |           |      |              |                                |                                                                                      |
| Perth Laboratory - NA     | TA Site # 23736                                                                                         |          |          |                          |                            |                               |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 103 BH27_1.3-1.4 Ja       | an 25, 2019                                                                                             | Soil S19 | -Ja24171 |                          |                            | Х                             |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 104 BH28_0-0.15 Ja        | an 22, 2019                                                                                             |          | -Ja24172 |                          |                            | х                             |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 105 BH28_0.4-0.5 Ja       |                                                                                                         |          | -Ja24173 |                          |                            | Х                             |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 106 BH28_1.6-1.7 Ja       | an 22, 2019                                                                                             | Soil S19 | -Ja24174 |                          |                            | Х                             |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 107 BH29_0.4-0.5 Ja       | an 24, 2019                                                                                             |          | -Ja24175 |                          |                            | Х                             |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 108 BH30_0.4-0.5 Ja       | an 24, 2019                                                                                             | Soil S19 | -Ja24176 |                          |                            | Х                             |                                  |                           |                           |           |      |              |                                |                                                                                      |
| 109 BH27_0.7-0.8 Ja       | an 24, 2019                                                                                             | Soil S19 | -Ja24177 |                          |                            | Х                             |                                  |                           |                           |           |      |              |                                |                                                                                      |
| Test Counts               |                                                                                                         |          |          | 30                       | 1                          | 78                            | 30                               | 5                         | 2                         | 30        | 5    | 30           | 5                              |                                                                                      |



### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. \*\*NOTE: pH duplicates are reported as a range NOT as RPD

### Units

| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         |
|------------------------------------------|------------------------------------|
| ppm: Parts per million                   | ppb: Parts per billion             |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units |

ug/L: micrograms per litre %: Percentage MPN/100mL: Most Probable Number of organisms per 100 millilitres

### Terms

|    | i ci ilia        |                                                                                                                                                                    |
|----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I  | Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| I  | LOR              | Limit of Reporting.                                                                                                                                                |
| \$ | SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| F  | RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| I  | LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| (  | CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| I  | Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| \$ | Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| I  | Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| l  | USEPA            | United States Environmental Protection Agency                                                                                                                      |
| 1  | APHA             | American Public Health Association                                                                                                                                 |
| ٦  | TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| (  | COC              | Chain of Custody                                                                                                                                                   |
| \$ | SRA              | Sample Receipt Advice                                                                                                                                              |
| (  | QSM              | US Department of Defense Quality Systems Manual Version 5.2 2018                                                                                                   |
| (  | CP               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| I  | NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| ٦  | TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
|    |                  |                                                                                                                                                                    |

### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                          | Units   | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------|---------|----------|----------------------|----------------|--------------------|
| Method Blank                                  |         |          | <br>-                |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fi | actions |          |                      |                |                    |
| TRH C6-C9                                     | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH C10-C14                                   | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH C15-C28                                   | mg/kg   | < 50     | 50                   | Pass           |                    |
| TRH C29-C36                                   | mg/kg   | < 50     | 50                   | Pass           |                    |
| Method Blank                                  |         |          |                      |                |                    |
| BTEX                                          |         |          |                      |                |                    |
| Benzene                                       | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Toluene                                       | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Ethylbenzene                                  | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| m&p-Xylenes                                   | mg/kg   | < 0.2    | 0.2                  | Pass           |                    |
| o-Xylene                                      | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Xylenes - Total                               | mg/kg   | < 0.3    | 0.3                  | Pass           |                    |
| Method Blank                                  |         |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fi | actions |          |                      |                |                    |
| Naphthalene                                   | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| TRH C6-C10                                    | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH >C10-C16                                  | mg/kg   | < 50     | 50                   | Pass           |                    |
| TRH >C16-C34                                  | mg/kg   | < 100    | 100                  | Pass           |                    |
| TRH >C34-C40                                  | mg/kg   | < 100    | 100                  | Pass           |                    |
| Method Blank                                  |         |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons              |         |          |                      |                |                    |
| Acenaphthene                                  | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Acenaphthylene                                | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Anthracene                                    | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benz(a)anthracene                             | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene                        | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                          | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                          | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Chrysene                                      | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Fluoranthene                                  | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Fluorene                                      | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                        | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Naphthalene                                   | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Phenanthrene                                  | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Pyrene                                        | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                                  |         | •        |                      |                |                    |
| Organochlorine Pesticides                     |         |          |                      |                |                    |
| Chlordanes - Total                            | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| 4.4'-DDD                                      | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDE                                      | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDT                                      | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| a-BHC                                         | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Aldrin                                        | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| b-BHC                                         | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| d-BHC                                         | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Dieldrin                                      | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan I                                  | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan II                                 | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |



| Test                                                 | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|-------|----------|----------------------|----------------|--------------------|
| Endosulfan sulphate                                  | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin                                               | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin aldehyde                                      | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Endrin ketone                                        | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| g-BHC (Lindane)                                      | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor                                           | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor epoxide                                   | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Hexachlorobenzene                                    | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Methoxychlor                                         | mg/kg | < 0.05   | 0.05                 | Pass           |                    |
| Toxaphene                                            | mg/kg | < 1      | 1                    | Pass           |                    |
| Method Blank                                         |       | 1        | 1                    |                |                    |
| Polychlorinated Biphenyls                            |       |          |                      |                |                    |
| Aroclor-1016                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1221                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1232                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1242                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1248                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1254                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1260                                         | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Total PCB*                                           | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                                         |       | 1        | -                    |                |                    |
| Heavy Metals                                         | 1     |          |                      |                |                    |
| Arsenic                                              | mg/kg | < 2      | 2                    | Pass           |                    |
| Cadmium                                              | mg/kg | < 0.4    | 0.4                  | Pass           |                    |
| Chromium                                             | mg/kg | < 5      | 5                    | Pass           |                    |
| Copper                                               | mg/kg | < 5      | 5                    | Pass           |                    |
| Lead                                                 | mg/kg | < 5      | 5                    | Pass           |                    |
| Mercury                                              | mg/kg | < 0.1    | 0.1                  | Pass           |                    |
| Nickel                                               | mg/kg | < 5      | 5                    | Pass           |                    |
| Zinc                                                 | mg/kg | < 5      | 5                    | Pass           |                    |
| LCS - % Recovery                                     |       |          | 1                    | -              |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions | 1     |          |                      |                |                    |
| TRH C6-C9                                            | %     | 115      | 70-130               | Pass           |                    |
| TRH C10-C14                                          | %     | 116      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       | 1        | [                    | 1              |                    |
| BTEX                                                 | 1     |          |                      |                |                    |
| Benzene                                              | %     | 89       | 70-130               | Pass           |                    |
| Toluene                                              | %     | 91       | 70-130               | Pass           |                    |
| Ethylbenzene                                         | %     | 111      | 70-130               | Pass           |                    |
| m&p-Xylenes                                          | %     | 114      | 70-130               | Pass           |                    |
| Xylenes - Total                                      | %     | 114      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions | 1     |          |                      |                |                    |
| Naphthalene                                          | %     | 117      | 70-130               | Pass           |                    |
| TRH C6-C10                                           | %     | 112      | 70-130               | Pass           |                    |
| TRH >C10-C16                                         | %     | 108      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons                     |       |          |                      |                |                    |
| Acenaphthene                                         | %     | 108      | 70-130               | Pass           |                    |
| Acenaphthylene                                       | %     | 101      | 70-130               | Pass           |                    |
| Anthracene                                           | %     | 107      | 70-130               | Pass           |                    |
| Benz(a)anthracene                                    | %     | 99       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                       | %     | 102      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene                               | %     | 106      | 70-130               | Pass           |                    |



| Test                             |               |              | Units | Result 1 |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|---------------|--------------|-------|----------|----------|----------------------|----------------|--------------------|
| Benzo(g.h.i)perylene             |               |              | %     | 105      |          | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene             |               |              | %     | 100      |          | 70-130               | Pass           |                    |
| Chrysene                         |               |              | %     | 122      |          | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene            |               |              | %     | 104      |          | 70-130               | Pass           |                    |
| Fluoranthene                     |               |              | %     | 125      |          | 70-130               | Pass           |                    |
| Fluorene                         |               |              | %     | 100      |          | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           |               |              | %     | 84       |          | 70-130               | Pass           |                    |
| Naphthalene                      |               |              | %     | 123      |          | 70-130               | Pass           |                    |
| Phenanthrene                     |               |              | %     | 90       |          | 70-130               | Pass           |                    |
| Pyrene                           |               |              | %     | 107      |          | 70-130               | Pass           |                    |
| LCS - % Recovery                 |               |              | 70    | 107      |          | 10100                | 1 433          |                    |
| Organochlorine Pesticides        |               |              |       |          |          |                      |                |                    |
| Chlordanes - Total               |               |              | %     | 117      |          | 70-130               | Pass           |                    |
| 4.4'-DDD                         |               |              | %     | 95       |          | 70-130               | Pass           |                    |
|                                  |               |              | 1     |          |          | 70-130               |                |                    |
| 4.4'-DDE                         |               |              | %     | 125      |          |                      | Pass           |                    |
| 4.4'-DDT                         |               |              | %     | 91       |          | 70-130               | Pass           |                    |
| a-BHC                            |               |              | %     | 107      | <u> </u> | 70-130               | Pass           |                    |
| Aldrin                           |               |              | %     | 106      |          | 70-130               | Pass           |                    |
| b-BHC                            |               |              | %     | 77       |          | 70-130               | Pass           |                    |
| d-BHC                            |               |              | %     | 92       |          | 70-130               | Pass           |                    |
| Dieldrin                         |               |              | %     | 122      |          | 70-130               | Pass           |                    |
| Endosulfan I                     |               |              | %     | 126      |          | 70-130               | Pass           |                    |
| Endosulfan II                    |               |              | %     | 94       |          | 70-130               | Pass           |                    |
| Endosulfan sulphate              |               |              | %     | 98       |          | 70-130               | Pass           |                    |
| Endrin                           |               |              | %     | 78       |          | 70-130               | Pass           |                    |
| Endrin aldehyde                  |               |              | %     | 114      |          | 70-130               | Pass           |                    |
| Endrin ketone                    |               |              | %     | 106      |          | 70-130               | Pass           |                    |
| g-BHC (Lindane)                  |               |              | %     | 122      |          | 70-130               | Pass           |                    |
| Heptachlor                       |               |              | %     | 78       |          | 70-130               | Pass           |                    |
| Heptachlor epoxide               |               |              | %     | 91       |          | 70-130               | Pass           |                    |
| Hexachlorobenzene                |               |              | %     | 109      |          | 70-130               | Pass           |                    |
| Methoxychlor                     |               |              | %     | 74       |          | 70-130               | Pass           |                    |
| LCS - % Recovery                 |               |              |       |          |          |                      |                |                    |
| Polychlorinated Biphenyls        |               |              |       |          |          |                      |                |                    |
| Aroclor-1260                     |               |              | %     | 124      |          | 70-130               | Pass           |                    |
| LCS - % Recovery                 |               |              | 70    |          |          | 10 100               | 1 400          |                    |
| Heavy Metals                     |               |              |       |          |          |                      |                |                    |
| Arsenic                          |               |              | %     | 111      |          | 80-120               | Pass           |                    |
| Cadmium                          |               |              | %     | 107      |          | 80-120               | Pass           |                    |
|                                  |               |              | %     |          |          |                      |                |                    |
| Chromium                         |               |              | 1     | 112      |          | 80-120               | Pass           |                    |
| Copper                           |               |              | %     | 114      |          | 80-120               | Pass           |                    |
| Lead                             |               |              | %     | 119      | <u> </u> | 80-120               | Pass           |                    |
| Mercury                          |               |              | %     | 110      | <u> </u> | 75-125               | Pass           |                    |
| Nickel                           |               |              | %     | 112      |          | 80-120               | Pass           |                    |
| Zinc                             |               |              | %     | 110      |          | 80-120               | Pass           |                    |
| Test                             | Lab Sample ID | QA<br>Source | Units | Result 1 |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery               |               | ions         |       | Recult 1 |          |                      |                |                    |
| Total Recoverable Hydrocarbons - |               |              | 0/    | Result 1 |          | 70.400               | Deri           |                    |
| TRH C6-C9                        | S19-Ja24069   | CP           | %     | 103      |          | 70-130               | Pass           |                    |
| TRH C10-C14                      | M19-Ja23097   | NCP          | %     | 107      |          | 70-130               | Pass           |                    |
| Spike - % Recovery               |               |              |       |          |          |                      |                |                    |
| BTEX                             |               | 1            |       | Result 1 |          |                      |                |                    |
| Benzene                          | S19-Ja24069   | CP           | %     | 76       |          | 70-130               | Pass           |                    |
| Toluene                          | S19-Ja24069   | CP           | %     | 85       |          | 70-130               | Pass           |                    |



| Test                            | Lab Sample ID     | QA<br>Source | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------|-------------------|--------------|-------|----------|----------------------|----------------|--------------------|
| Ethylbenzene                    | S19-Ja24069       | CP           | %     | 97       | 70-130               | Pass           |                    |
| m&p-Xylenes                     | S19-Ja24069       | CP           | %     | 99       | 70-130               | Pass           |                    |
| o-Xylene                        | S19-Ja24069       | CP           | %     | 100      | 70-130               | Pass           |                    |
| Xylenes - Total                 | S19-Ja24069       | CP           | %     | 99       | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   |              |       |          |                      |                |                    |
| Total Recoverable Hydrocarbons  | - 2013 NEPM Fract | ions         |       | Result 1 |                      |                |                    |
| Naphthalene                     | S19-Ja24069       | CP           | %     | 87       | 70-130               | Pass           |                    |
| TRH C6-C10                      | S19-Ja24069       | CP           | %     | 114      | 70-130               | Pass           |                    |
| TRH >C10-C16                    | M19-Ja23097       | NCP          | %     | 111      | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   |              |       |          |                      | _              |                    |
| Organochlorine Pesticides       |                   | _            |       | Result 1 |                      |                |                    |
| Chlordanes - Total              | M19-Ja23929       | NCP          | %     | 115      | 70-130               | Pass           |                    |
| 4.4'-DDD                        | M19-Ja23929       | NCP          | %     | 102      | 70-130               | Pass           |                    |
| 4.4'-DDE                        | M19-Ja23929       | NCP          | %     | 123      | 70-130               | Pass           |                    |
| 4.4'-DDT                        | M19-Ja23929       | NCP          | %     | 80       | 70-130               | Pass           |                    |
| a-BHC                           | M19-Ja23929       | NCP          | %     | 100      | 70-130               | Pass           |                    |
| Aldrin                          | M19-Ja23929       | NCP          | %     | 127      | 70-130               | Pass           |                    |
| b-BHC                           | M19-Ja23929       | NCP          | %     | 103      | 70-130               | Pass           |                    |
| d-BHC                           | M19-Ja23929       | NCP          | %     | 113      | 70-130               | Pass           |                    |
| Dieldrin                        | M19-Ja23929       | NCP          | %     | 103      | 70-130               | Pass           |                    |
| Endosulfan I                    | M19-Ja23929       | NCP          | %     | 87       | 70-130               | Pass           |                    |
| Endosulfan II                   | M19-Ja23929       | NCP          | %     | 97       | 70-130               | Pass           |                    |
| Endosulfan sulphate             | M19-Ja23929       | NCP          | %     | 89       | 70-130               | Pass           |                    |
| Endrin                          | M19-Ja24635       | NCP          | %     | 103      | 70-130               | Pass           |                    |
| Endrin aldehyde                 | M19-Ja23929       | NCP          | %     | 82       | 70-130               | Pass           |                    |
| Endrin ketone                   | M19-Ja23929       | NCP          | %     | 101      | 70-130               | Pass           |                    |
| g-BHC (Lindane)                 | M19-Ja23929       | NCP          | %     | 130      | 70-130               | Pass           |                    |
| Heptachlor                      | M19-Ja23929       | NCP          | %     | 86       | 70-130               | Pass           |                    |
| Heptachlor epoxide              | M19-Ja23929       | NCP          | %     | 94       | 70-130               | Pass           |                    |
| Hexachlorobenzene               | M19-Ja23929       | NCP          | %     | 118      | 70-130               | Pass           |                    |
| Methoxychlor                    | M19-Ja24635       | NCP          | %     | 75       | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   |              |       |          |                      |                |                    |
| Polychlorinated Biphenyls       |                   |              |       | Result 1 |                      |                |                    |
| Aroclor-1016                    | M19-Ja24633       | NCP          | %     | 85       | 70-130               | Pass           |                    |
| Aroclor-1260                    | M19-Ja24633       | NCP          | %     | 104      | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   |              |       |          | -                    | -              |                    |
| Polycyclic Aromatic Hydrocarbor | IS                |              |       | Result 1 |                      |                |                    |
| Acenaphthene                    | S19-Ja24084       | CP           | %     | 103      | 70-130               | Pass           |                    |
| Acenaphthylene                  | S19-Ja24084       | CP           | %     | 94       | 70-130               | Pass           |                    |
| Anthracene                      | S19-Ja24084       | CP           | %     | 94       | 70-130               | Pass           |                    |
| Benz(a)anthracene               | S19-Ja24084       | CP           | %     | 76       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                  | S19-Ja24084       | CP           | %     | 104      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene          | S19-Ja24084       | CP           | %     | 83       | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene            | S19-Ja24084       | CP           | %     | 81       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene            | S19-Ja24084       | CP           | %     | 107      | 70-130               | Pass           |                    |
| Chrysene                        | S19-Ja24084       | CP           | %     | 130      | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene           | S19-Ja24084       | CP           | %     | 81       | 70-130               | Pass           |                    |
| Fluoranthene                    | S19-Ja24084       | CP           | %     | 74       | 70-130               | Pass           |                    |
| Fluorene                        | S19-Ja24084       | CP           | %     | 97       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene          | S19-Ja24084       | CP           | %     | 114      | 70-130               | Pass           |                    |
| Naphthalene                     | S19-Ja24084       | CP           | %     | 107      | 70-130               | Pass           |                    |
| Phenanthrene                    | S19-Ja24084       | CP           | %     | 89       | 70-130               | Pass           |                    |
| Pyrene                          | S19-Ja24084       | CP           | %     | 80       | 70-130               | Pass           |                    |
| Spike - % Recovery              |                   |              |       |          |                      |                |                    |



| Test                            | Lab Sample ID              | QA<br>Source | Units  | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------|----------------------------|--------------|--------|----------|----------------------|----------------|--------------------|
| Heavy Metals                    |                            |              |        | Result 1 |                      |                |                    |
| Arsenic                         | S19-Ja24087                | CP           | %      | 106      | 75-125               | Pass           |                    |
| Cadmium                         | S19-Ja24087                | CP           | %      | 105      | 75-125               | Pass           |                    |
| Chromium                        | S19-Ja24087                | CP           | %      | 107      | 75-125               | Pass           |                    |
| Copper                          | S19-Ja24087                | CP           | %      | 110      | 75-125               | Pass           |                    |
| Lead                            | S19-Ja24087                | CP           | %      | 108      | 75-125               | Pass           |                    |
| Mercury                         | S19-Ja24087                | CP           | %      | 104      | 70-130               | Pass           |                    |
| Nickel                          | S19-Ja24087                | CP           | %      | 106      | 75-125               | Pass           |                    |
| Zinc                            | S19-Ja24087                | CP           | %      | 81       | 75-125               | Pass           |                    |
| Spike - % Recovery              |                            |              |        | 1        |                      |                |                    |
| Total Recoverable Hydrocarbor   |                            |              |        | Result 1 |                      |                |                    |
| TRH C6-C9                       | S19-Ja24092                | CP           | %      | 72       | 70-130               | Pass           |                    |
| Spike - % Recovery              |                            |              |        | -        |                      |                |                    |
| BTEX                            |                            |              |        | Result 1 |                      |                |                    |
| Benzene                         | S19-Ja24092                | CP           | %      | 49       | 70-130               | Fail           | Q08                |
| Toluene                         | S19-Ja24092                | CP           | %      | 60       | 70-130               | Fail           | Q08                |
| Ethylbenzene                    | S19-Ja24092                | CP           | %      | 79       | 70-130               | Pass           |                    |
| m&p-Xylenes                     | S19-Ja24092                | CP           | %      | 80       | 70-130               | Pass           |                    |
| o-Xylene                        | S19-Ja24092                | CP           | %      | 84       | 70-130               | Pass           |                    |
| Xylenes - Total                 | S19-Ja24092                | CP           | %      | 81       | 70-130               | Pass           |                    |
| Spike - % Recovery              |                            |              |        | 1        |                      |                |                    |
| Total Recoverable Hydrocarbor   |                            |              |        | Result 1 |                      |                |                    |
| Naphthalene                     | S19-Ja24092                | CP           | %      | 86       | 70-130               | Pass           |                    |
| TRH C6-C10                      | S19-Ja24092                | CP           | %      | 79       | 70-130               | Pass           |                    |
| Spike - % Recovery              |                            |              |        |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarb   |                            | 1            |        | Result 1 |                      |                |                    |
| Acenaphthene                    | S19-Ja24094                | CP           | %      | 93       | 70-130               | Pass           |                    |
| Acenaphthylene                  | S19-Ja24094                | CP           | %      | 92       | 70-130               | Pass           |                    |
| Anthracene                      | S19-Ja24094                | CP           | %      | 82       | 70-130               | Pass           |                    |
| Benz(a)anthracene               | S19-Ja24094                | CP           | %      | 80       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                  | S19-Ja24094                | CP           | %      | 120      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene          | S19-Ja24094                | CP           | %      | 88       | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene            | S19-Ja24094                | CP           | %      | 89       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene            | S19-Ja24094                | CP           | %      | 101      | 70-130               | Pass           |                    |
| Chrysene                        | S19-Ja24094                | CP           | %      | 89       | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene           | S19-Ja24094                | CP           | %      | 71       | 70-130               | Pass           |                    |
| Fluoranthene                    | S19-Ja24094                | CP           | %      | 104      | 70-130               | Pass           |                    |
| Fluorene                        | S19-Ja24094                | CP           | %      | 88       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene          | S19-Ja24094                | CP           | %      | 81       | 70-130               | Pass           |                    |
| Naphthalene                     | S19-Ja24094                | CP           | %      | 90       | 70-130               | Pass           |                    |
| Phenanthrene                    | S19-Ja24094                | CP           | %      | 77       | 70-130               | Pass           |                    |
| Pyrene                          | S19-Ja24094                | СР           | %      | 107      | 70-130               | Pass           |                    |
| Spike - % Recovery              |                            |              |        | Desult 1 |                      |                |                    |
| Polycyclic Aromatic Hydrocarb   |                            |              | 0/     | Result 1 | 70.400               | Dece           |                    |
| Acenaphthene                    | S19-Ja24095                | CP           | %      | 88       | 70-130               | Pass           |                    |
| Acenaphthylene                  | S19-Ja24095                | CP<br>CP     | %<br>% | 87<br>79 | 70-130               | Pass           |                    |
| Anthracene<br>Bonz(a)anthracene | S19-Ja24095                | CP           | %      | 79<br>84 | 70-130               | Pass           |                    |
| Benz(a)anthracene               | S19-Ja24095                | CP           | %      | 75       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                  | S19-Ja24095                | CP           | %      |          | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene          | S19-Ja24095                |              |        | 101      | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene            | S19-Ja24095                | CP           | %      | 78       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene            | S19-Ja24095<br>S19-Ja24095 | CP<br>CP     | %<br>% | 91<br>90 | 70-130<br>70-130     | Pass<br>Pass   |                    |
| Chrysene                        |                            |              |        |          |                      |                |                    |



| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-----------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Fluoranthene                     | S19-Ja24095     | CP           | %     | 101      |          |     | 70-130               | Pass           |                    |
| Fluorene                         | S19-Ja24095     | CP           | %     | 79       |          |     | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | S19-Ja24095     | CP           | %     | 97       |          |     | 70-130               | Pass           |                    |
| Naphthalene                      | S19-Ja24095     | CP           | %     | 82       |          |     | 70-130               | Pass           |                    |
| Phenanthrene                     | S19-Ja24095     | CP           | %     | 76       |          |     | 70-130               | Pass           |                    |
| Pyrene                           | S19-Ja24095     | CP           | %     | 108      |          |     | 70-130               | Pass           |                    |
| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                        |                 |              |       | 1        | 1        |     |                      | -              |                    |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD |                      |                |                    |
| TRH C6-C9                        | S19-Ja24069     | CP           | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C10-C14                      | S19-Ja24069     | CP           | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C15-C28                      | S19-Ja24069     | CP           | mg/kg | 150      | 130      | 18  | 30%                  | Pass           |                    |
| TRH C29-C36                      | S19-Ja24069     | CP           | mg/kg | 110      | 94       | 14  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       |          |          |     |                      |                |                    |
| BTEX                             |                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Benzene                          | S19-Ja24069     | CP           | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Toluene                          | S19-Ja24069     | CP           | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Ethylbenzene                     | S19-Ja24069     | СР           | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| m&p-Xylenes                      | S19-Ja24069     | CP           | mg/kg | < 0.2    | < 0.2    | <1  | 30%                  | Pass           |                    |
| o-Xvlene                         | S19-Ja24069     | СР           | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Xvlenes - Total                  | S19-Ja24069     | CP           | mg/kg | < 0.3    | < 0.3    | <1  | 30%                  | Pass           |                    |
| Duplicate                        | 0.0002.000      | 0.           |       |          | 1 010    |     | 0070                 | 1 400          |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Eract | ions         |       | Result 1 | Result 2 | RPD | 1                    |                |                    |
| Naphthalene                      | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| TRH C6-C10                       | S19-Ja24069     | CP           | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH >C10-C16                     | S19-Ja24069     | CP           | mg/kg | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| TRH >C16-C34                     | S19-Ja24069     | CP           |       | 220      | 180      | 16  | 30%                  | Pass           |                    |
| TRH >C10-C34                     |                 | CP           | mg/kg |          |          | <1  |                      |                |                    |
|                                  | S19-Ja24069     | L CP         | mg/kg | < 100    | < 100    | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       | Desilit  | Devilio  |     | 1                    |                |                    |
| Polycyclic Aromatic Hydrocarbons |                 | 0.0          | "     | Result 1 | Result 2 | RPD | 0.001                |                |                    |
| Acenaphthene                     | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Acenaphthylene                   | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene                       | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           | -                  |
| Benz(a)anthracene                | S19-Ja24069     | CP           | mg/kg | 1.3      | < 0.5    | 110 | 30%                  | Fail           | Q15                |
| Benzo(a)pyrene                   | S19-Ja24069     | CP           | mg/kg | 1.0      | < 0.5    | 100 | 30%                  | Fail           | Q15                |
| Benzo(b&j)fluoranthene           | S19-Ja24069     | CP           | mg/kg | 0.6      | < 0.5    | 96  | 30%                  | Fail           | Q15                |
| Benzo(g.h.i)perylene             | S19-Ja24069     | CP           | mg/kg | 0.5      | < 0.5    | 95  | 30%                  | Fail           | Q15                |
| Benzo(k)fluoranthene             | S19-Ja24069     | CP           | mg/kg | 0.8      | < 0.5    | 91  | 30%                  | Fail           | Q15                |
| Chrysene                         | S19-Ja24069     | CP           | mg/kg | 1.6      | 0.6      | 95  | 30%                  | Fail           | Q15                |
| Dibenz(a.h)anthracene            | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluoranthene                     | S19-Ja24069     | CP           | mg/kg | 2.8      | 0.9      | 100 | 30%                  | Fail           | Q15                |
| Fluorene                         | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | S19-Ja24069     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Naphthalene                      | S19-Ja24069     | СР           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Phenanthrene                     | S19-Ja24069     | СР           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Pyrene                           | S19-Ja24069     | CP           | mg/kg | 3.1      | 1.0      | 110 | 30%                  | Fail           | Q15                |
| Duplicate                        |                 |              |       |          |          | -   |                      | •              |                    |
| Polycyclic Aromatic Hydrocarbons | 3               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Acenaphthene                     | S19-Ja24073     | СР           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Acenaphthylene                   | S19-Ja24073     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene                       | S19-Ja24073     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
|                                  | S19-Ja24073     | CP           |       |          |          |     |                      |                |                    |
| Benz(a)anthracene                |                 |              | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene                   | S19-Ja24073     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene           | S19-Ja24073     | CP           | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |



| Duplicate                        |                 |      |        |          |          |     |      |       |     |
|----------------------------------|-----------------|------|--------|----------|----------|-----|------|-------|-----|
| Polycyclic Aromatic Hydrocarbons |                 |      |        | Result 1 | Result 2 | RPD |      |       |     |
| Benzo(g.h.i)perylene             | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Benzo(k)fluoranthene             | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Chrysene                         | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Dibenz(a.h)anthracene            | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Fluoranthene                     | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Fluorene                         | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Indeno(1.2.3-cd)pyrene           | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Naphthalene                      | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Phenanthrene                     | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Pyrene                           | S19-Ja24073     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Duplicate                        | 0100021010      | 0.   |        |          | 1 010    |     | 0070 | 1 400 |     |
| Polycyclic Aromatic Hydrocarbons |                 |      |        | Result 1 | Result 2 | RPD |      |       |     |
| Acenaphthene                     | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Acenaphthylene                   | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Anthracene                       | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Benz(a)anthracene                | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Benzo(a)pyrene                   | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Benzo(b&j)fluoranthene           | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Benzo(g.h.i)perylene             | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Benzo(k)fluoranthene             | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Chrysene                         | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Dibenz(a.h)anthracene            | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Fluoranthene                     | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Fluorene                         | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Indeno(1.2.3-cd)pyrene           | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Naphthalene                      | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Phenanthrene                     | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Pyrene                           | S19-Ja24074     | CP   | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |     |
| Duplicate                        |                 |      |        | •        |          |     |      |       |     |
| •                                |                 |      |        | Result 1 | Result 2 | RPD |      |       |     |
| % Moisture                       | S19-Ja24074     | CP   | %      | 19       | 18       | 4.0 | 30%  | Pass  |     |
| Duplicate                        |                 |      |        | •        |          |     |      |       |     |
| Heavy Metals                     |                 |      |        | Result 1 | Result 2 | RPD |      |       |     |
| Arsenic                          | S19-Ja24076     | CP   | mg/kg  | 6.3      | 6.8      | 8.0 | 30%  | Pass  |     |
| Cadmium                          | S19-Ja24076     | CP   | mg/kg  | < 0.4    | < 0.4    | <1  | 30%  | Pass  |     |
| Chromium                         | S19-Ja24076     | CP   | mg/kg  | 15       | 24       | 47  | 30%  | Fail  | Q15 |
| Copper                           | S19-Ja24076     | CP   | mg/kg  | 27       | 24       | 10  | 30%  | Pass  |     |
| Lead                             | S19-Ja24076     | CP   | mg/kg  | 40       | 40       | 1.0 | 30%  | Pass  |     |
| Mercury                          | S19-Ja24076     | CP   | mg/kg  | 0.5      | 0.4      | 22  | 30%  | Pass  |     |
| Nickel                           | S19-Ja24076     | CP   | mg/kg  | < 5      | 5.1      | 23  | 30%  | Pass  |     |
| Zinc                             | S19-Ja24076     | CP   | mg/kg  | 100      | 85       | 16  | 30%  | Pass  |     |
| Duplicate                        |                 |      |        |          |          |     |      |       |     |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract | ions |        | Result 1 | Result 2 | RPD |      |       |     |
| TRH C6-C9                        | S19-Ja24078     | CP   | mg/kg  | < 20     | < 20     | <1  | 30%  | Pass  |     |
| Duplicate                        |                 |      |        |          |          |     |      |       |     |
| втех                             |                 |      |        | Result 1 | Result 2 | RPD |      |       |     |
| Benzene                          | S19-Ja24078     | CP   | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |     |
| Toluene                          | S19-Ja24078     | CP   | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |     |
| Ethylbenzene                     | S19-Ja24078     | CP   | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |     |
| m&p-Xylenes                      | S19-Ja24078     | CP   | mg/kg  | < 0.2    | < 0.2    | <1  | 30%  | Pass  |     |
|                                  | S19-Ja24078     | CP   | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |     |
| o-Xylene                         | 319-Jaz4070     |      | піу/ку | <u> </u> | < 0.1    |     | 5070 | 1 433 |     |



| Duplicate                      |                   |      |       |          |          |     |       |      |  |
|--------------------------------|-------------------|------|-------|----------|----------|-----|-------|------|--|
| Total Recoverable Hydrocarbons | - 2013 NEPM Fract | ions |       | Result 1 | Result 2 | RPD |       |      |  |
| Naphthalene                    | S19-Ja24078       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| TRH C6-C10                     | S19-Ja24078       | CP   | mg/kg | < 20     | < 20     | <1  | 30%   | Pass |  |
| Duplicate                      |                   |      |       |          |          |     |       |      |  |
| Polycyclic Aromatic Hydrocarbo | าร                |      |       | Result 1 | Result 2 | RPD |       |      |  |
| Acenaphthene                   | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Acenaphthylene                 | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Anthracene                     | S19-Ja24084       | СР   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Benz(a)anthracene              | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Benzo(a)pyrene                 | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Benzo(b&j)fluoranthene         | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Benzo(g.h.i)perylene           | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Benzo(k)fluoranthene           | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Chrysene                       | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Dibenz(a.h)anthracene          | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Fluoranthene                   | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Fluorene                       | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Indeno(1.2.3-cd)pyrene         | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Naphthalene                    | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Phenanthrene                   | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Pyrene                         | S19-Ja24084       | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass |  |
| Duplicate                      |                   |      |       | -        |          |     |       |      |  |
| Organochlorine Pesticides      |                   |      |       | Result 1 | Result 2 | RPD |       |      |  |
| Chlordanes - Total             | S19-Ja24084       | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30%   | Pass |  |
| 4.4'-DDD                       | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| 4.4'-DDE                       | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| 4.4'-DDT                       | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| a-BHC                          | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Aldrin                         | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| b-BHC                          | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| d-BHC                          | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Dieldrin                       | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Endosulfan I                   | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Endosulfan II                  | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Endosulfan sulphate            | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Endrin                         | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Endrin aldehyde                | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Endrin ketone                  | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| g-BHC (Lindane)                | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Heptachlor                     | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Heptachlor epoxide             | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Hexachlorobenzene              | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Methoxychlor                   | S19-Ja24084       | CP   | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass |  |
| Duplicate                      |                   |      |       |          |          |     |       |      |  |
| 0/ Mainture                    | 040 1-04004       | 05   | 0/    | Result 1 | Result 2 | RPD | 0.001 |      |  |
| % Moisture                     | S19-Ja24084       | CP   | %     | 10       | 11       | 9.0 | 30%   | Pass |  |
| Duplicate                      |                   |      |       | Desilit  | Desitio  | 000 |       |      |  |
| Heavy Metals                   | 040 1-04000       | 00   |       | Result 1 | Result 2 | RPD | 0.001 |      |  |
| Arsenic                        | S19-Ja24086       | CP   | mg/kg | 4.8      | 4.8      | <1  | 30%   | Pass |  |
| Cadmium                        | S19-Ja24086       | CP   | mg/kg | < 0.4    | < 0.4    | <1  | 30%   | Pass |  |
| Chromium                       | S19-Ja24086       | CP   | mg/kg | 47       | 42       | 12  | 30%   | Pass |  |
| Copper                         | S19-Ja24086       | CP   | mg/kg | 17       | 15       | 7.0 | 30%   | Pass |  |
| Lead                           | S19-Ja24086       | CP   | mg/kg | 29       | 27       | 10  | 30%   | Pass |  |
| Mercury                        | S19-Ja24086       | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30%   | Pass |  |
| Nickel                         | S19-Ja24086       | CP   | mg/kg | 41       | 34       | 17  | 30%   | Pass |  |
| Zinc                           | S19-Ja24086       | CP   | mg/kg | 52       | 57       | 9.0 | 30%   | Pass |  |



| Duplicate                      |             |          |       |          |          |     |       |        |  |
|--------------------------------|-------------|----------|-------|----------|----------|-----|-------|--------|--|
| Heavy Metals                   |             |          |       | Result 1 | Result 2 | RPD |       |        |  |
| Arsenic                        | S19-Ja24087 | CP       | mg/kg | 2.1      | 2.1      | 1.0 | 30%   | Pass   |  |
| Cadmium                        | S19-Ja24087 | CP       | mg/kg | < 0.4    | < 0.4    | <1  | 30%   | Pass   |  |
| Chromium                       | S19-Ja24087 | CP       | mg/kg | 12       | 12       | 2.0 | 30%   | Pass   |  |
| Copper                         | S19-Ja24087 | CP       | mg/kg | 12       | 12       | 2.0 | 30%   | Pass   |  |
| Lead                           | S19-Ja24087 | CP       | mg/kg | 10       | 14       | 1.0 | 30%   | Pass   |  |
| Mercury                        | S19-Ja24087 | CP       | mg/kg | < 0.1    | < 0.1    | <1  | 30%   | Pass   |  |
| Nickel                         | S19-Ja24087 | CP<br>CP |       | 11       | 11       | 2.0 | 30%   | Pass   |  |
| Zinc                           | S19-Ja24087 | CP<br>CP | mg/kg | 49       | 49       | 1.0 | 30%   | Pass   |  |
| Duplicate                      | 319-Ja24007 |          | mg/kg | 49       | 49       | 1.0 | 30%   | F d 55 |  |
| Duplicate                      |             |          |       | Result 1 | Result 2 | RPD |       |        |  |
| % Moioturo                     | S10 1024004 | СР       | %     | 27       | 27       | <1  | 30%   | Pass   |  |
| % Moisture                     | S19-Ja24094 | CP       | %     | 21       | 21       | <1  | 30%   | Pass   |  |
| Duplicate                      |             |          |       | Desult 1 | Desult 0 |     |       | 1      |  |
| Polycyclic Aromatic Hydrocarbo |             | 0.0      |       | Result 1 | Result 2 | RPD | 0.001 | - Deve |  |
| Acenaphthene                   | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Acenaphthylene                 | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Anthracene                     | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Benz(a)anthracene              | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Benzo(a)pyrene                 | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Benzo(b&j)fluoranthene         | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Benzo(g.h.i)perylene           | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Benzo(k)fluoranthene           | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Chrysene                       | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Dibenz(a.h)anthracene          | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Fluoranthene                   | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Fluorene                       | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Indeno(1.2.3-cd)pyrene         | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Naphthalene                    | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Phenanthrene                   | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Pyrene                         | S19-Ja24097 | CP       | mg/kg | < 0.5    | < 0.5    | <1  | 30%   | Pass   |  |
| Duplicate                      |             |          |       | T        |          |     | 1     |        |  |
| Organochlorine Pesticides      | -           |          |       | Result 1 | Result 2 | RPD |       |        |  |
| Chlordanes - Total             | S19-Ja24097 | CP       | mg/kg | < 0.1    | < 0.1    | <1  | 30%   | Pass   |  |
| 4.4'-DDD                       | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| 4.4'-DDE                       | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| 4.4'-DDT                       | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| a-BHC                          | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Aldrin                         | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| b-BHC                          | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| d-BHC                          | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Dieldrin                       | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Endosulfan I                   | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Endosulfan II                  | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Endosulfan sulphate            | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Endrin                         | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Endrin aldehyde                | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Endrin ketone                  | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| g-BHC (Lindane)                | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Heptachlor                     | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| Heptachlor epoxide             | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |
| •                              |             |          |       |          |          |     |       |        |  |
| Hexachlorobenzene              | S19-Ja24097 | CP       | mg/kg | < 0.05   | < 0.05   | <1  | 30%   | Pass   |  |

🛟 eurofins

### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

mgt

### **Qualifier Codes/Comments**

| Code | Description                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G01  | The LORs have been raised due to matrix interference                                                                                                                                                                                                                                                                                                                                                                   |
| N01  | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).                                                                                                                                                                                                                   |
| N02  | Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. |
| N04  | F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.                                                                                                                              |
| N07  | Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs                                                                                                                                                                                                       |
| Q08  | The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference                                                                                                                                                                                                                             |

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### Authorised By

| Nibha Vaidya    | Analytical Services Manager   |
|-----------------|-------------------------------|
| Joseph Edouard  | Senior Analyst-Organic (VIC)  |
| Harry Bacalis   | Senior Analyst-Volatile (VIC) |
| Nibha Vaidya    | Senior Analyst-Asbestos (NSW) |
| Emily Rosenberg | Senior Analyst-Metal (VIC)    |

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

From: Sent: To: Cc: Subject: Alena Bounkeua Wednesday, 6 February 2019 4:34 PM **Enviro Sample Vic** Enviro Sample NSW; Nibha Vaidya \*1 DAY TAT ADDITIONAL\* Report 637804 : Site CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL (55579) image001.png; image002.jpg 6/2/14 4:34pm L.F. 639203

Hi Melbourne,

Attachments:

Additional analysis please - 1 day TAT.

Please let Sydney know once logged so we can label up the asbestos sample.

Thanks!

Kind Regards.

Alena Bounkeya **Eurofins** | mgt Phone: (02) 9900 8414 Email: AlenaBounkeua@eurofins.com

From: Rachel Gray Sent: Wednesday, 6 February 2019 4:15:29 PM (UTC+10:00) Canberra, Melbourne, Sydney To: Nibha Vaidva Cc: Daniel Denaro; Milad Noujaim; Ruby Chapman Subject: RE: Eurofins | mgt Test Results - Report 637804 : Site CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL (55579)

**EXTERNAL EMAIL\*** 

Hi Nibha,

Can you please arrange analysis for sample BH10 0-0.15 to be analysed for the following on 24 hr turn-around time? D. 3 21/01

Ja 24121 - HOLD 1285

- Asbestos (WA Guidelines)
- . PAHs
- Metals .
- Thanks heaps, Rachel



Rachel Gray | Environmental Consultant | JBS&G Sydney | Melbourne | Adelaide | Perth | Brisbane | Canberra | Darwin | Wollongong Level 1, 50 Margaret Street Sydney NSW 2000

T: 02 8245 0300 | M: 0435 442 131 | E: rgray@jbsg.com.au | W: www.jbsg.com.au Contaminated Land | Groundwater Remediation | Environmental Approvals | Auditing and Compliance | Hygiene and Hazardous Materials | Due Diligence and Liability | Stakeholder and Risk Management

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email



### Certificate of Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000



NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Attention:<br>Report<br>Project Name<br>Project ID<br>Received Date<br>Date Reported | Daniel Denaro<br>639203-AID<br>CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL<br>55579<br>Feb 06, 2019<br>Feb 07, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methodology:<br>Asbestos Fibre<br>Identification                                     | Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.<br>NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unknown Mineral<br>Fibres                                                            | Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as<br>Electron Microscopy, to confirm unequivocal identity.<br>NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the<br>optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an<br>independent technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subsampling Soil<br>Samples                                                          | The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed.<br>NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bonded asbestos-<br>containing material<br>(ACM)                                     | The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.                                                                                                                                                                                                                                                        |
| Limit of Reporting                                                                   | The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH. |





Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project NameCHATSWOOD EDUCATION PRECINCT HIGH SCHOOLProject ID55579Date SampledJan 21, 2019Report639203-AID

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                                           | Result                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|------------------------------|--------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BH10_0.05-0.15   | 19-Fe06584                   | Jan 21, 2019 | Approximate Sample 894g<br>Sample consisted of: Brown coarse-grained soil, rocks and fragments<br>of bitumin | FA:<br>Chrysotile and amosite asbestos detected in weathered fibre<br>cement fragments.<br>Approximate raw weight of FA = $0.0046g$<br>Estimated asbestos content in FA = $0.0025g^*$<br>Total estimated asbestos concentration in FA = $0.00028\%$ w/w*<br>No asbestos detected at the reporting limit of $0.001\%$ w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |



### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyFeb 06, 2019Indefinite

|    | euro                     | ofins                                             | mgt                          | à             |             | ABN –<br>e.mail<br>web : v | 50 005<br>: Envirc<br>www.eu     | 085 52<br>Sales@<br>rofins.c    | 1<br>eurofin:<br>om.au | Melbourne         6 Monterey Road           Dandenong South VIC 3175         Phone : +61 3 8564 5000           NATA # 1261         Site # 1254 & 14271 | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|----|--------------------------|---------------------------------------------------|------------------------------|---------------|-------------|----------------------------|----------------------------------|---------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|    | mpany Name:<br>dress:    | JBS & G Au<br>Level 1, 50 N<br>Sydney<br>NSW 2000 | stralia (NSW)<br>Vargaret St | P/L           |             |                            | Re<br>Pl                         | rder N<br>eport<br>none:<br>ax: | #:                     | 639203<br>02 8245 0300                                                                                                                                 | Receive<br>Due:<br>Priority<br>Contact                                                                                                 | Feb 7, 2<br>: 1 Day                                                                                          |                                                                                                          |
|    | oject Name:<br>oject ID: | CHATSWOO<br>55579                                 | OD EDUCATI                   | ON PRECINCT H | HIGH SCHOOL |                            |                                  |                                 |                        |                                                                                                                                                        | Eurofins   mgt A                                                                                                                       | Analytical Services Ma                                                                                       | nager : Nibha Vaidya                                                                                     |
|    |                          |                                                   | Imple Detail                 |               |             | Asbestos - WA guidelines   | Polycyclic Aromatic Hydrocarbons | Metals IWRG 621 : Metals M12    | Moisture Set           |                                                                                                                                                        |                                                                                                                                        |                                                                                                              |                                                                                                          |
|    | ourne Laborato           |                                                   |                              | 271           |             |                            | Х                                | Х                               | Х                      |                                                                                                                                                        |                                                                                                                                        |                                                                                                              |                                                                                                          |
|    | ey Laboratory            |                                                   |                              |               |             | X                          |                                  |                                 |                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                              |                                                                                                          |
|    | ane Laboratory           |                                                   |                              |               |             |                            | +                                |                                 |                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                              |                                                                                                          |
|    | rnal Laboratory          |                                                   |                              |               |             |                            |                                  |                                 |                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                              |                                                                                                          |
| No | Sample ID                | Sample Date                                       | Sampling<br>Time             | Matrix        | LAB ID      |                            |                                  |                                 |                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 1  | BH10_0.05-<br>0.15       | Jan 21, 2019                                      |                              | Soil          | M19-Fe06584 | x                          | x                                | x                               | x                      |                                                                                                                                                        |                                                                                                                                        |                                                                                                              |                                                                                                          |
|    | Counts                   | I                                                 | 1                            | 1             | l           | 1                          |                                  | 4                               | 1                      |                                                                                                                                                        |                                                                                                                                        |                                                                                                              |                                                                                                          |



### Internal Quality Control Review and Glossary General

### 1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

### Units

| •••••                    |                                                                                                                                      |                                                                                                                                                                            |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % w/w: weight for weight | ght basis                                                                                                                            | grams per kilogram                                                                                                                                                         |
| Filter loading:          |                                                                                                                                      | fibres/100 graticule areas                                                                                                                                                 |
| Reported Concentratio    | on:                                                                                                                                  | fibres/mL                                                                                                                                                                  |
| Flowrate:                |                                                                                                                                      | L/min                                                                                                                                                                      |
| Terms                    |                                                                                                                                      |                                                                                                                                                                            |
| Dry                      | Sample is dried by heating prior to analysis                                                                                         |                                                                                                                                                                            |
| LOR                      | Limit of Reporting                                                                                                                   |                                                                                                                                                                            |
| COC                      | Chain of Custody                                                                                                                     |                                                                                                                                                                            |
| SRA                      | Sample Receipt Advice                                                                                                                |                                                                                                                                                                            |
| ISO                      | International Standards Organisation                                                                                                 |                                                                                                                                                                            |
| AS                       | Australian Standards                                                                                                                 |                                                                                                                                                                            |
| WA DOH                   |                                                                                                                                      | stralia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated<br>t Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011) |
| NEPM                     | National Environment Protection (Assessment of Site Contamina                                                                        | ation) Measure, 2013 (as amended)                                                                                                                                          |
| ACM                      | Asbestos Containing Materials. Asbestos contained within a non<br>NEPM, ACM is generally restricted to those materials that do no    | -asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the<br>t pass a 7mm x 7mm sieve.                                               |
| AF                       | Asbestos Fines. Asbestos containing materials, including friable,<br>equivalent to "non-bonded / friable".                           | weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as                                                                               |
| FA                       | Fibrous Asbestos. Asbestos containing materials in a friable and<br>materials that do not pass a 7mm x 7mm sieve.                    | /or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those                                                                        |
| Friable                  | Asbestos-containing materials of any size that may be broken or<br>outside of the laboratory's remit to assess degree of friability. | crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is                                                                               |
| Trace Analysis           | Analytical procedure used to detect the presence of respirable fil                                                                   | pres in the matrix.                                                                                                                                                        |
|                          |                                                                                                                                      |                                                                                                                                                                            |



### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | N/A |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

mgt

### **Qualifier Codes/Comments**

| Code | Description    |
|------|----------------|
| N/A  | Not applicable |

### Asbestos Counter/Identifier:

Laxman Dias

Senior Analyst-Asbestos (NSW)

### Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000



NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

### Attention:

Daniel Denaro

Feb 06, 2019

Report Project name Project ID Received Date 639203-S CHATSWOOD EDUCATION PRECINCT HIGH SCHOOL 55579

| Client Sample ID                      |     |       | BH10_0.05-<br>0.15 |
|---------------------------------------|-----|-------|--------------------|
| Sample Matrix                         |     |       | Soil               |
| Eurofins   mgt Sample No.             |     |       | M19-Fe06584        |
| Date Sampled                          |     |       | Jan 21, 2019       |
| Test/Reference                        | LOR | Unit  |                    |
| Polycyclic Aromatic Hydrocarbons      | ·   |       |                    |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5 | mg/kg | < 0.5              |
| Benzo(a)pyrene TEQ (medium bound) *   | 0.5 | mg/kg | 0.6                |
| Benzo(a)pyrene TEQ (upper bound) *    | 0.5 | mg/kg | 1.2                |
| Acenaphthene                          | 0.5 | mg/kg | < 0.5              |
| Acenaphthylene                        | 0.5 | mg/kg | < 0.5              |
| Anthracene                            | 0.5 | mg/kg | < 0.5              |
| Benz(a)anthracene                     | 0.5 | mg/kg | < 0.5              |
| Benzo(a)pyrene                        | 0.5 | mg/kg | < 0.5              |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5 | mg/kg | < 0.5              |
| Benzo(g.h.i)perylene                  | 0.5 | mg/kg | < 0.5              |
| Benzo(k)fluoranthene                  | 0.5 | mg/kg | < 0.5              |
| Chrysene                              | 0.5 | mg/kg | < 0.5              |
| Dibenz(a.h)anthracene                 | 0.5 | mg/kg | < 0.5              |
| Fluoranthene                          | 0.5 | mg/kg | < 0.5              |
| Fluorene                              | 0.5 | mg/kg | < 0.5              |
| Indeno(1.2.3-cd)pyrene                | 0.5 | mg/kg | < 0.5              |
| Naphthalene                           | 0.5 | mg/kg | < 0.5              |
| Phenanthrene                          | 0.5 | mg/kg | < 0.5              |
| Pyrene                                | 0.5 | mg/kg | < 0.5              |
| Total PAH*                            | 0.5 | mg/kg | < 0.5              |
| 2-Fluorobiphenyl (surr.)              | 1   | %     | 101                |
| p-Terphenyl-d14 (surr.)               | 1   | %     | 120                |
| Heavy Metals                          |     |       |                    |
| Arsenic                               | 2   | mg/kg | 7.3                |
| Cadmium                               | 0.4 | mg/kg | < 0.4              |
| Chromium                              | 5   | mg/kg | 10                 |
| Copper                                | 5   | mg/kg | 19                 |
| Lead                                  | 5   | mg/kg | 23                 |
| Mercury                               | 0.1 | mg/kg | < 0.1              |
| Molybdenum                            | 5   | mg/kg | < 5                |
| Nickel                                | 5   | mg/kg | 12                 |
| Selenium                              | 2   | mg/kg | < 2                |
| Silver                                | 0.2 | mg/kg | < 0.2              |
| Tin                                   | 10  | mg/kg | < 10               |
| Zinc                                  | 5   | mg/kg | 200                |



| Client Sample ID          |     |      | BH10_0.05-<br>0.15 |
|---------------------------|-----|------|--------------------|
| Sample Matrix             |     |      | Soil               |
| Eurofins   mgt Sample No. |     |      | M19-Fe06584        |
| Date Sampled              |     |      | Jan 21, 2019       |
| Test/Reference            | LOR | Unit |                    |
|                           |     |      |                    |
| % Moisture                | 1   | %    | 15                 |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                          | Testing Site | Extracted    | Holding Time |
|----------------------------------------------------------------------|--------------|--------------|--------------|
| Polycyclic Aromatic Hydrocarbons                                     | Melbourne    | Feb 06, 2019 | 14 Day       |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water             |              |              |              |
| Metals IWRG 621 : Metals M12                                         | Melbourne    | Feb 06, 2019 | 28 Day       |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS |              |              |              |
| % Moisture                                                           | Melbourne    | Feb 06, 2019 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                                      |              |              |              |

|                                                             | 🔅 eur                                           | ofins                                              | mgt                           |               | ABN– 50 005<br>e.mail : Envirc<br>web : www.eu | Sales@                   | eurofin                          | s.com                           |              | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3175<br>Phone : +61 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 | Sydney<br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 2079 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>4 NATA # 1261<br>Site # 23736 |
|-------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------|---------------|------------------------------------------------|--------------------------|----------------------------------|---------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                             | mpany Name:<br>dress:                           | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | stralia (NSW)<br>⁄largaret St | P/L           |                                                |                          | Re                               | rder N<br>eport<br>none:<br>ix: | #:           | 639203<br>02 8245 0300                                                                                                    |                                                                                                                                 | Due:<br>Priority:                                                                                          | Feb 6, 2019 4:34 PM<br>Feb 7, 2019<br>1 Day<br>Daniel Denaro                                               |
|                                                             | oject Name:<br>oject ID:                        | CHATSWOO<br>55579                                  | DD EDUCATIO                   | ON PRECINCT I | HIGH SCHOOL                                    |                          |                                  |                                 |              |                                                                                                                           | Eurofi                                                                                                                          | ns   mgt Analytical Ser                                                                                    | vices Manager : Nibha Vaidya                                                                               |
|                                                             |                                                 | Sa                                                 | mple Detail                   |               |                                                | Asbestos - WA guidelines | Polycyclic Aromatic Hydrocarbons | Metals IWRG 621 : Metals M12    | Moisture Set |                                                                                                                           |                                                                                                                                 |                                                                                                            |                                                                                                            |
|                                                             | Melbourne Laboratory - NATA Site # 1254 & 14271 |                                                    |                               |               |                                                | Х                        | X                                | Х                               | _            |                                                                                                                           |                                                                                                                                 |                                                                                                            |                                                                                                            |
|                                                             | Sydney Laboratory - NATA Site # 18217           |                                                    |                               |               | Х                                              | -                        |                                  | -                               | 4            |                                                                                                                           |                                                                                                                                 |                                                                                                            |                                                                                                            |
|                                                             | Brisbane Laboratory - NATA Site # 20794         |                                                    |                               |               | -                                              |                          | -                                | -                               |              |                                                                                                                           |                                                                                                                                 |                                                                                                            |                                                                                                            |
| Perth Laboratory - NATA Site # 23736<br>External Laboratory |                                                 |                                                    | -                             |               |                                                |                          | -                                |                                 |              |                                                                                                                           |                                                                                                                                 |                                                                                                            |                                                                                                            |
| No                                                          | Sample ID                                       | Sample Date                                        | Sampling<br>Time              | Matrix        | LAB ID                                         |                          |                                  |                                 |              | -                                                                                                                         |                                                                                                                                 |                                                                                                            |                                                                                                            |
| 1                                                           | BH10_0.05-<br>0.15                              | Jan 21, 2019                                       | TIME                          | Soil          | M19-Fe06584                                    | x                        | x                                | x                               | x            |                                                                                                                           |                                                                                                                                 |                                                                                                            |                                                                                                            |
| Test                                                        | Counts                                          |                                                    |                               |               |                                                | 1                        | 1                                | 1                               | 1            |                                                                                                                           |                                                                                                                                 |                                                                                                            |                                                                                                            |



## mgt

#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. \*\*NOTE: pH duplicates are reported as a range NOT as RPD

> ug/L: micrograms per litre %: Percentage

MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### Units

| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         |
|------------------------------------------|------------------------------------|
| ppm: Parts per million                   | ppb: Parts per billion             |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units |

#### Terms

| Terms            |                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| LOR              | Limit of Reporting.                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| USEPA            | United States Environmental Protection Agency                                                                                                                      |
| APHA             | American Public Health Association                                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| COC              | Chain of Custody                                                                                                                                                   |
| SRA              | Sample Receipt Advice                                                                                                                                              |
| QSM              | US Department of Defense Quality Systems Manual Version 5.2 2018                                                                                                   |
| CP               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
|                  |                                                                                                                                                                    |

#### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                             | Units          | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|----------------|----------|----------------------|----------------|--------------------|
| Method Blank                     |                |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons |                |          |                      |                |                    |
| Acenaphthene                     | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Acenaphthylene                   | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Anthracene                       | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Benz(a)anthracene                | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                   | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene           | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene             | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene             | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Chrysene                         | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene            | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Fluoranthene                     | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Fluorene                         | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Naphthalene                      | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Phenanthrene                     | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Pyrene                           | mg/kg          | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                     |                |          |                      | 1              |                    |
| Heavy Metals                     |                |          |                      |                |                    |
| Arsenic                          | mg/kg          | < 2      | 2                    | Pass           |                    |
| Cadmium                          | mg/kg          | < 0.4    | 0.4                  | Pass           |                    |
| Chromium                         | mg/kg          | < 5      | 5                    | Pass           |                    |
| Copper                           | mg/kg          | < 5      | 5                    | Pass           |                    |
| Lead                             | mg/kg          | < 5      | 5                    | Pass           |                    |
| Mercury                          |                | < 0.1    | 0.1                  | Pass           |                    |
| Molybdenum                       | mg/kg<br>mg/kg | < 5      | 5                    | Pass           |                    |
| Nickel                           | mg/kg          | < 5      | 5                    | Pass           |                    |
| Selenium                         | ¥ ¥            | < 2      | 2                    | Pass           |                    |
|                                  | mg/kg          |          | 0.2                  | Pass           |                    |
| Silver<br>Tin                    | mg/kg          | < 0.2    |                      | Pass           |                    |
|                                  | mg/kg          | < 10     | 10                   |                |                    |
|                                  | mg/kg          | < 5      | 5                    | Pass           |                    |
| LCS - % Recovery                 |                |          |                      | 1              |                    |
| Polycyclic Aromatic Hydrocarbons | 0/             |          | 70.400               | Dere           |                    |
| Acenaphthene                     | %              | 77       | 70-130               | Pass           |                    |
| Acenaphthylene                   | %              | 82       | 70-130               | Pass           |                    |
| Anthracene                       | %              | 80       | 70-130               | Pass           |                    |
| Benz(a)anthracene                | %              | 72       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                   | %              | 94       | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene           | %              | 80       | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene             | %              | 86       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene             | %              | 100      | 70-130               | Pass           |                    |
| Chrysene                         | %              | 71       | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene            | %              | 77       | 70-130               | Pass           |                    |
| Fluoranthene                     | %              | 81       | 70-130               | Pass           |                    |
| Fluorene                         | %              | 83       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | %              | 80       | 70-130               | Pass           |                    |
| Naphthalene                      | %              | 77       | 70-130               | Pass           |                    |
| Phenanthrene                     | %              | 70       | 70-130               | Pass           |                    |
| Pyrene                           | %              | 75       | 70-130               | Pass           |                    |
|                                  |                |          |                      |                |                    |



mgt

| Te                           | est           |              | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Arsenic                      |               |              |       | 87       |          |     | 80-120               | Pass           |                    |
| Cadmium                      |               |              | %     | 109      |          |     | 80-120               | Pass           |                    |
| Chromium                     |               |              | %     | 94       |          |     | 80-120               | Pass           |                    |
| Copper                       |               |              | %     | 89       |          |     | 80-120               | Pass           |                    |
| Lead                         |               |              | %     | 90       |          |     | 80-120               | Pass           |                    |
| Mercury                      |               |              | %     | 105      |          |     | 75-125               | Pass           |                    |
| Molybdenum                   |               |              | %     | 95       |          |     | 80-120               | Pass           |                    |
| Nickel                       |               |              | %     | 87       |          |     | 80-120               | Pass           |                    |
| Selenium                     |               |              | %     | 85       |          |     | 80-120               | Pass           |                    |
| Silver                       |               |              | %     | 114      |          |     | 80-120               | Pass           |                    |
| Tin                          |               |              | %     | 96       |          |     | 80-120               | Pass           |                    |
| Zinc                         |               |              | %     | 87       |          |     | 80-120               | Pass           |                    |
| Test                         | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery           |               |              |       | 1        |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocar | bons          |              |       | Result 1 |          |     |                      |                |                    |
| Acenaphthene                 | M19-Fe04977   | NCP          | %     | 90       |          |     | 70-130               | Pass           |                    |
| Acenaphthylene               | M19-Fe04977   | NCP          | %     | 94       |          |     | 70-130               | Pass           |                    |
| Anthracene                   | M19-Fe04977   | NCP          | %     | 90       |          |     | 70-130               | Pass           |                    |
| Benz(a)anthracene            | M19-Fe04977   | NCP          | %     | 82       |          |     | 70-130               | Pass           |                    |
| Benzo(a)pyrene               | M19-Fe04977   | NCP          | %     | 117      |          |     | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene       | M19-Fe04977   | NCP          | %     | 118      |          |     | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene         | M19-Fe04977   | NCP          | %     | 97       |          |     | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene         | M19-Fe04977   | NCP          | %     | 103      |          |     | 70-130               | Pass           |                    |
| Chrysene                     | M19-Fe04977   | NCP          | %     | 76       |          |     | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene        | M19-Fe04977   | NCP          | %     | 98       |          |     | 70-130               | Pass           |                    |
| Fluoranthene                 | M19-Fe04977   | NCP          | %     | 92       |          |     | 70-130               | Pass           |                    |
| Fluorene                     | M19-Fe04977   | NCP          | %     | 88       |          |     | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene       | M19-Fe04977   | NCP          | %     | 88       |          |     | 70-130               | Pass           |                    |
| Naphthalene                  | M19-Fe04977   | NCP          | %     | 76       |          |     | 70-130               | Pass           |                    |
| Phenanthrene                 | M19-Fe04977   | NCP          | %     | 82       |          |     | 70-130               | Pass           |                    |
| Pyrene                       | M19-Fe04977   | NCP          | %     | 91       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery           |               |              |       |          |          |     | •                    |                |                    |
| Heavy Metals                 |               |              |       | Result 1 |          |     |                      |                |                    |
| Arsenic                      | M19-Fe05022   | NCP          | %     | 64       |          |     | 75-125               | Fail           | Q08                |
| Cadmium                      | M19-Fe05022   | NCP          | %     | 85       |          |     | 75-125               | Pass           |                    |
| Chromium                     | M19-Fe05022   | NCP          | %     | 103      |          |     | 75-125               | Pass           |                    |
| Copper                       | M19-Fe05022   | NCP          | %     | 87       |          |     | 75-125               | Pass           |                    |
| Lead                         | M19-Fe05022   | NCP          | %     | 80       |          |     | 75-125               | Pass           |                    |
| Mercury                      | M19-Fe05022   | NCP          | %     | 81       |          |     | 70-130               | Pass           |                    |
| Molybdenum                   | M19-Fe05022   | NCP          | %     | 86       |          |     | 75-125               | Pass           |                    |
| Nickel                       | M19-Fe05022   | NCP          | %     | 96       |          |     | 75-125               | Pass           |                    |
| Selenium                     | M19-Fe05022   | NCP          | %     | 65       |          |     | 75-125               | Fail           | Q08                |
| Silver                       | M19-Fe05022   | NCP          | %     | 91       |          |     | 75-125               | Pass           |                    |
| Tin                          | M19-Fe05022   | NCP          | %     | 88       |          |     | 75-125               | Pass           |                    |
| Zinc                         | M19-Fe05022   | NCP          | %     | 90       |          |     | 75-125               | Pass           |                    |
| Test                         | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                    |               |              |       |          |          |     | 1                    |                |                    |
| Polycyclic Aromatic Hydrocar | bons          | ,            |       | Result 1 | Result 2 | RPD | 1                    |                |                    |
| Acenaphthene                 | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Acenaphthylene               | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene                   | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benz(a)anthracene            | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene               | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |



# mgt

| Test                         | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Duplicate                    |               |              |       |          |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocar | rbons         |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Benzo(b&j)fluoranthene       | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene         | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene         | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Chrysene                     | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene        | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluoranthene                 | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluorene                     | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene       | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Naphthalene                  | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Phenanthrene                 | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Pyrene                       | M19-Fe04976   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Duplicate                    |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals                 |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Arsenic                      | M19-Fe05022   | NCP          | mg/kg | < 2      | < 2      | <1  | 30%                  | Pass           |                    |
| Cadmium                      | M19-Fe05022   | NCP          | mg/kg | < 0.4    | < 0.4    | <1  | 30%                  | Pass           |                    |
| Chromium                     | M19-Fe05022   | NCP          | mg/kg | 45       | 44       | 1.0 | 30%                  | Pass           |                    |
| Copper                       | M19-Fe05022   | NCP          | mg/kg | 13       | 12       | 1.0 | 30%                  | Pass           |                    |
| Lead                         | M19-Fe05022   | NCP          | mg/kg | 9.0      | 9.0      | <1  | 30%                  | Pass           |                    |
| Mercury                      | M19-Fe05022   | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Molybdenum                   | M19-Fe05022   | NCP          | mg/kg | < 5      | < 5      | <1  | 30%                  | Pass           |                    |
| Nickel                       | M19-Fe05022   | NCP          | mg/kg | 38       | 37       | 2.0 | 30%                  | Pass           |                    |
| Selenium                     | M19-Fe05022   | NCP          | mg/kg | < 2      | < 2      | <1  | 30%                  | Pass           |                    |
| Silver                       | M19-Fe05022   | NCP          | mg/kg | < 0.2    | < 0.2    | <1  | 30%                  | Pass           |                    |
| Tin                          | M19-Fe05022   | NCP          | mg/kg | < 10     | < 10     | <1  | 30%                  | Pass           |                    |
| Zinc                         | M19-Fe05022   | NCP          | mg/kg | 26       | 26       | 1.0 | 30%                  | Pass           |                    |



#### Comments

Comple Integrity

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | N/A |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |
|                                                                         |     |

mgt

#### **Qualifier Codes/Comments**

Code Description

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix unterference

#### Authorised By

Nibha Vaidya Emily Rosenberg Joseph Edouard Nibha Vaidya Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Organic (VIC) Senior Analyst-Asbestos (NSW)

W

#### Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofines (ing shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofines (ing the liable for cost, outpace) included the shall be reported as expenses included advected to the share of the report of the scene in the report. In or case shall Eurofines, the tests were included to the report of the scene in the report of the scene in the rest of the report of the scene in the rest scene. There is indicated otherwise, the tests were indicated otherwise, the tests were the scene indicated otherwise, the tests were the scene indicated otherwise. The rest were the scene is unclient of the report of the scene indicated otherwise, the tests were the scene indicated otherwise, the tests were the scene indicated otherwise. The rest were the scene is unclient of the report of the scene indicate only to the indicate otherwise, the tests were the scene is unclient of the rest of the scene is unclient of the rest of the scene is unclient of the rest of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the scene is unclient of the sc



#### © JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

#### **Document Distribution**

| Rev No | Copies         | Recipient     | Date       |
|--------|----------------|---------------|------------|
| А      | 1 x electronic | Yun Bai (PSM) | 01/03/2019 |

#### **Document Status**

| Rev No. | Author                        | Reviewer      | Approved for Issue |                            |            |  |  |
|---------|-------------------------------|---------------|--------------------|----------------------------|------------|--|--|
| Rev NO. | Author                        | Name          | Name               | Signature                  | Date       |  |  |
| A       | Rachel Gray/<br>Daniel Denaro | Daniel Denaro | Matthew Bennett    | DRAFT for client<br>review | 01/03/2019 |  |  |



Appendix F2 Chatswood Public School





Chatswood Public School Chatswood Education Precinct

Detailed Site Investigation

5 Centennial Avenue, Chatswood NSW

28 October 2019 55579- 125420 (Rev B) JBS&G Australia Pty Ltd

Chatswood Public School Chatswood Education Precinct

**Detailed Site Investigation** 

5 Centennial Avenue, Chatswood NSW

28 October 2019

55579-125420 (Rev B)

JBS&G Australia Pty Ltd



## **Table of Contents**

| Abbr  | eviatio | ns                                          |                                                           |  |  |  |  |  |  |
|-------|---------|---------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
| Execu | utive S | ummary                                      |                                                           |  |  |  |  |  |  |
| 1.    |         |                                             |                                                           |  |  |  |  |  |  |
|       | 1.1     | Backgro                                     | und1                                                      |  |  |  |  |  |  |
|       | 1.2     | Objectiv                                    | res1                                                      |  |  |  |  |  |  |
|       | 1.3     | Scope of                                    | f Works1                                                  |  |  |  |  |  |  |
| 2.    | Site C  | Site Conditions and Surrounding Environment |                                                           |  |  |  |  |  |  |
|       | 2.1     | Site Ider                                   | ntification3                                              |  |  |  |  |  |  |
|       | 2.2     | Site Des                                    | cription3                                                 |  |  |  |  |  |  |
|       | 2.3     | Surroun                                     | ding Land Use3                                            |  |  |  |  |  |  |
|       | 2.4     | Environi                                    | mental Setting4                                           |  |  |  |  |  |  |
|       |         | 2.4.1                                       | Topography4                                               |  |  |  |  |  |  |
|       |         | 2.4.2                                       | Geology & Soil4                                           |  |  |  |  |  |  |
|       |         | 2.4.3                                       | Acid Sulfate Soils4                                       |  |  |  |  |  |  |
|       |         | 2.4.4                                       | Hydrology5                                                |  |  |  |  |  |  |
|       |         | 2.4.5                                       | Hydrogeology5                                             |  |  |  |  |  |  |
| 3.    | Site F  | listory                                     |                                                           |  |  |  |  |  |  |
|       | 3.1     | EPA Per-                                    | - and Poly- Fluoroalkyl Substances (PFAS) Register6       |  |  |  |  |  |  |
|       | 3.2     | NSW Fai                                     | ir Trading Loose Fill Asbestos Insulation Register6       |  |  |  |  |  |  |
|       | 3.3     | Summar                                      | ry of Site History and Integrity Assessment6              |  |  |  |  |  |  |
| 4.    | Previ   | ous Inves                                   | tigations7                                                |  |  |  |  |  |  |
|       |         | 4.1.1                                       | Preliminary Site (Contamination) Investigation (DP 2018)7 |  |  |  |  |  |  |
| 5.    | Conc    | eptual Sit                                  | e Model8                                                  |  |  |  |  |  |  |
|       | 5.1     | Potentia                                    | al Areas of Environmental Concern8                        |  |  |  |  |  |  |
|       | 5.2     | Potentia                                    | ally Contaminated Media8                                  |  |  |  |  |  |  |
|       | 5.3     | Potentia                                    | al for Migration9                                         |  |  |  |  |  |  |
|       | 5.4     | Potentia                                    | al Exposure Pathways9                                     |  |  |  |  |  |  |
|       | 5.5     | Recepto                                     | rs10                                                      |  |  |  |  |  |  |
|       | 5.6     | Preferer                                    | ntial Pathways10                                          |  |  |  |  |  |  |
| 6.    | Samp    | ling and <i>i</i>                           | Analytical Plan11                                         |  |  |  |  |  |  |
|       | 6.1     | Data Qu                                     | ality Objectives11                                        |  |  |  |  |  |  |
|       |         | 6.1.1                                       | State the Problem11                                       |  |  |  |  |  |  |
|       |         | 6.1.2                                       | Identify the Decision11                                   |  |  |  |  |  |  |
|       |         | 6.1.3                                       | Identify Inputs to the Decision11                         |  |  |  |  |  |  |
|       |         | 6.1.4                                       | Define the Study Boundaries11                             |  |  |  |  |  |  |



|     |             | 6.1.5                                   | Develop a Decision Rule             | 12 |  |  |  |  |  |
|-----|-------------|-----------------------------------------|-------------------------------------|----|--|--|--|--|--|
|     | 6.2         | Optimise the Design of Obtaining Data14 |                                     |    |  |  |  |  |  |
|     | 6.3         | Soil Investigation14                    |                                     |    |  |  |  |  |  |
|     |             | 6.3.1                                   | Sampling Methodology                | 15 |  |  |  |  |  |
|     |             | 6.3.2                                   | Laboratory Analysis                 | 16 |  |  |  |  |  |
| 7.  | Asses       | sment Cr                                | riteria                             | 17 |  |  |  |  |  |
|     | 7.1         | Regulato                                | ory and Technical Guidelines        | 17 |  |  |  |  |  |
|     | 7.2         | Assessm                                 | nent Criteria                       | 17 |  |  |  |  |  |
|     |             | 7.2.1                                   | Soil Assessment Criteria            | 17 |  |  |  |  |  |
| 8.  | Quali       | ty Assura                               | nce and Quality Control             | 18 |  |  |  |  |  |
|     | 8.1         | QA/QC                                   | Conclusion                          | 18 |  |  |  |  |  |
| 9.  | Resu        | lts                                     |                                     | 19 |  |  |  |  |  |
|     | 9.1         | Soil Obs                                | ervations                           | 19 |  |  |  |  |  |
|     | 9.2         | Analytic                                | al Results – Soil                   | 19 |  |  |  |  |  |
|     |             | 9.2.1                                   | Heavy Metals                        | 19 |  |  |  |  |  |
|     |             | 9.2.2                                   | PAHs                                | 20 |  |  |  |  |  |
|     |             | 9.2.3                                   | TRH/BTEXN                           | 21 |  |  |  |  |  |
|     |             | 9.2.4                                   | VOCs                                | 21 |  |  |  |  |  |
|     |             | 9.2.5                                   | OCPs and PCBs                       | 21 |  |  |  |  |  |
|     |             | 9.2.6                                   | Asbestos                            | 22 |  |  |  |  |  |
| 10. | Site C      | Characteri                              | isation                             | 23 |  |  |  |  |  |
|     | 10.1        | Potentia                                | al Risks to Future Onsite Receptors | 23 |  |  |  |  |  |
|     | 10.2        | Backgro                                 | und Soil Concentrations             | 24 |  |  |  |  |  |
|     | 10.3        | Chemica                                 | al Mixtures                         | 24 |  |  |  |  |  |
|     | 10.4        | Aestheti                                | ic Issues                           | 24 |  |  |  |  |  |
|     | 10.5        | 5 Potential Migration of Contaminants   |                                     |    |  |  |  |  |  |
|     | 10.6        | 10.6 Site Management Strategy           |                                     |    |  |  |  |  |  |
| 11. | Conc        | lusions ar                              | nd Recommendations                  | 26 |  |  |  |  |  |
| 12. | Limitations |                                         |                                     |    |  |  |  |  |  |



## **List of Tables**

Table A – Soil Analytical Results

## **List of Figures**

| Figure 1 | Site Location |
|----------|---------------|
|          |               |

- Figure 2 Site Layout
- Figure 3 Soil Sampling Locations
- Figure 4 Soil Exceedances

## Appendices

- Appendix A Photographic Log
- Appendix B PFAS Register
- Appendix C Loose-Fill Asbestos Insulation Register
- Appendix D Borelogs
- Appendix E PID Calibration and Decontamination Field Forms
- Appendix F QAQC Assessment
- Appendix G Laboratory Documentation



## Abbreviations

| Term     | Definition                                              |  |
|----------|---------------------------------------------------------|--|
| ACM      | Asbestos Containing Materials                           |  |
| AEC      | Areas of Environmental Concern                          |  |
| AHD      | Australian Height Datum                                 |  |
| ASRIS    | Australian Soil Resource Information System             |  |
| ASS      | Acid Sulfate Soils                                      |  |
| BTEXN    | Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene |  |
| CLM      | Contaminated Land Management                            |  |
| COC      | Chain of Custody                                        |  |
| COPC     | Contaminants of Potential Concern                       |  |
| CSM      | Conceptual Site Model                                   |  |
| DBYD     | Dial Before You Dig                                     |  |
| DO       | Dissolved Oxygen                                        |  |
| DP       | Development Plan                                        |  |
| DQI      | Data Quality Indicators                                 |  |
| DQO      | Data Quality Objectives                                 |  |
| DSI      | Detailed Site Investigation                             |  |
| EIL      | Ecological Investigation Levels                         |  |
| EPA      | NSW Environmental Protection Authority                  |  |
| ESA      | Environmental Site Assessment                           |  |
| ESLS     | Ecological Screening Levels                             |  |
| На       | Hectare                                                 |  |
| HILS     | Health Investigation Levels                             |  |
| HSLs     | Health Screening Levels                                 |  |
| JBS&G    | JBS&G Australia Pty Ltd                                 |  |
| JRA      | Job Risk Assessment                                     |  |
| LEP      | Local Environment Plan                                  |  |
| LOR      | Limit of Reporting                                      |  |
| NATA     | National Accreditation Testing Authority                |  |
| OCP      | Organochlorine Pesticides                               |  |
| OPP      | Organophosphate Pesticides                              |  |
| PAH      | Polycyclic Aromatic Hydrocarbons                        |  |
| PCB      | Polychlorinated Biphenyls                               |  |
| PID      | Photoionisation Detector                                |  |
| POEO Act | Protection of Environment Operations Act                |  |
| PSI      | Preliminary Site Investigation                          |  |
| QA/QC    | Quality Assurance/Quality Control                       |  |
| RPD      | Relative Percentage Difference                          |  |
| SAQP     | Sampling Analytical and Quality Plan                    |  |
| SWMS     | Safe Work Method Statement                              |  |
| TRH      | Total Recoverable Hydrocarbons                          |  |
| UCL      | Upper Confidence Limit                                  |  |
| VOC      | Volatile Organic Compounds                              |  |



## **Executive Summary**

JBS&G Australia Pty Ltd (JBS&G) was engaged by Pells Sullivan Meynink (PSM, the client), on behalf of Johnstaff, to complete a Detailed Site Investigation (DSI) for the Chatswood Public School site, located at 5 Centennial Avenue, Chatswood, NSW (the site). The site is legally identified as Lot 1 in DP 812207 and Lot C in DP 346499. The site covers an area of approximately 1.4 ha. The site location and site layout are shown in **Figures 1** and **2**, respectively.

The site, along with Chatswood High School, forms the broader Chatswood Education Precinct. The Chatswood Education Precinct forms part of the NSW Government's investment in primary and secondary education to meet the increasing demand for educational facilities. It is understood by JBS&G that the site (current Chatswood Public School) will be repurposed for use as a senior campus for years 10 to 12.

In order to facilitate the further design and planning approvals for redevelopment works, Detailed Site Investigations (DSI) are required to be completed across the Chatswood Education Precinct to assess the suitability of the site for future use as an educational facility. The report documented herein relates to the current Chatswood Public School site and will assess site suitability, as required pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) for the State Significant Development (SSD) application number SSD 9483, specifically relating to SEARs Key Issue 13 Contamination, being, to:

• Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55.

The objectives of this DSI are to characterise potential contamination at the site, and to draw conclusions regarding the suitability of the site for the proposed land use, or, to make recommendations to enable such conclusions.

The review of the site's history indicated that the site was historically utilised as an orchard prior to the primary school's construction in 1895. The school has been subject to progressive renovations and additions of new structures since the 1890s.

Data utilised for the assessment of site suitability as documented herein were collected on the 23, 24 January, and 10, 11 October 2019. For a site of approximately 1.4 ha, Table A of NSW EPA (1995) recommend a minimum of 21 to 25 soil sampling locations. Previous investigations included sampling at 13 locations. As such, JBS&G undertook a comprehensive soil investigation at the site which involved the advancement of 16 boreholes utilising a combination of judgemental and systematic sampling regimes. The sample locations advanced by JBS&G were in addition to the 13 previously advanced during DP (2018).

All locations identified fill materials between the ground surface (or below hardstand) to a maximum depth of 1.2 m bgs. Fill materials generally comprised of brown silty sands and silty clays with gravels. Fill materials were noted to contain anthropogenic inclusions including asphalt, brick, shales and plastic. Inspection of fill materials did not identify fragments of suspected asbestos containing materials. Natural material underlying the site comprised of brown/grey clay and silty clay overlying shale bedrock.

The results of the analytical data indicate that there are potentially unacceptable risks to human and ecological health at several locations resulting from PAHs, heavy metals and TRH. However, JBS&G note that the likely source of these materials is attributed to bitumen and blue metal gravels identified in the fill profile. JBS&G did not identify any risks relating to the migration of contamination from the site.

In relation to the current use of the site as a primary school, noting that the school is currently covered by hardstand and is expected to operate in a condition similar to those observed during the



investigation at the site, JBS&G do not consider there to be a complete contamination sourcereceptor pathway that would present a potentially unacceptable risk to current users of the site. As such, JBS&G consider the site is suitable for the current use. In the event that excavation works are required prior to redevelopment of the school, JBS&G recommend the development of a Construction Environmental Management Plan (CEMP), or similar, to ensure that the current site configuration that enables the site to be considered suitable under the current site uses, are maintained.

Based on the identified contamination, JBS&G recommend the development of a RAP to guide the required management of identified soil contamination during and following redevelopment such that the site can be considered suitable for the proposed educational land use.



## 1. Introduction

## 1.1 Background

JBS&G Australia Pty Ltd (JBS&G) was engaged by Pells Sullivan Meynink (PSM, the client), on behalf of Johnstaff, to complete a Detailed Site Investigation (DSI) for the Chatswood Public School site, located at 5 Centennial Avenue, Chatswood, NSW (the site). The site is legally identified as Lot 1 in DP 812207 and Lot C in DP 346499. The site covers an area of approximately 1.4 ha. The site location and site layout are shown in **Figures 1** and **2**, respectively.

The site, along with Chatswood High School, forms the broader Chatswood Education Precinct. The Chatswood Education Precinct forms part of the NSW Government's investment in primary and secondary education to meet the increasing demand for educational facilities. It is understood by JBS&G that the site (current Chatswood Public School) will be repurposed for use as a senior campus for years 10 to 12.

In order to facilitate the further design and planning approvals for redevelopment works, Detailed Site Investigations (DSI) are required to be completed across the Chatswood Education Precinct to assess the suitability of the site for future use as an educational facility. The report documented herein relates to the current Chatswood Public School site and will assess site suitability, as required pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) for the State Significant Development (SSD) application number SSD 9483, specifically relating to SEARs Key Issue 13 Contamination, being, to:

• Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55.

A Preliminary Site Investigation with limited soil sampling was undertaken at the site by Douglas Partners in 2018 (DP 2018<sup>1</sup>), the findings of which recommend a detailed investigation to assess the suitability of the site for the proposed land uses. The DSI presented herein has been developed in accordance with guidelines made or approved by the NSW Environment Protection Authority (EPA), including the National Environmental Protection Council (NEPC) (2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM), and relevant Australian Standards.

## 1.2 Objectives

The objectives of this DSI are to characterise potential contamination at the site, and to draw conclusions regarding the suitability of the site for the proposed land use, or, to make recommendations to enable such conclusions.

## 1.3 Scope of Works

The scope of works for the assessment included:

- A desktop review of available site history information, including:
  - Review of previously completed environmental assessment and geotechnical reports relating to the site and surrounding area, as provided by the client;
- A detailed site inspection to identify potential AECs;
- Development and documentation of a conceptual site model (CSM) based on the available information;

Report on Preliminary Site (Contamination) Investigation with Limited Sampling: Proposed Redevelopment Chatswood Public School, High School and Public School "Bush Campus", Chatswood, Douglas Partners 2018 (DP 2018)



- Development and documentation of the SAQP, with data quality objectives (DQOs) for the DSI in accordance with relevant EPA guidelines;
- Implementation of an intrusive investigation program based on the SAQP presented in this report;
- Analysis of collected soil samples at two NATA accredited laboratories: Eurofins MGT and Envirolab;
- Comparison of collected data against NSW EPA published / endorsed investigation criteria to facilitate an assessment of land use suitability; and
- Preparation of a DSI report in general accordance with relevant EPA guidelines.



## 2. Site Conditions and Surrounding Environment

## 2.1 Site Identification

The location of the site is shown in **Figure 1**, and the current layout is shown in **Figure 2**. The site details are summarised in **Table 2.1**.

| Lot / DP Number                           | Lot 1, DP 812207 and Lot C, DP 346499 |  |
|-------------------------------------------|---------------------------------------|--|
| Street Address                            | 5 Centennial Avenue, Chatswood        |  |
| Local Government Authority                | Willoughby City Council               |  |
| Site Area                                 | Approximate centre of site:           |  |
|                                           | 331312.749 E                          |  |
|                                           | 6258715.294 N (GDA94-MGA56)           |  |
| Current Zoning                            | R2 Low Density Residential            |  |
| Geographic Coordinates                    | Approximately 1.4 ha                  |  |
| Previous Land Use                         | Primary School                        |  |
| Current Land Use                          | Primary School                        |  |
| Potential Future Use and Permissible Uses | High (Secondary) School               |  |

### Table 2.1: Site Details

## 2.2 Site Description

A detailed site inspection was undertaken on 9 January 2019, and field works were completed on 23, 24 January, and 10, 11 October 2019, by two of JBS&G's trained and experienced field scientists. Site observations are discussed below, and a photographic log is included as **Appendix A**.

The site comprises an irregular shaped parcel of land, measuring approximately 1.4 ha. The site is secured with perimeter fencing, with three access points via locked gates located at the north-east (Pacific Highway, **Photo 1**), south-east (Centennial Avenue), and west boundaries of the site (Jenkins Street, **Photo 2**).

The site generally slopes in a westerly direction. Considering the substantially sloped topography, a degree of cut and fill is likely to have occurred at the site.

Five large buildings were present across the southern portion of the site, utilised as classrooms, offices, a library, and a canteen (**Photo 3** and **Photo 4**). Asphalt sealed playgrounds and an asphalt sealed carpark were located at the centre and north east corner of the site. Additional playgrounds were located at the north and north west portion of the site, which featured an open space sports field covered with synthetic grass (**Photo 5**), a basketball court and a tennis court.

Additionally, a complex of buildings was located in the southeast corner of the site (Lot C, DP 346499).

The site contained some vegetation in between hardstand areas including large gum and eucalyptus trees, some minor grass cover and perennial herbs. Vegetation was found sporadically throughout the site and its borders., All vegetation appeared unstressed and in good health.

No visible evidence of widespread contamination or significant areas of environmental concern were identified on readily visible/accessible ground surfaces during the site inspection.

### 2.3 Surrounding Land Use

Surrounding land-uses at the time of site inspection are described following:

- North The northern boundary is formed by low to medium density residential land and commercial properties fronting the Highway. North along the Highway is a small public reserve (Kenneth Slessor Park) succeeded by Chatswood Toyota and Fullers Road;
- South The southern boundary is formed by Centennial Avenue. This is succeeded by medium to high density residential apartments and Chatswood BMW;



- East The eastern boundary is formed by the Pacific Highway. This is immediately succeeded by high density commercial buildings and residential apartments. This is followed by landmarks including Chatswood railway station, Dougherty Community Centre and Westfield Chatswood Shopping centre;
- West The western boundary of the site was formed by Jenkins street and low density residential properties. Immediately adjacent and continuing westwards are low/medium residential properties and Chatswood High School along Centennial Avenue.

## 2.4 Environmental Setting

## 2.4.1 Topography

A review of topographical information available on Nearmap indicated the elevation of the site centre is approximately 109 m Australian Height Datum (AHD). The site slopes generally towards the west and south west, towards Ferndale Park and Swaines Creek at the western extent of Centennial Avenue.

The site appears to have undergone cut and fill activities based on observations made during the site inspection.

## 2.4.2 Geology & Soil

A review of the Soil Landscapes of the Sydney 1:100,000 Geological Series Sheet 9130 Sheet (1983<sup>2</sup>) indicates the site and surrounds are underlain by the Triassic Ashfield Shale of the Wianamatta Group, comprising dark grey to black which weathers to a residual clay profile of medium to high plasticity.

Reference to the online ESPADE tool hosted by the NSW Office of Environment and Heritage (OEH 2018<sup>3</sup>) indicated the site is underlain by the Blacktown Soil Landscape Group. These soils comprise shallow to moderately deep (<100 cm) red and brown podzolic soils in well-drained areas, and deep (150-300 cm) yellow podzolic soils and soloths on lower slopes and poorly drained areas. Limitations of this group include moderately reactive highly plastic subsoil, low soil fertility and poor soil drainage.

During the site investigation, 16 boreholes were advanced across the site, in which fill overlying natural materials was encountered from the ground surface to 1.2 m below ground surface (bgs). Natural materials encountered were observed to comprise a weathered shale profile consisting of clay grading to competent shale at varying depths.

### 2.4.3 Acid Sulfate Soils

A review of the *Acid Sulfate Soil Risk Map for Botany Bay*<sup>4</sup> indicates that the site is located in an area of no-known occurrences of ASS.

Based on observations made during the intrusive investigation across the site, sediments typical of potential and actual ASS were not observed (i.e. absence of grey, organic rich, hydrogen sulphide odour etc) in the lithological profile.

The Section 10.7 Planning Certificate (presented in DP, 2018) indicates that the site does not have the likelihood of occurrence of acid sulfate soils. This is consistent with the site's topographical and geological setting.

<sup>&</sup>lt;sup>2</sup> Soil Landscapes of the Sydney 1:100,000 Sheet (9130) Edition 2 (DECCW 2009)

<sup>&</sup>lt;sup>3</sup> ESAPDE, NSW Office of Environment and Heritage, http://www.environment.nsw.gov.au/eSpade2Webapp, accessed 25 October 2019 (OEH 2018)

Acid Sulfate Soil Risk Map – Botany Bay, Edition 2, 1997. 1:25 000 Ref: 91 30S3. NSW DLWC



## 2.4.4 Hydrology

Precipitation to fall onto buildings and paved areas will flow into engineered drainage lines and the local stormwater system. Rainfall will potentially penetrate the soft ground (e.g. garden beds, unpaved areas across the school grounds) and migrate as shallow/perched groundwater towards Swaines Creek, and/or to stormwater infrastructure. It is anticipated that surface run-off will flow to engineered stormwater infrastructure and towards the nearby Swaines Creek, located approximately 700 m west of the site.

## 2.4.5 Hydrogeology

A search for registered groundwater borehole information was undertaken on Water NSW<sup>5</sup> website indicated two groundwater bores within 500 m of the site (**Table 2.2**). Summary pages of groundwater bore information provided by Water NSW is presented in **Appendix B**.

Based on the reported geology and surrounding topography it is anticipated the direction of groundwater flow will be to the west towards the Lane Cove River. Groundwater at the site is not expected to occur within shale bedrock, however may be present within more permeable strata such as sandstone or highly fractured bedrock. Perched groundwater is expected to occur at existing at interfaces of soils and underlying bedrock.

| Bore ID  | Depth (mbgs) | SWL (mbgs) | Distance from<br>site (m) | Date Installed | Use                         | Lithology                                                                                                                                                              |
|----------|--------------|------------|---------------------------|----------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GW029731 | 21.6         | Unknown    | 480 E                     | 01/04/1967     | Recreation<br>(Groundwater) | Clay to 6.7 m,<br>shale to 17.98,<br>sandstone to<br>21.6 m.                                                                                                           |
| GW107757 | 162.6        | 25.6       | 490 E                     | 29/07/2005     | Recreation<br>(Groundwater) | Fill to 1.4 m, clay<br>to 5.1 m, shale to<br>5.1 m, clay to<br>16.7 m,<br>sandstone to<br>65.7 m, shale to<br>66.7 m,<br>sandstone with<br>shale lenses to<br>162.6 m. |

### Table 2.2: Groundwater Bore Search Summary

<sup>&</sup>lt;sup>5</sup> Water NSW website accessed 16/01/2019, https://realtimedata.waternsw.com.au/



## 3. Site History

The site history has been documented in DP (2018). JBS&G's review of the site history have identified additional searches that are relevant and applicable to understanding the historical and environmental setting.

## 3.1 EPA Per- and Poly- Fluoroalkyl Substances (PFAS) Register

A search of the EPA's PFAS register indicated that there were no records pertaining to the site. A record of the search is presented in **Appendix D**.

## 3.2 NSW Fair Trading Loose Fill Asbestos Insulation Register

A search of the NSW Fair Trading loose fill asbestos insulation register indicated that there were no records pertaining to the site. A record of the search is presented in **Appendix E**.

## 3.3 Summary of Site History and Integrity Assessment

The review of the site's history indicated that the site was historically utilised as an orchard prior to the primary school's construction in 1895. The school has been subject to progressive renovations and additions of new structures since the 1890s.

Based on the range of sources and the general consistency of the historical information, it is considered that the historical assessment has an acceptable level of accuracy with respect to the potentially contaminating activities historically occurring at the site.



## 4. Previous Investigations

## 4.1.1 Preliminary Site (Contamination) Investigation (DP 2018)

Douglas Partners (DP) completed a preliminary environmental site assessment (ESA; referred to as Preliminary Site Investigation (PSI) in this report) of Chatswood Public School and the Chatswood High School site and. The investigation entailed a desktop review of publicly available documents pertaining to the site history, and preliminary intrusive sampling associated with the geotechnical investigation.

The review of the site's history indicated that the site was historically utilised as an orchard prior to the primary school's construction in 1895. The school has been subject to progressive renovations and additions of new structures since the 1890s. Further review of the site's history indicated that a development application (DA) lodged by the school relating to works in a section of the playground known as the 'lowers' included information pertaining to an 'Incinerator Compound'. This is considered to represent a potential source of contamination at the site.

DP (2018) identified the following AECs at the site:

- Filling potential for filling (likely from cut and fill of onsite soils) activities for the purpose of levelling the site for development. Associated contaminants of potential concern (COPC) identified were TRH, BTEX, PAHs, PCBs, OCPs, OPPs, phenols and asbestos;
- Previous land use: Public School site was an Orchard during the 1800s. COPCs include heavy metals, PCBs, OCPs/OPPs;
- Incinerator: COPCs include PAHs, BTEX, PCBs; and
- Soils and contaminants associated with surrounding land uses such as Chatswood Toyota. Associated COPCs identified were metals, TRH, BTEX, PAHs, PCBs, OCPs, OPPs, VOCs, phenols and asbestos.

DP (2018) undertook a limited intrusive assessment that was completed via solid flight auger and hand auger at 13 locations across the site. Fill materials were encountered from 0.15 m bgs to 2.0 m bgs (BH18) and was variably compacted predominantly silty clay material with various inclusions, which was observed to have "similar classification to the natural clay present at the site and in some instances was hard to distinguish from natural clays" (DP 2018). Inclusions within fill materials were observed to include gravels, ash, shale and some brick. Inclusions of asphalt were also observed within fill materials at the site. No asbestos was reported in soils by DP (2018).

DP (2018) adopted the most conservative human and ecological health assessment criteria, including; health investigation level (HIL) A for non-petroleum chemical contaminants, health screening levels (HSLs) A and B for vapour intrusion, HSL A for direct contact, and management limits for TRH.

The analytical data reported concentrations of COPCs in excess of the adopted site criteria at several locations. Exceedances of the adopted site criteria were reported for PAHs (HILs and ESLs), TRH (management limits for coarse grained soils, and ESLs) at the following locations; BH16, BH18, BH21, BH23, BH24 and BH27.

No groundwater was encountered at any location during the sampling event.

The report concluded that exceedances of adopted site criteria were observed and as such, remediation may be required pending results from subsequent detailed site investigations (DSIs).



## 5. Conceptual Site Model

Based on the desktop review and observations from the site inspection, the following conceptual site model (CSM) has been developed for the site.

## 5.1 Potential Areas of Environmental Concern

Based on the objectives of the assessment, desktop review and observations made during the site inspection, AECs and associated COPCs were identified at the site, as noted in **Table 5.1**.

| Area of Environmental Concern (AEC)                                                                                                                           | Potentially<br>Affected Media | Contaminant of Potential Concern (COPC)                                                                                                                                                                 | Risk Profile |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <i>Fill Materials</i><br>Imported and/or reworked fill<br>materials used to create site levels<br>(comprising material of unknown<br>character and/or origin) | Soil                          | Heavy metals, total recoverable hydrocarbons (TRH),<br>benzene, toluene, ethylbenzene and xylenes (BTEX),<br>PAHs, polychlorinated biphenyls (PCB),<br>organochlorine pesticides (OCP), and<br>asbestos | Moderate     |
| Former Orchards<br>Areas formerly used as market<br>gardens/orchards                                                                                          | Soil                          | Heavy metals, pesticides/herbicides (OCPs/OPP),<br>asbestos                                                                                                                                             | Low          |
| Incinerator<br>Areas in proximity to the former<br>Incinerator                                                                                                | Soil                          | Heavy metals, PAHs, PCBs, asbestos                                                                                                                                                                      | Low          |

### 5.2 Potentially Contaminated Media

Potentially contaminated media comprise:

- Fill Materials;
- Underlying Natural Soils; and
- Groundwater

Review of site historical information, DP (2018) indicates that the site was historically utilised for market garden/orchards. The historical use of pesticides/herbicides at the site may present a potential risk for human and ecological health. However, JBS&G note that the land ceased to be an orchard in circa 1895 – noting the elapsed time since this use however, JBS&G do not consider this to be a significant risk for contamination at the site.

The review also identified the potential for cut and fill activities to have occurred at the site. Fill materials may contain COPCs at concentrations that exceed the applicable human and ecological assessment criteria and therefore may present an unacceptable risk to human and ecological receptors for the future use of the site.

Furthermore, DP (2018) note that a small incinerator was present at the site. JBS&G note that the incinerator was likely to incinerate waste generated by the school, and the development of large portions of the school (playground etc) pre-date the incinerator, and as such, any impacts from the incinerator are likely to be highly localised and not widespread.



A review of the site history did not identify point sources and/or liquid contaminants at the site that are likely to pose a significant risk for the migration of contamination to underlying natural materials and groundwater.

JBS&G consider the potential for contamination to the underlying natural lithologies/geology to be a function of the primary contamination in soil. Noting the historical and current site uses, JBS&G do not consider primary contamination in soils are likely to be in concentrations that would result in significant contamination to underlying strata.

Noting contaminants likely to exist at the site are in solid form and unlikely to be significantly leachable, contaminants within fill material and other surface soils, and the historical uses of the site, vertical migration through the fill profile into the underlying natural soils and groundwater is unlikely to have occurred.

## 5.3 Potential for Migration

Contaminants generally migrate from site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The propensity for contaminants to migrate is dependent on:

- The nature of the contaminants (solid/liquid/gas and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site area history review and previous investigation are generally in a solid form (e.g. heavy metals, asbestos, etc.).

As the site is primarily covered by structures and/or hardstand (concrete/asphalt), the potential for windblown dust migration of contamination from the site is generally very low. Further, the potential for contamination migration via surface water movement and infiltration of water and subsequent migration through the soil profile is considered generally to be low given the extent of impermeable pavements at the site. However, it is noted there is a potential for vertical migration of surface waters where hardstand pavements exhibit extensive cracking and / or along joints.

### 5.4 Potential Exposure Pathways

Potential human receptors of environmental impact include future site users (school students, users of open spaces), visitors and construction/maintenance contractors engaged to work at the site who may potentially be exposed to COPCs through inhalation, direct contact and/or ingestion (children) of impacted soils.

Exposure to windblown dusts may pose a potential risk to sensitive human receptors however these are also considered unlikely given the predominantly sealed site surfaces.

During redevelopment of the site, potential human receptors will include:

- Inhalation of potential COPC dust and migrating upwards from fill material of unknown origins; and/ or
- Potential dermal and oral contact to impacted soils as present at shallow depths and/ or accessible by future service excavations across the extent of the site; and/ or
- Surface water runoff.

The site contains limited areas covered by vegetation, presenting ongoing potential ecological receptors. Flora on site are potential receptors of shallow soil contamination if present. No vegetation stress relating to potential contamination from known AECs was observed during site



inspection. Possible off-site ecological receptors include potential surface water receptors (i.e. Swains Creek to the southwest of the site).

## 5.5 Receptors

Potential human populations who may be exposed to site impacts in the future (if they are not remediated or appropriate management is not implemented prior to or during development) include:

- Potential future construction workers associated with the redevelopment of the site;
- Students and employees of the proposed secondary school;
- Future construction and site maintenance workers; and
- Future and current sub-surface excavation and intrusive workers.

Given the majority of the site is currently sealed with hardstand pavement (concrete / asphalt) and proposed redevelopment will consist of sealed on-grade infrastructure, on site ecological flora/fauna are not considered likely receptors.

### 5.6 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPC as either liquids or gasses.

Man-made preferential pathways may be present at the site, associated with areas of disturbed natural/fill material, service easements and stormwater/retention basins on site.

Natural preferential pathways are likely limited to natural lithological boundaries, such as between porous soils and weathered/residual bedrock, where infiltrating groundwater is vertically confined and begins to migrate laterally, and surface water drainage features.



## 6. Sampling and Analytical Plan

## 6.1 Data Quality Objectives

Data quality objectives (DQOs) are statements that define the confidence required in conclusions drawn for data produced for a project, and which must be set to realistically define and measure the quality of data needed.

DQOs have been developed for this DSI, as discussed in the following sections.

## 6.1.1 State the Problem

The site is proposed to be redeveloped for a high school campus providing facilities for students between the years of Year 11 and 12. As such, an assessment is required to characterise potential contamination at the site, and to assess whether potential contamination from historical activities at the site may pose an unacceptable risk to future receptors for the proposed high school campus, or, to make recommendations to enable such conclusions to be made.

## 6.1.2 Identify the Decision

The decisions below generally follow the EPA (2017<sup>6</sup>) decision making process for assessing urban redevelopment sites:

- 1. Are there any unacceptable risks to likely future on-site receptors?
- 2. Are there any issues relating to background soil concentrations that exceed appropriate site soil criteria?
- 3. Are there any impacts of chemical mixtures?
- 4. Are there any aesthetic issues at the site?
- 5. Is there any evidence of, or potential for, migration of contaminants from the site?
- 6. Is a site management strategy required?

## 6.1.3 Identify Inputs to the Decision

Inputs identified to provide sufficient data to make the decisions nominated above include:

- Historical site information and inspection of the site to identify and/or confirm potential AECs and COPCs at the site;
- The collection and interpretation of environmental data through collection and analysis of soil;
- Laboratory analysis of samples of potentially contaminated media for COPC; and
- Confirmation that data generated by sample analyses were of sufficient quality to allow reliable comparison to assessment criteria as undertaken by assessment of quality assurance / quality control (QA/QC).

Specifically, sufficient data needs to be collected from each of the identified potentially impacted media (e.g. fill material and natural soils) at the site relating to the in the identified AECs and associated COPC.

### 6.1.4 Define the Study Boundaries

The study boundaries are limited to site boundaries as described in **Section 2.1** and shown on **Figure 2**.

<sup>&</sup>lt;sup>6</sup> *Guidelines for the NSW Site Auditor Scheme* (3<sup>rd</sup> Edition). NSW Environment Protection Authority, October 2017, EPA 2017;



The vertical extent of the soil investigation was to 8.0 m bgs (BH\_P\_12) – the maximum depth to which investigations were undertaken.

Due to the project objectives, seasonality was not assessed as part of this investigation. Data are therefore representative of the timing and duration of the current investigation.

### 6.1.5 Develop a Decision Rule

Analytical data was assessed against NSW EPA endorsed criteria, presented in Section 7.

Statistical analyses of the data were undertaken, where required, in accordance with relevant guidance documents. The following statistical criteria was adopted:

- The upper 95% confidence limit on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion;
- No single analyte concentration shall exceed 250% of the adopted criterion; and
- The standard deviation of the results must be less than 50% of the criterion.

The decision rules adopted to answer the decisions identified in **Section 6.1.2** are summarised in **Table 6.1**.

| Decisions Required to be Made                                                                                                                                                               | Decision Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Are there any unacceptable risks to on-<br>site future receptors?                                                                                                                        | Analytical data will be compared against EPA endorsed criteria.<br>Statistical analysis of the data will be completed, where necessary, in<br>accordance with relevant guidance documents, as appropriate, to facilitate<br>the decisions. The criteria in <b>Section 7</b> were adopted with respect to soil.<br>If the statistical criteria stated above were satisfied, the answer to the<br>decision was <b>No</b> .<br>If the statistical criteria were not satisfied, the answer to the decision was<br><b>Yes</b> . |
| <ol> <li>Are there any issues relating to the local<br/>area background soil concentrations that<br/>exceed appropriate soil criteria?</li> <li>Are there any chemical mixtures?</li> </ol> | If COPC concentrations in soils exceeded published background<br>concentrations (NEPC 2013), the answer to the decision is <b>Yes</b> .<br>Otherwise the answer to the decision is <b>No</b> .<br>Were there more than one group of contaminants present which increase<br>the risk of harm?<br>If there is, the answer to the decision is <b>Yes</b> .<br>Otherwise, the answer to the decision is <b>No</b> .                                                                                                            |
| 4. Are there any aesthetic issues?                                                                                                                                                          | If there were any asbestos containing material (ACM) fragments on the ground surface, any unacceptable odours or soil discolouration, or excessive extraneous/foreign/waste materials, the answer to the decision is <b>Yes</b> . Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                     |
| 5. Is there any evidence of, or potential for, migration of contaminants from the site?                                                                                                     | Based on assessment results, is there any evidence of, or the potential for,<br>migration of unacceptable contaminant concentrations to migrate from the<br>site?<br>If yes, the answer to the decisions is <b>Yes</b> .<br>Otherwise, the answer to the decision is <b>No</b> .                                                                                                                                                                                                                                           |
| 6. Is a site management strategy required?                                                                                                                                                  | Is the answer to any of the above decisions Yes?<br>If yes, a site management strategy is required.<br>If no, a site management strategy is not required.                                                                                                                                                                                                                                                                                                                                                                  |

#### Table 6.1 Summary of Decision Rules

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA, NEPC (2013), appropriate indicators of data quality (DQIs used to assess QA/QC) and standard JBS&G procedures for field sampling and handling.



To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for completeness, comparability, representativeness, precision and accuracy.

The pre-determined Data Quality Indicators (DQIs) established for the project are discussed below in relation to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters), and are shown in **Table 6.2**.

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that are generated during this study is a measure of the closeness of the analytical results obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analyses against reference standards.
- **Representativeness** –expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- **Sensitivity** expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted criteria.

If any of the DQIs are not met, further assessment of the data set is required to determine whether the non-conformance has significant effects on the usefulness of the data. Corrective action to correct an adverse impact on the reliability of the dataset may include, but is not limited to, the request of further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of the data.



### Table 6.2: Summary of Data Quality Indicators

| Data Quality Indicators                                                                              | Frequency           | Data Quality Criteria                     |
|------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|
| Precision                                                                                            |                     |                                           |
| Duplicates (intra-laboratory)                                                                        | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Triplicates (inter-laboratory)                                                                       | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Laboratory Duplicates                                                                                | 1 / 20 samples      | <50% RPD <sup>1</sup>                     |
| Accuracy                                                                                             |                     |                                           |
| Surrogate spikes                                                                                     | All organic samples | 70-130% recovery                          |
|                                                                                                      | Phenols             | 30-130% recovery                          |
| Laboratory control samples                                                                           | 1 per lab batch     | 70-130% recovery                          |
| Matrix spikes                                                                                        | 1 per lab batch     | 70-130% recovery (phenols 30-130%)        |
| Representativeness                                                                                   |                     |                                           |
| Sampling appropriate for media and analytes                                                          | All samples         | -2                                        |
| Samples extracted and analysed within holding times.                                                 | -                   | Organics (14 days), inorganics (6 months) |
| Laboratory Blanks                                                                                    | 1 per lab batch     | <lor< td=""></lor<>                       |
| Trip blanks                                                                                          | 1 per lab batch     | <lor< td=""></lor<>                       |
| Trip spike                                                                                           | 1 per lab batch     | 70-130% recovery                          |
| Storage blank                                                                                        | 1 per lab batch     | <lor< td=""></lor<>                       |
| Rinsate sample                                                                                       | 1 per sampling      | <lor< td=""></lor<>                       |
|                                                                                                      | event/media         |                                           |
| Comparability                                                                                        |                     |                                           |
| Standard operating procedures for sample collection & handling                                       | All Samples         | All Samples                               |
| Standard analytical methods used for all analyses                                                    | All Samples         | NATA accreditation                        |
| Consistent field conditions, sampling staff and laboratory analysis                                  | All Samples         | All samples <sup>2</sup>                  |
| Limits of reporting appropriate and consistent                                                       | All Samples         | All samples <sup>2</sup>                  |
| Completeness                                                                                         |                     |                                           |
| Sample description and Chain of Custody (COCs)                                                       | All Samples         | All samples <sup>2</sup>                  |
| completed and appropriate                                                                            |                     |                                           |
| Appropriate documentation                                                                            | All Samples         | All samples <sup>2</sup>                  |
| Satisfactory frequency and result for QC samples                                                     |                     | 95% compliance                            |
| Data from critical samples is considered valid                                                       | -                   | Critical samples valid                    |
| Sensitivity                                                                                          |                     |                                           |
| Analytical methods and limits of recovery appropriate for media and adopted site assessment criteria | All samples         | LOR<= site assessment criteria            |
|                                                                                                      | 1                   |                                           |

<sup>1</sup> If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment was made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

<sup>2</sup> A qualitative assessment of compliance with standard procedures and appropriate sample collection methods was completed during the DQI compliance assessment.

### 6.2 Optimise the Design of Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in EPA (1995<sup>7</sup>), including judgemental, random, systematic and stratified sampling patterns.

### 6.3 Soil Investigation

For a site of approximately 1.4 ha, Table A of NSW EPA (1995) recommend a minimum of 21 to 25 soil sampling locations. Previous investigations included sampling at 13 locations. As such, JBS&G undertook a comprehensive soil investigation at the site which involved the advancement of 16 boreholes utilising a combination of judgemental and systematic sampling regimes. The sample locations advanced by JBS&G were in addition to the 13 previously advanced during DP (2018).

<sup>&</sup>lt;sup>7</sup> Contaminated Sites: Sampling Design Guidelines. NSW EPA 1995 (EPA 1995)



Systematic sampling locations were generally advanced across the accessible site area to assess more widespread soil contamination. Soil sampling locations, including those from DP (2018), are shown in **Figure 3**.

## 6.3.1 Sampling Methodology

## 6.3.1.1 Soil Sampling Methodology

Soil sampling was completed utilising an excavator equipped with an auger or via manual excavation utilising a hand auger.

Soil samples were generally collected at surface (0-0.15 m) or directly underneath hardstand pavement, 0.5 m and then at 0.5 m intervals to a maximum depth of 2.0 m bgs (BH\_P\_16), or a minimum of 0.5 m into natural material (or prior refusal), whichever was the shallower Where physical evidence of potential contamination was identified during the works, sampling locations were extended to vertically delineate contamination, where practicable. Following shallow refusal at 0.8 m bgs, BH\_P\_09 was attempted again within proximity (BH\_P\_09a). During the collection of soil samples at all locations, features such as seepage, discolouration, staining, odours and other indicators of contamination, if present, were noted on borelogs, provided in **Appendix D**.

Collected samples were immediately transferred to laboratory supplied sample jars and bags. The sample jars were then transferred to a chilled ice box for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory. Based upon field observations, selected samples were analysed in accordance with the laboratory schedule (**Table 6.2**).

JBS&G note that not all soil samples collected were analysed. All samples will remain at the primary laboratory for a period of two months from the date of sampling. This will allow future analysis to be completed in the event that further information is required to characterise site conditions, provided that proposed analytes remain within technical holding times.

## 6.3.1.2 Field PID Screening

During site works, sufficient sample material was collected to allow for field testing using a photoionisation detector (PID) and laboratory analyses to assess the potential presence of VOCs including petroleum hydrocarbons. Samples obtained for PID screening were placed in a sealed plastic bag for approximately 2 minutes to equilibrate, prior to a PID being attached to the bag. Readings were then monitored for a period of approximately 30 seconds or until values stabilised and the stabilise/highest reading recorded on field logs. The PID was calibrated prior to the commencement of field works and then check readings were completed on a daily basis during the field program using suitable calibration gas (isobutylene – 100 ppm). Field calibration forms are provided in **Appendix E.** PID results are provided in the logs in **Appendix D**.

## 6.3.1.3 Duplicate and Triplicate Sample Preparation

At selected sample points, sufficient soil was collected to provide primary, blind (duplicate intralaboratory), and split (triplicate inter-laboratory) replicate samples. In order to minimise the loss of potential volatiles, soil samples were not homogenised. Each sample was labelled with primary, duplicate or triplicate sample identification before being placed in the same chilled esky for transport to the laboratory.

## 6.3.1.4 Equipment Decontamination

Where sampling equipment was required to be reused, i.e. augers, appropriate decontamination procedures, including brushing and rinsing augers, if required, in accordance with standard JBS&G operating procedures were adhered to. Decontamination forms are provided in **Appendix E**.

New nitrile gloves were utilised for the collection of each soil sample to avoid cross contamination between samples and locations.



## 6.3.2 Laboratory Analysis

JBS&G contracted Eurofins | MGT Australia (Eurofins) at Lane Cove, NSW, as the primary laboratory for the required analyses. Envirolab Services Pty Ltd (Envirolab) in Chatswood, NSW, were contracted for analysis of triplicate samples. Eurofins and Envirolab are NATA registered for the required analyses. In addition, the laboratory was required to meet JBS&G internal QA/QC requirements. Laboratory analysis of samples was conducted as summarised in **Table 6.2**.

| Table 6.1: Sampling and | Analytical Program |
|-------------------------|--------------------|
|-------------------------|--------------------|

| Sample Type | No. Sample Locations | Analyses (exc. QA/QC)                                      |
|-------------|----------------------|------------------------------------------------------------|
| Soil        | 16 x boreholes       | VOCs – 10 samples                                          |
|             |                      | Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 15 samples |
|             |                      | PAH – 15 samples                                           |
|             |                      | TRH/BTEX – 10 samples                                      |
|             |                      | OCPs – 5 samples                                           |
|             |                      | PCBs – 2 samples                                           |
|             |                      | Asbestos – 15 samples                                      |

In addition to the above primary analyses, to address the DQIs, field duplicate and triplicate soil samples were analysed at a rate of at least 1/20 primary samples. A rinsate sample was collected from non-disposable soil sampling equipment, and trip blank and trip spike samples will be submitted with each batch of samples.



## 7. Assessment Criteria

## 7.1 Regulatory and Technical Guidelines

The investigation was undertaken with consideration to aspects of the following guidelines, as relevant:

- National Environment Protection (Assessment of Site Contamination) Measure 2013 (as amended 2013), National Environment Protection Council (NEPC 2013);
- Guidelines for Consultants Reporting on Contaminated Sites, NSW OEH (OEH 2011);
- Guidelines for the NSW Site Auditor Scheme, 3<sup>rd</sup> Edition, NSW EPA, 2017 (EPA 2017);
- *Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997*, NSW EPA 2015 (EPA 2015);
- *Guidelines for Assessing Former Orchards and Market Gardens,* NSW DEC, June 2005 (NSW DEC 2005);
- Sampling Design Guidelines, NSW EPA, September 1995 (NSW EPA 1995); and
- Acid Sulfate Soil Manual, NSW Acid Sulfate Soil Management Advisory Committee. August 1998 (ASSMAC 1998).

## 7.2 Assessment Criteria

## 7.2.1 Soil Assessment Criteria

The NEPC (2013) NEPM provides risk-based investigation and screening levels for selected organic and inorganic chemicals in soils. Different levels are provided for a variety of exposure settings including residential, open-space / parks / recreational and commercial / industrial land uses.

It is understood that the site is proposed to be redeveloped to incorporate educational facilities for high (secondary) school aged students, i.e. Year 10 to 12. In accordance with the applicable land use scenarios outlined in NEPC (2013) and the respective risk assessment assumptions utilised in their formulation, analytical data from previous (DP 2018) investigations and the current investigation will be compared against the following human health and ecological investigation and screening levels (HILs/HSLs and EILs/ESLs):

- HIL-C: Public Open Spaces (includes Secondary Schools);
- HSL-A: Residential with Accessible Soils for TRH compounds, as per NEPC (2013) guidance which requires secondary school buildings to be assessed using HSL A;
- HSL-C: Public Open Spaces (includes Secondary Schools) for asbestos (ACM and AF/FA)
- EIL & ESL urban residential and public open space (coarse soil); and
- In addition to the above, aesthetic considerations as per NEPC (2013) will be considered during the current investigation.



## 8. Quality Assurance and Quality Control

Detailed discussion of the QAQC assessment of the dataset is included in Appendix F.

## 8.1 QA/QC Conclusion

The field sampling and handling procedures across the site produced QA/QC results which indicate that data collected is of an acceptable quality for the DSI objectives.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil data are of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.



## 9. Results

Soil sampling locations are shown on **Figure 3** and a summary of soil analytical data with comparison to the adopted site criteria is presented in **Table A**. Detailed laboratory reports and chain of custody documentation is provided in **Appendix H**. Borehole logs are presented in **Appendix D**.

## 9.1 Soil Observations

A photographic log documenting key observation made during the current investigation is provided in **Appendix A** 

A total of 16 soil sampling locations were advanced across the site. All locations (BH\_P\_01 to BH\_P\_14, and BH\_P\_16) identified fill materials between the ground surface (or below hardstand) to a maximum depth of 1.2 m bgs (BH\_P\_03, BH\_P\_06 and BH\_P\_07). Fill materials generally comprised of brown silty sands and silty clays with trace gravels. These materials were generally consistent with the underlying geology, with the exception of anthropogenic inclusions in some boreholes that included ash, asphalt, brick, and some plastic (**Photos 6** and **7**). JBS&G identified minor hydrocarbon odours from materials at BH\_P\_07, in proximity to BH18 (DP 2018) whom also reported hydrocarbon odours from materials in this area of the site (see **Figure 3**). PID readings were recorded between 0 and 8.3 ppm (BH\_P\_07). No staining was noted at any of the borehole locations. No suspected ACM was observed within boreholes advanced as part of this investigation.

Natural material underlying the site generally comprised a brown/grey clay and silty clay overlying shale bedrock. No groundwater seepage was identified at any of the borehole locations.

It is further noted that no indicators of potential acid sulphate soils were observed during intrusive works at the site.

## 9.2 Analytical Results – Soil

Full copies of the laboratory documentation are provided in **Attachment L**. Summarised laboratory results from JBS&G 2019 are presented in **Table A**. Analytical data from DP (2018) are presented in the **Table** section of this report and have been included in the sections below for completeness.

## 9.2.1 Heavy Metals

All individual heavy metals concentrations were reported at levels less than the adopted site assessment criteria for human health.

In relation to ecological criteria, the following exceedances are reported:

- EIL Urban Residential: Copper limit of 60 mg/kg
  - BH\_P\_04\_0-0.15 75 mg/kg;
  - BH\_P\_12\_0.1-0.2 69 mg/kg;
- EIL Urban Residential: Nickel limit of 30 mg/kg
  - BH\_P\_02\_0-0.15 32 mg/kg;
  - BH\_P\_07\_0-0.15 70 mg/kg;
  - BH21-0.0-0.1 38 mg/kg (DP 2018);
- EIL Urban Residential: Zinc limit of 70 mg/kg
  - BH\_P\_01\_0.4-0.5 320 mg/kg;
  - BH\_P\_02\_0-0.15 110 mg/kg;
  - BH\_P\_04\_0-0.15 78 mg/kg;



- BH\_P\_06\_0.8-0.9 310 mg/kg;
- BH\_P\_08\_0.4-0.5 120 mg/kg;
- BH\_P\_09\_0-0.15 190 mg/kg;
- BH\_P\_10\_0.6-0.7 160 mg/kg;
- BH27-0-0.3 1,000 mg/kg (DP 2018).

#### 9.2.2 PAHs

Total PAH and Benzo(a)pyrene (B(a)P) TEQ values for analysed samples were reported at concentrations less than the adopted assessment criteria, with the following exceptions:

- HIL C (Secondary Schools): B(a)P TEQ limit of 3 mg/kg
  - BH\_P\_02\_0-0.15 116 mg/kg;
  - BH\_P\_04\_0-0.15 3.4 mg/kg;
  - BH13-0-0.1 3.2 mg/kg (DP 2018);
  - BH16-0-0.1 16 mg/kg (DP 2018);
  - BH18-0.5 44 mg/kg (DP 2018);
  - BH18-1.0-1.1 56 mg/kg (DP 2018);
  - BH18-1.5 17 mg/kg (DP 2018);
  - BH21-0-0.1 57 mg/kg (DP 2018);
  - BH23-0-0.1 3.4 mg/kg (DP 2018);
  - BH24-0.3-0.4 3.5 mg/kg (DP 2018);
- HIL C (Secondary Schools): PAHs (total) limit of 300 mg/kg
  - BH\_P\_02\_0-0.15 650.6 mg/kg;
  - BH18-0.5 470 mg/kg (DP 2018);
  - BH18-1.0-1.1 620 mg/kg (DP 2018);
- ESL Urban Residential and Public Open Space, Coarse Soil: B(a)P limit of 0.7 mg/kg
  - BH\_P\_02 0-0.15 82 mg/kg;
  - BH\_P\_02 0.4-0.5 1.6 mg/kg;
  - BH\_P\_04 0-0.15 2.5 mg/kg;
  - BH\_P\_05 0.4-0.5 0.9 mg/kg;
  - BH\_P\_06 0.8-0.9 1 mg/kg;
  - BH\_P\_08 0.4-0.5 1.7 mg/kg;
  - BH\_P\_13 0.5-0.6 0.7 mg/kg;
  - BH13-0-0.1 2.2 mg/kg (DP 2018);
  - BH16-0-0.1 16 mg/kg (DP 2018);
  - BH18-0.5 30 mg/kg (DP 2018);
  - BH18-1.0-1.1 38 mg/kg (DP 2018);
  - BH18-1.5 12 mg/kg (DP 2018);



- BH19-0-0.1 1.4 mg/kg (DP 2018);
- BH21-0-0.1 57 mg/kg (DP 2018);
- BH21-1.0-1.1 1.2 mg/kg (DP 2018);
- BH22-0.3-0.4 1.8 mg/kg (DP 2018);
- BH23-0-0.1 2.3 mg/kg (DP 2018);
- BH24-0.3-0.4 2.3 mg/kg (DP 2018);
- BH28-0.4-0.45 1.7 mg/kg (DP 2018);

# 9.2.3 TRH/BTEXN

Concentrations of TRH and BTEXN were reported below the adopted site assessment criteria for all samples, with the exception of:

- HSL A for Vapour Intrusion for Sand (0 to 1m): F2 limit of 110 mg/kg
  - BH\_P\_02 0-0.15 118.5 mg/kg;
  - BH18-1.0-1.1 130 mg/kg (DP 2018);
- HSL A for Direct Contact: F3 limit of 4,500 mg/kg
  - BH21-1.0-1.1 3,500 mg/kg (DP 2018);
  - BH27-0-0.3 2,800 mg/kg (DP 2018);
- HSL A for Vapour Intrusion for Sand (0 to 1m): Naphthalene limit of 3 mg/kg
  - BH18-0.5 8 mg/kg (DP 2018);
  - BH18-1.0-1.1 9.2 mg/kg (DP 2018);
- ESL Urban Residential and Public Open Space, Coarse Soil: TRH C10-C16 limit of 120 mg/kg
  - BH18-1.0-1.1 140 mg/kg (DP 2018);
- ESL Urban Residential and Public Open Space, Coarse Soil: F3 limit of 300 mg/kg
  - BH16-0-0.1 16 mg/kg (DP 2018);
  - BH18-0.5 1,300 mg/kg (DP 2018);
  - BH18-1.0-1.1 1,600 mg/kg (DP 2018);
  - BH20-0-0.1 1,100 mg/kg (DP 2018);
  - BH21-1.0-1.1 3,500 mg/kg (DP 2018);
  - BH24-0.3-0.4 350 mg/kg (DP 2018);
  - BH26-0.2-0.3 300 mg/kg (DP 2018);
  - BH27-0-0.3 2,800 mg/kg (DP 2018);
  - BH28-0.4-0.45 580 mg/kg (DP 2018).

#### 9.2.4 VOCs

Concentrations of VOCs were reported below the adopted health and ecological assessment criteria for all soil samples selected for analysis.

#### 9.2.5 OCPs and PCBs

Concentrations of OCP and PCB compounds were reported below the adopted health and ecological assessment criteria for all soil samples selected for analysis.



#### 9.2.6 Asbestos

No Asbestos Fines, Fibrous Asbestos (AF/FA) or ACM were reported above the health-based assessment criterial or laboratory limit of detection for all samples submitted for analysis.



# **10.** Site Characterisation

Based on the decision-making process for assessing urban redevelopment sites detailed in EPA (2017) and discussed in **Section 6.1.2**, the decisions required to be made are discussed below.

# 10.1 Potential Risks to Future Onsite Receptors

The following discussion relates to the site's data set, and includes analytical data collected from DP (2018), in addition to analytical data collected by JBS&G, as documented herein.

The assessment of site suitability is generally undertaken with consideration to the risks various compounds in the environment potentially pose to human and ecological health under one or more land use scenarios. A Tier 1 assessment of potential risk is undertaken by comparison with generic land use criteria such as published by NEPC (2013).

In consideration of the site's data set, potentially unacceptable risks to the health of human receptors at the site under the adopted land use, pursuant to NEPC (2013), were constrained to PAHs, specifically; carcinogenic PAHS as B(a)P TEQ, PAH totals and TRH.

A review of the borelogs for the site, including those completed by DP (2018), indicate that fill materials encountered at a majority of the sampling locations were observed to contain ash, which is a likely source of elevated PAHs in soil. Furthermore, a majority of sampling locations were advanced utilising solid flight augers, through asphalt that was located at the ground surface. The sampling method is likely to have resulted in the entrainment of PAH rich asphalt through the soil profile as the boreholes were advanced. The binding agent utilised in asphalt is bitumen - a hydrocarbon product comprised of long-chain hydrocarbons and rich in PAHs. JBS&G anticipate that the reported concentrations of PAHs are further enriched by the presence of asphalt within surficial soil samples.

Potentially unacceptable health risks from the potential intrusion of vapours to future site structures was noted from TRH concentrations at two locations, BH\_P\_02 0-0.15 and BH18-1.0-1.1 (DP 2018). The former location was advanced in proximity to the school car park, and the latter was located at the westernmost driveway off Jenkins Street. Fill materials from BH18 (off Jenkins Street) were noted to exhibit hydrocarbon odours and ash within fill materials, which were observed between 0.8 m bgs and 1.8 m bgs. The source of these impacts are unknown. JBS&G consider that there are currently no risks posed by the reported hydrocarbon impacts as there are currently no structures overlying the sampling locations and therefore no risk for the accumulation of vapours. Furthermore, the reported concentrations only marginally exceed the adopted Tier 1 criteria and are likely to attenuate over time due to the volatile nature of the compounds.

Risks to ecological health are often considered in respect to the risks various compounds within the environment pose to ecological health under a given land use scenario and exist for the protection of soil processes, plant species and organisms that inhabit or contact soils.

In relation to the site's data set, concentrations of COPCs were generally reported below the adopted ecological criteria (ESLs/EILs), with the exception of the heavy metals of copper, nickel and zinc, petroleum hydrocarbons, and B(a)P, as presented in **Section 9**.

A review of the borelogs indicate that basalt/dolerite (basic intrusive rock, i.e. blue metal) gravels were present in most locations beneath hardstand and within fill materials. These types of rock are naturally enriched in the heavy metals of nickel and zinc and are the likely source of these compounds in soil.

In relation to the reported concentrations of B(a)P and TRH reported in excess of the adopted ecological screening levels, observations made during the completion of field works indicated that vegetation in proximity to sampling locations that reported elevated levels of these compounds, and across the site in general, appeared to be healthy with no visual indicators of vegetative stress, indicating that soil processes responsible for ecological health did not appear to be inhibited.



Furthermore, NEPC (2013) notes that high molecular weight PAHs such as B(a)P are not readily taken up by plants, and as such are unlikely to pose an unacceptable risk to plant growth. This would particularly be the case of PAH sources such as ash where the PAHs are bound into the matrix.

In relation to the current use of the site as a primary school, noting that the school is currently covered by hardstand and is expected to operate in a condition similar to those observed during the investigation at the site, JBS&G do not consider there to be a complete contamination source-receptor pathway that would present a potentially unacceptable risk to current users of the site.

Considering the proposed future use as a secondary school, it is considered contamination in fill will require to be managed during and following redevelopment activities to ensure there are no complete source-receptor pathways to contaminants.

# 10.2 Background Soil Concentrations

Soil samples collected from material indicated metal concentrations were below the background metal concentrations provided in Olszowy et. al. (1995) and were below the adopted site criteria (**Section 7**) (for natural materials only).

# 10.3 Chemical Mixtures

There were no potential chemical mixtures identified during the investigation that may pose an unacceptable contamination risk at the site with respect to future site users.

# 10.4 Aesthetic Issues

JBS&G noted potential aesthetic issues during the intrusive investigations at the site, relating primarily to anthropogenic inclusions of asphalt, ash, plastics and paper within fill materials. Hydrocarbon odours were noted by DP (2018) at BH18 (Jenkins Street) and at BH\_P\_07 from 0.2 to 1.2 m bgs (PID reported at 3.9 to 8.2 ppm over this interval). However, as per NEPC (2013) guidance, the presence of small quantities of non-hazardous inert materials and low odour residue (for example, weak petroleum hydrocarbon odours) that are expected to decrease over time should not be a cause of concern or limit the use of a site. Furthermore, sites with well-covered known inert materials that present no health hazard such as brick fragments are of low concern for both non-sensitive and sensitive land uses. As such, JBS&G do not consider there to be any significant aesthetic impacts at the site based on the collected data.

No other odours, staining or ACM was not detected during intrusive investigations at any other location.

# 10.5 Potential Migration of Contaminants

The potential for migration of contaminants offsite is considered low given the nature, distribution and depth of identified contamination. JBS&G note that concrete/asphalt hardstand exists across the surface of the site and as such, JBS&G do not consider there to be significant pathways for percolating surface waters to interact with the identified impacts in soils. Furthermore, natural clays beneath fill at the site are likely to retard vertical migration of percolating water, mitigating potential risks to groundwater and / or onsite receptors at the site.

# 10.6 Site Management Strategy

Based on the scope of investigation undertaken, and in accordance with the limitations in **Section 12**, JBS&G consider the site is suitable for the current land use subject to the current configuration of the site being maintained (e.g. hardstand to remain overlying fill materials to remove access to underlying soils from the surface). Should excavation works be required prior to the commencement of redevelopment activities at the site, JBS&G recommend the completion of a Construction Environmental Management Plan (CEMP) or similar to ensure that the current site configuration that enables the site to be considered suitable under the current site uses, are maintained.



JBS&G recommend the development of a Remedial Action Plan (RAP) to manage the potentially unacceptable risks to future site users (and construction workers) based on the identified soil contamination at the site, such that the site can be considered suitable for the proposed education land use.



# **11.** Conclusions and Recommendations

Based on the scope of investigation undertaken, and in accordance with the limitations in **Section 12**, the following conclusions are made:

- Potentially unacceptable concentrations of COPCs were identified within soils at the site, primarily associated with petroleum hydrocarbons and PAHs;
- Based on the current configuration and uses of the site, JBS&G do not consider there to be complete source-receptor pathways that would result in potentially unacceptable risk to current site users (i.e. concrete hardstand separates impacted soils from the ground surface);
- Should excavation works be required prior to the commencement of redevelopment activities at the site, JBS&G recommend the development of a CEMP, or similar, to ensure that the current site configuration that enables the site to be considered suitable under the current site uses, are maintained; and
- JBS&G recommend the development of a RAP to guide the required management of identified soil contamination during and after development such that the site can be considered suitable for the proposed educational land use.



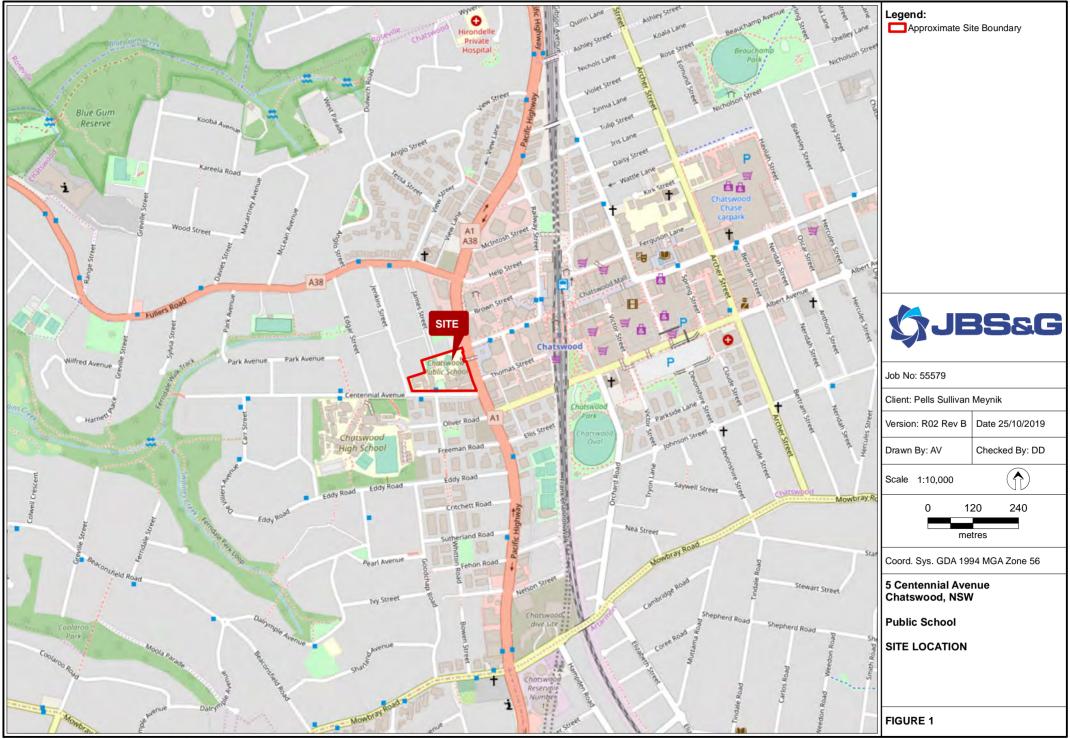
# 12. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquiries.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.


Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

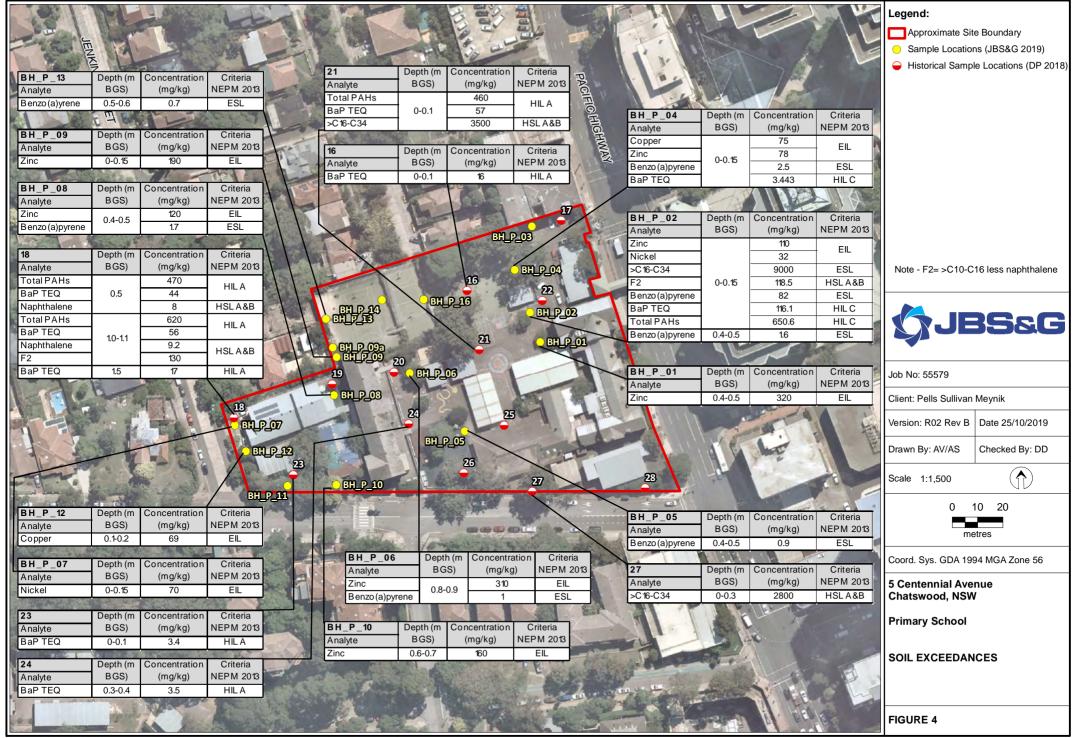
Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.



Figures




File Name: \\JBSG-NSW-FS01\Company Data\Projects\Pells Sullivan Meynink\55579 Chatswood Education Precint\GIS\Maps\R02 Rev B\55579\_01\_SiteLoc.mxd Reference: © OpenStreetMap (and) contributors, CC-BY-SA



File Name: \\JBSG-NSW-FS01\Company Data\Projects\Pells Sullivan Meynink\55579 Chatswood Education Precint\GIS\Maps\R02 Rev B\55579\_02\_SiteLay.mxd Reference: Nearmap - nearmap.com.au - Imagery 27-12-2018



File Name: \\JBSG-NSW-FS01\Company Data\Projects\Pells Sullivan Meynink\55579 Chatswood Education Precint\GIS\Maps\R02 Rev B\55579\_03\_SampleLoc.mxd Reference: Nearmap - nearmap.com.au - Imagery 27-12-2018



File Name: \\JBSG-NSW-FS01\Company Data\Projects\Pells Sullivan Meynink\55579 Chatswood Education Precint\GIS\Maps\R02 Rev B\55579\_04\_Exceedances.mxd Reference: Nearmap - nearmap.com.au - Imagery 27-12-2018



Tables

|                                                                    |                   |         |                    | Aetals &         | Metalloi           | ds                  |                  |                  |                | ТРН              | s (NEPC 1        | 1999)            |                          |                   |                   | TRH               | s (NEPC 2                 | 013)                           |                 |                       |
|--------------------------------------------------------------------|-------------------|---------|--------------------|------------------|--------------------|---------------------|------------------|------------------|----------------|------------------|------------------|------------------|--------------------------|-------------------|-------------------|-------------------|---------------------------|--------------------------------|-----------------|-----------------------|
| <b>JBS&amp;G</b>                                                   | Arsenic (Total)   | Cadmium | Chromium (Total)   | Copper           | Lead               | Mercury (Inorganic) | Nickel           | Zinc             | C6-C9 Fraction | C10-C14 Fraction | C15-C28 Fraction | C29-C36 Fraction | C10-C36 Fraction (Total) | >C10-C16 Fraction | >C16-C34 Fraction | >C34-C40 Fraction | >C10-C40 Fraction (Total) | >C10-C16 less Naphthalene (F2) | C6-C10 Fraction | C6-C10 less BTEX (F1) |
|                                                                    | mg/kg             | mg/kg   | mg/kg              | mg/kg            | mg/kg              | mg/kg               | mg/kg            | mg/kg            | mg/kg          | mg/kg            | mg/kg            | mg/kg            | mg/kg                    | mg/kg             | mg/kg             | mg/kg             | mg/kg                     | mg/kg                          | mg/kg           | mg/kg                 |
| EQL                                                                | 2                 | 0.4     | 5                  | 5                | 5                  | 0.1                 | 5                | 5                | 20             | 20               | 50               | 50               | 50                       | 50                | 100               | 100               | 100                       | 50                             | 20              | 20                    |
| NEPM 2013 EIL - Urban Residential (generic)                        | 100               |         | 190 <sup>#1</sup>  | 60 <sup>#2</sup> | 1100               |                     | 30 <sup>#3</sup> | 70 <sup>#4</sup> |                |                  |                  |                  |                          |                   |                   |                   |                           |                                |                 |                       |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil |                   |         |                    |                  |                    |                     |                  |                  |                |                  |                  |                  |                          |                   | 300 <sup>#5</sup> | 2800#5            |                           | 120 <sup>#6</sup>              |                 | 180 <sup>#6</sup>     |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Recreational - HSL C |                   |         |                    |                  |                    |                     |                  |                  |                |                  |                  |                  |                          |                   |                   |                   |                           |                                |                 |                       |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                     |                   |         |                    |                  |                    |                     |                  |                  |                |                  |                  |                  |                          |                   |                   |                   |                           |                                |                 |                       |
| NEPM 2013 Soil HIL C                                               | 300 <sup>#9</sup> | 90      | 300 <sup>#10</sup> | 17000            | 600 <sup>#11</sup> | 80 <sup>#12</sup>   | 1200             | 30000            |                |                  |                  |                  |                          |                   |                   |                   |                           |                                |                 |                       |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m  |                   |         |                    |                  |                    |                     |                  |                  |                |                  |                  |                  |                          |                   |                   |                   |                           | 110 <sup>#16</sup>             |                 | 45 <sup>#17</sup>     |

| Sample ID                      | Sample Date | Report Number |     |      |     |     |     |      |     |     |     |     |      |      |        |     |      |      |        |       |     |     |
|--------------------------------|-------------|---------------|-----|------|-----|-----|-----|------|-----|-----|-----|-----|------|------|--------|-----|------|------|--------|-------|-----|-----|
| BH_P_01 0.4-0.5                | 23/01/2019  | 637818        | 8.2 | <0.4 | 15  | <5  | 16  | <0.1 | <5  | 320 | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_02 0-0.15                 | 23/01/2019  | 637818        | 2.1 | 0.7  | 29  | 44  | 100 | <0.1 | 32  | 110 | <40 | <20 | 6400 | 3900 | 10,300 | 120 | 9000 | 2200 | 11,320 | 118.5 | <40 | <40 |
| BH_P_02 0.4-0.5                | 23/01/2019  | 639419        | -   | -    | -   | -   | -   | -    | -   | -   | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_03 1-1.1                  | 23/01/2019  | 637818        | 4.1 | <0.4 | 14  | <5  | 23  | <0.1 | <5  | 6.3 | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_04 0-0.15                 | 23/01/2019  | 637818        | 3.8 | <0.4 | 12  | 75  | 58  | <0.1 | 8.3 | 78  | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_05 0.4-0.5                | 23/01/2019  | 637818        | 4.4 | <0.4 | 14  | 8.8 | 19  | <0.1 | 8.5 | 14  | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_06 0.8-0.9                | 23/01/2019  | 637818        | 4.5 | 0.4  | 11  | 34  | 98  | 0.1  | 6.7 | 310 | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_07 0-0.15                 | 22/01/2019  | 637818        | <2  | <0.4 | 42  | 55  | <5  | <0.1 | 70  | 55  | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_08 0.4-0.5                | 24/01/2019  | 637818        | 4   | <0.4 | 9.1 | 18  | 180 | <0.1 | 6   | 120 | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_09 0-0.15                 | 24/01/2019  | 637818        | 2.7 | <0.4 | 5.1 | 15  | 14  | <0.1 | <5  | 190 | <20 | <20 | 54   | 120  | 174    | <50 | 130  | <100 | 130    | <50   | <20 | <20 |
| BH_P_10 0.6-0.7                | 24/01/2019  | 637818        | 4.9 | <0.4 | 13  | 20  | 32  | <0.1 | <5  | 160 | -   | -   | -    | -    | -      | -   | -    | -    | -      | -     | -   | -   |
| BH_P_12 0.1-0.2                | 11/10/2019  | 682072        | 5.3 | <0.4 | 15  | 69  | 24  | <0.1 | 6   | 26  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_13 0.1-0.2                | 10/10/2019  | 682072        | 13  | <0.4 | 12  | 35  | 53  | <0.1 | <5  | 36  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| QA01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 228207        | 19  | <0.4 | 9   | 31  | 37  | <0.1 | 5   | 30  | <25 | <50 | <100 | <100 | -      | <50 | <100 | <100 | <50    | <50   | <25 | <25 |
| QC01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 682072        | 12  | <0.4 | 14  | 39  | 48  | <0.1 | <5  | 40  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_13 0.5-0.6                | 10/10/2019  | 682072        | 16  | <0.4 | 10  | 50  | 37  | <0.1 | 8.6 | 49  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_14 0.4-0.5                | 10/10/2019  | 682072        | 5.9 | <0.4 | 15  | 18  | 21  | <0.1 | 7   | 38  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |
| BH_P_16 0.4-0.5                | 11/10/2019  | 682072        | 5   | <0.4 | 21  | 37  | 38  | <0.1 | 5.4 | 24  | <20 | <20 | <50  | <50  | <50    | <50 | <100 | <100 | <100   | <50   | <20 | <20 |

#1:TV taken for Chromium (III), Clay Content of 1%

#2:TV taken for pH 4.5

#3:TV taken for CEC 5

#4:TV taken for pH 4 and CEC 5

#5:ESLs are of low reliability.

#6:ESLs are of moderate reliability.

#7:Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.

#8:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures (refer Section 4.10). This screening level is not applicable to free fibres. #9:Key limitations of HSL should be referred to prior to application in Friebel and Nadebaum (2011b and 2011d).

#10:TV adopted from Chromium (VI)

#11:Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b).

#12:Refer to HSL and soil saturation concentration limit.

#13:Refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).

#14:TV maybe be multiplied by a factor to account for biodegradation of vapour

#15:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific assessment should be untertaken

#16:To obtain F2 subtract naohthalene from >C10-C16.

|                                                                    |                  |              |                  | BTEXN      |                |                |             |              |                |            |                    |                   |                        | Pol                  | ycyclic Aı           | omatic   | Hydroca                 | bons                           |              |          |                         |              |                    |        |
|--------------------------------------------------------------------|------------------|--------------|------------------|------------|----------------|----------------|-------------|--------------|----------------|------------|--------------------|-------------------|------------------------|----------------------|----------------------|----------|-------------------------|--------------------------------|--------------|----------|-------------------------|--------------|--------------------|--------|
| JBS&G                                                              | Benzene          | Ethylbenzene | Toluene          | Xylene (o) | Xylene (m & p) | Xylene (Total) | Naphthalene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a) anthracene | Benzo(a)pyrene    | Benzo(b,j)fluoranthene | Benzo(g,h,i)perylene | Benzo(k)fluoranthene | Chrysene | Dibenz(a,h) an thracene | Carcinogenic PAHs as B(a)P TEQ | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | Phenanthrene | PAHs (Total)       | Pyrene |
|                                                                    | mg/kg            | mg/kg        | mg/kg            | mg/kg      | mg/kg          | mg/kg          | mg/kg       | mg/kg        | mg/kg          | mg/kg      | mg/kg              | mg/kg             | mg/kg                  | mg/kg                | mg/kg                | mg/kg    | mg/kg                   | mg/kg                          | mg/kg        | mg/kg    | mg/kg                   | mg/kg        | mg/kg              | mg/kg  |
| EQL                                                                | 0.1              | 0.1          | 0.1              | 0.1        | 0.2            | 0.3            | 0.5         | 0.5          | 0.5            | 0.5        | 0.5                | 0.5               | 0.5                    | 0.5                  | 0.5                  | 0.5      | 0.5                     |                                | 0.5          | 0.5      | 0.5                     | 0.5          | 0.5                | 0.5    |
| NEPM 2013 EIL - Urban Residential (generic)                        |                  |              |                  |            |                |                | 170         |              |                |            |                    |                   |                        |                      |                      |          |                         |                                |              |          |                         |              |                    |        |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil | 50 <sup>#5</sup> | 70#5         | 85 <sup>#5</sup> |            |                | 105#5          |             |              |                |            |                    | 0.7 <sup>#5</sup> |                        |                      |                      |          |                         |                                |              |          |                         |              |                    |        |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Recreational - HSL C |                  |              |                  |            |                |                |             |              |                |            |                    |                   |                        |                      |                      |          |                         |                                |              |          |                         |              |                    |        |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                     |                  |              |                  |            |                |                |             |              |                |            |                    |                   |                        |                      |                      |          |                         |                                |              |          |                         |              |                    |        |
| NEPM 2013 Soil HIL C                                               |                  |              |                  |            |                |                |             |              |                |            |                    |                   |                        |                      |                      |          |                         | 3 <sup>#13</sup>               |              |          |                         |              | 300 <sup>#14</sup> |        |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m  | 0.5              | 55           | 160              |            |                | 40             | 3           |              |                |            |                    |                   |                        |                      |                      |          |                         |                                |              |          |                         |              |                    |        |

| Sample ID                      | Sample Date | Report Number |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |                     |      |      |      |      |       |      |
|--------------------------------|-------------|---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------------------|------|------|------|------|-------|------|
| BH_P_01 0.4-0.5                | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_02 0-0.15                 | 23/01/2019  | 637818        | <0.2 | <0.2 | <0.2 | <0.2 | <0.4 | <0.6 | 0.7  | 1    | 1.7  | 7.2  | 47   | 82   | 55   | 41   | 59   | 48   | 11   | 116.1 <sup>#2</sup> | 96   | 1    | 61   | 29   | 650.6 | 110  |
| BH_P_02 0.4-0.5                | 23/01/2019  | 639419        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | 1.4  | 1.6  | 1.1  | 1    | 1.4  | 1.6  | <0.5 | 2.336 <sup>#2</sup> | 3.5  | <0.5 | 0.7  | 1.2  | 17.1  | 3.6  |
| BH_P_03 1-1.1                  | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_04 0-0.15                 | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | 1.5  | 2.5  | 1.9  | 0.8  | 1.9  | 1.5  | <0.5 | 3.443 <sup>#2</sup> | 2.6  | <0.5 | 1.4  | 1    | 18    | 2.9  |
| BH_P_05 0.4-0.5                | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | 0.6  | 0.9  | 0.5  | <0.5 | 0.7  | 0.5  | <0.5 | 1.408 <sup>#2</sup> | 1.3  | <0.5 | 0.7  | 0.9  | 7.5   | 1.4  |
| BH_P_06 0.8-0.9                | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | 0.6  | 1    | 0.9  | <0.5 | 1    | 0.7  | <0.5 | 1.56 <sup>#2</sup>  | 1.1  | <0.5 | 0.5  | <0.5 | 7     | 1.2  |
| BH_P_07 0-0.15                 | 22/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_08 0.4-0.5                | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | 1.3  | 1.7  | 1.2  | 0.6  | 1.5  | 1.1  | <0.5 | 2.457 <sup>#2</sup> | 2.5  | <0.5 | 0.9  | 1.5  | 14.8  | 2.5  |
| BH_P_09 0-0.15                 | 24/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_10 0.6-0.7                | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#5             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_12 0.1-0.2                | 11/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#6             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_13 0.1-0.2                | 10/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#6             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| QA01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 228207        | <0.2 | <1   | <0.5 | <1   | <2   | <3   | <0.1 | <0.1 | <0.1 | <0.1 | 0.3  | 0.4  | -    | 0.3  | -    | 0.3  | <0.1 | 0.506 <sup>#2</sup> | 0.5  | <0.1 | 0.2  | 0.1  | -     | 0.5  |
| QC01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#6             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_13 0.5-0.6                | 10/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | 0.6  | 0.7  | 0.8  | <0.5 | 0.7  | 0.7  | <0.5 | 1.195 <sup>#3</sup> | 0.8  | <0.5 | <0.5 | <0.5 | 5.2   | 0.9  |
| BH_P_14 0.4-0.5                | 10/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#6             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |
| BH_P_16 0.4-0.5                | 11/10/2019  | 682072        | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.21#6             | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 |

#1:TV taken for Chromium (III), Clay Content of 1%

#2:TV taken for pH 4.5

#3:TV taken for CEC 5

#4:TV taken for pH 4 and CEC 5

#5:ESLs are of low reliability.

#6:ESLs are of moderate reliability.

#7:Recreational C includes public open space such as parks, playgrounds, playing fiel
#8:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bondec
#9:Key limitations of HSL should be referred to prior to application in Friebel and Nac
#10:TV adopted from Chromium (VI)

#11:Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b) #12:Refer to HSL and soil saturation concentration limit.

#13:Refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).

#14:TV maybe be multiplied by a factor to account for biodegradation of vapour

#15:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific

#16:To obtain F2 subtract naohthalene from >C10-C16.

|                                                                    |         |        |                                  |           |          |           |       |       |          | Org                        | anochlori | ine Pestic       | ides            |                     |        |                 |               |            |                    |         |              |           |
|--------------------------------------------------------------------|---------|--------|----------------------------------|-----------|----------|-----------|-------|-------|----------|----------------------------|-----------|------------------|-----------------|---------------------|--------|-----------------|---------------|------------|--------------------|---------|--------------|-----------|
| JBS&G                                                              | 4,4-DDE | Aldrin | Aldrin + Dieldrin (Sum of Total) | alpha-BHC | beta-BHC | Chlordane | DDD   | DDT   | Dieldrin | DDT+DDE+DDD (Sum of Total) | delta-BHC | Endosulfan alpha | Endosulfan beta | Endosulfan sulphate | Endrin | Endrin aldehyde | Endrin ketone | Heptachlor | Heptachlor Epoxide | Lindane | Methoxychlor | Toxaphene |
|                                                                    | mg/kg   | mg/kg  | mg/kg                            | mg/kg     | mg/kg    | mg/kg     | mg/kg | mg/kg | mg/kg    | mg/kg                      | mg/kg     | mg/kg            | mg/kg           | mg/kg               | mg/kg  | mg/kg           | mg/kg         | mg/kg      | mg/kg              | mg/kg   | mg/kg        | mg/kg     |
| EQL                                                                | 0.05    | 0.05   | 0.05                             | 0.05      | 0.05     | 0.1       | 0.05  | 0.05  | 0.05     | 0.05                       | 0.05      | 0.05             | 0.05            | 0.05                | 0.05   | 0.05            | 0.05          | 0.05       | 0.05               | 0.05    | 0.05         | 1         |
| NEPM 2013 EIL - Urban Residential (generic)                        |         |        |                                  |           |          |           |       | 180   |          |                            |           |                  |                 |                     |        |                 |               |            |                    |         |              |           |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil |         |        |                                  |           |          |           |       |       |          |                            |           |                  |                 |                     |        |                 |               |            |                    |         |              |           |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Recreational - HSL C |         |        |                                  |           |          |           |       |       |          |                            |           |                  |                 |                     |        |                 |               |            |                    |         |              |           |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                     |         |        |                                  |           |          |           |       |       |          |                            |           |                  |                 |                     |        |                 |               |            |                    |         |              |           |
| NEPM 2013 Soil HIL C                                               |         |        | 10                               |           |          | 70        |       |       |          | 400                        |           |                  |                 |                     | 20     |                 |               | 10         |                    |         | 400          | 30        |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m  |         |        |                                  |           |          |           |       |       |          |                            |           |                  |                 |                     |        |                 |               |            |                    |         |              |           |

| Sample Date | Report Number                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                         |                                     |                                     |                                     |                                     |                                     |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23/01/2019  | 637818                                                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                   | <0.05                                   | <0.05                               | <0.05                               | <0.1                                | <0.05                               | <0.05                               | <0.05                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23/01/2019  | 637818                                                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                   | <0.05                                   | <0.05                               | <0.05                               | <0.1                                | <0.05                               | <0.05                               | <0.05                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23/01/2019  | 639419                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23/01/2019  | 637818                                                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                   | <0.05                                   | <0.05                               | <0.05                               | <0.1                                | <0.05                               | <0.05                               | <0.05                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23/01/2019  | 637818                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23/01/2019  | 637818                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23/01/2019  | 637818                                                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                   | <0.05                                   | <0.05                               | <0.05                               | <0.1                                | <0.05                               | <0.05                               | <0.05                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22/01/2019  | 637818                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24/01/2019  | 637818                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24/01/2019  | 637818                                                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                   | <0.05                                   | <0.05                               | <0.05                               | <0.1                                | <0.05                               | <0.05                               | <0.05                                                                                                                                                                                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24/01/2019  | 637818                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11/10/2019  | 682072                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10/10/2019  | 682072                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10/10/2019  | 228207                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10/10/2019  | 682072                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10/10/2019  | 682072                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10/10/2019  | 682072                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11/10/2019  | 682072                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       | -                                       | -                                   | -                                   | -                                   | -                                   | -                                   | -                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 23/01/2019<br>23/01/2019<br>23/01/2019<br>23/01/2019<br>23/01/2019<br>23/01/2019<br>23/01/2019<br>23/01/2019<br>23/01/2019<br>22/01/2019<br>24/01/2019<br>24/01/2019<br>10/10/2019<br>10/10/2019<br>10/10/2019<br>10/10/2019 | 23/01/2019       637818         23/01/2019       637818         23/01/2019       639419         23/01/2019       639419         23/01/2019       637818         23/01/2019       637818         23/01/2019       637818         23/01/2019       637818         23/01/2019       637818         23/01/2019       637818         23/01/2019       637818         24/01/2019       637818         24/01/2019       637818         24/01/2019       637818         24/01/2019       637818         11/10/2019       682072         10/10/2019       682072         10/10/2019       682072         10/10/2019       682072         10/10/2019       682072         10/10/2019       682072         10/10/2019       682072 | 23/01/2019         637818         <0.05 | 23/01/2019         637818         <0.05 | 23/01/2019       637818       <0.05 | 23/01/2019       637818       <0.05 | 23/01/2019       637818       <0.05 | 23/01/2019       637818       <0.05 | 23/01/2019       637818       <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.01         <0.05         <0.05           23/01/2019         637818         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019       637818       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05      <0.05       <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 | 23/01/2019         637818         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05 |

#1:TV taken for Chromium (III), Clay Content of 1%

#2:TV taken for pH 4.5

#3:TV taken for CEC 5

#4:TV taken for pH 4 and CEC 5

#5:ESLs are of low reliability.

#6:ESLs are of moderate reliability.

#7:Recreational C includes public open space such as parks, playgrounds, playing fiel
#8:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bondec
#9:Key limitations of HSL should be referred to prior to application in Friebel and Nac
#10:TV adopted from Chromium (VI)

#11:Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b) #12:Refer to HSL and soil saturation concentration limit.

#13:Refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).

#14:TV maybe be multiplied by a factor to account for biodegradation of vapour

#15:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific

#16:To obtain F2 subtract naohthalene from >C10-C16.

|                                                                    |              |                          | Polyc        | hlorinat     | ed Biphe         | enyls        |                 |                  | <b>Chlorinated Benzenes</b> |                      |                           |                                                   | Asb        | estos                |         |                     |            |                |                            | Other            |
|--------------------------------------------------------------------|--------------|--------------------------|--------------|--------------|------------------|--------------|-----------------|------------------|-----------------------------|----------------------|---------------------------|---------------------------------------------------|------------|----------------------|---------|---------------------|------------|----------------|----------------------------|------------------|
| <b>JBS&amp;G</b>                                                   | Aroclor 1016 | ଅ<br>ଅନ୍ଧ୍ୟ Aroclor 1221 | Aroclor 1232 | Aroclor 1242 | and Aroclor 1248 | Aroclor 1254 | ay/au<br>Bay/au | Bay PCBs (Total) | Hexachlorobenzene<br>mg/kg  | Mapprox. Sample Mass | Asbestos from ACM in Soil | <pre>% % Asbestos from FA &amp; AF in Soil </pre> | m Mass ACM | Mass Asbestos in ACM | Mass FA | Mass Asbestos in FA | Da Mass AF | Asbestos in AF | m Mass Asbestos in FA & AF | % Moisture 103oC |
| 501                                                                |              |                          |              |              |                  |              |                 |                  |                             | 5                    | 70 007 00                 | /0 00/ 00                                         | 5          | 5                    | δ       | 5                   | δ          | δ              | δ                          | 70               |
| EQL                                                                | 0.1          | 0.1                      | 0.1          | 0.1          | 0.1              | 0.1          | 0.1             | 0.1              | 0.05                        |                      |                           |                                                   |            |                      |         |                     |            |                |                            | 1                |
| NEPM 2013 EIL - Urban Residential (generic)                        |              |                          |              |              |                  |              |                 |                  |                             |                      |                           |                                                   |            |                      |         |                     |            |                |                            |                  |
| NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil |              |                          |              |              |                  |              |                 |                  |                             |                      |                           |                                                   |            |                      |         |                     |            |                |                            |                  |
| NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Recreational - HSL C |              |                          |              |              |                  |              |                 |                  |                             |                      | 0.02 <sup>#7</sup>        |                                                   |            |                      |         |                     |            |                |                            |                  |
| NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL                     |              |                          |              |              |                  |              |                 |                  |                             |                      |                           | 0.001 <sup>#8</sup>                               |            |                      |         |                     |            |                |                            |                  |
| NEPM 2013 Soil HIL C                                               |              |                          |              |              |                  |              |                 | 1 <sup>#15</sup> | 10                          |                      |                           |                                                   |            |                      |         |                     |            |                |                            |                  |
| NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m  |              |                          |              |              |                  |              |                 |                  |                             |                      |                           |                                                   |            |                      |         |                     |            |                |                            |                  |

| Sample ID                      | Sample Date | Report Number |      |      |      |      |      |      |      |      |       |     |   |   |   |   |   |   |   |   |   |     |
|--------------------------------|-------------|---------------|------|------|------|------|------|------|------|------|-------|-----|---|---|---|---|---|---|---|---|---|-----|
| BH_P_01 0.4-0.5                | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.05 | 488 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20  |
| BH_P_02 0-0.15                 | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | <0.05 | 697 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.9 |
| BH_P_02 0.4-0.5                | 23/01/2019  | 639419        | -    | -    | -    | -    | -    | -    | -    | -    | -     | -   | - | - | - | - | - | - | - | - | - | 8.6 |
| BH_P_03 1-1.1                  | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | <0.05 | 685 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14  |
| BH_P_04 0-0.15                 | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 818 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.4 |
| BH_P_05 0.4-0.5                | 23/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 643 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.8 |
| BH_P_06 0.8-0.9                | 23/01/2019  | 637818        | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.05 | 544 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16  |
| BH_P_07 0-0.15                 | 22/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 789 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.4 |
| BH_P_08 0.4-0.5                | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 618 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17  |
| BH_P_09 0-0.15                 | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | <0.05 | 608 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.7 |
| BH_P_10 0.6-0.7                | 24/01/2019  | 637818        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 706 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15  |
| BH_P_12 0.1-0.2                | 11/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 422 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19  |
| BH_P_13 0.1-0.2                | 10/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20  |
| QA01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 228207        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 657 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21  |
| QC01 (primary BH_P_13 0.1-0.2) | 10/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 430 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22  |
| BH_P_13 0.5-0.6                | 10/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 474 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23  |
| BH_P_14 0.4-0.5                | 10/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 629 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14  |
| BH_P_16 0.4-0.5                | 11/10/2019  | 682072        | -    | -    | -    | -    | -    | -    | -    | -    | -     | 375 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21  |

#1:TV taken for Chromium (III), Clay Content of 1%

#2:TV taken for pH 4.5

#3:TV taken for CEC 5

#4:TV taken for pH 4 and CEC 5

#5:ESLs are of low reliability.

#6:ESLs are of moderate reliability.

#7:Recreational C includes public open space such as parks, playgrounds, playing fiel
#8:The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bondec
#9:Key limitations of HSL should be referred to prior to application in Friebel and Nac
#10:TV adopted from Chromium (VI)

#11:Assumptions of HSL are presented in Friebel and Nadebaum (2011a and 2011b) #12:Refer to HSL and soil saturation concentration limit.

#13:Refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).

#14:TV maybe be multiplied by a factor to account for biodegradation of vapour

#15:HIL relates to non-dioxin-like PCBs only. If PCB source is suspected a site-specific

#16:To obtain F2 subtract naohthalene from >C10-C16.



#### Table K1: Summary of Laboratory Results for Soil Analysis

| Table K1: Summary of Labor                                          | atory Result                      | s for Soil A         | nalysis     |               |                 | He        | eavy Metal       | s       |              |         |              |                    |            | P                | AH               |          |              | TRH/       | трні                                           |
|---------------------------------------------------------------------|-----------------------------------|----------------------|-------------|---------------|-----------------|-----------|------------------|---------|--------------|---------|--------------|--------------------|------------|------------------|------------------|----------|--------------|------------|------------------------------------------------|
| Sample                                                              | Soil Type<br>(C=coarse<br>F=fine) | Date<br>Sampled      | As          | Cd            | Cr <sup>c</sup> | Cu        | Pb               | тссР Рь | Hg           | Ni      | Zn           | total <sup>d</sup> | TCLP total | BaP TEQ          | ВаР              | TCLP BaP | Naphthalene  | ° C        | C <sub>10</sub> - C <sub>36</sub> <sup>e</sup> |
| Soil Assessment Criteria (SA                                        |                                   | ac amondor           | mg/kg       | mg/kg         | mg/kg           | mg/kg     | mg/kg            | mg/L    | mg/kg        | mg/kg   | mg/kg        | mg/kg              | mg/L       | mg/kg            | mg/kg            | mg/L     | mg/kg        | mg/kg      | mg/kg                                          |
| Residential with Accessible S                                       | <i>,</i> ,                        | as amended           | 1 2013) (re | ter to report | body for de     | etails)   |                  |         |              |         |              |                    |            |                  |                  |          |              |            |                                                |
| HIL A                                                               |                                   |                      | 100         | 20            | 100 °           | 6,000     | 300              |         | 40           | 400     | 7,400        | 300                |            | 3                |                  |          |              |            |                                                |
| EIL/ ESL                                                            | coarse                            |                      | 100         | 20            | 250             | 110       | 1,100            |         | -10          | 35      | 250          | 000                |            | 0                | 0.7              |          | 170          |            |                                                |
| EIL/ ESL                                                            | fine                              |                      | 100         |               | 640             | 110       | 1,100            |         |              | 270     | 290          |                    |            |                  | 0.7              |          | 170          |            |                                                |
| Management Limit                                                    | coarse                            |                      |             |               |                 |           | 1                |         |              | -       |              |                    |            |                  |                  |          | -            |            |                                                |
| Management Limit                                                    | fine                              |                      |             |               |                 |           |                  |         |              |         |              |                    |            |                  |                  |          |              |            |                                                |
| HSL A&B, vapour intrusion, 0-<                                      |                                   |                      |             | -             |                 |           |                  |         |              |         |              |                    |            |                  |                  |          | 3            |            |                                                |
| HSL A&B, vapour intrusion, 0                                        | am, clay                          |                      |             |               |                 |           |                  |         |              |         |              |                    |            |                  |                  |          | 5<br>1,400   |            |                                                |
| Waste Classification Thresho                                        | lde                               |                      |             |               |                 |           |                  |         |              |         |              |                    |            |                  |                  |          | 1,400        |            |                                                |
|                                                                     | C <sup>-</sup>                    | T1                   | 100         | 20            | 100             |           | 100              |         | 4            | 40      |              | 200                |            |                  | 0.8              |          |              | 650        | 10,000                                         |
| General Solid                                                       | SCC1/                             |                      | 500         | 100           | 1,900           |           | 1,500            | 5       | 50           | 1,050   |              | 200                |            |                  | 10               | 0.04     |              | 650        | 10,000                                         |
|                                                                     | C                                 |                      | 400         | 80            | 400             |           | 400              | 5       | 16           | 160     |              | 800                |            |                  | 3.2              | 0.04     |              | 2,600      | 40,000                                         |
| Restricted Solid                                                    |                                   | TCLP2                | 2,000       | 400           | 7,600           |           | 6,000            | 20      | 200          | 4,200   |              | 800                |            |                  | 3.2<br>23        | 0.16     |              | 2,600      | 40,000                                         |
| Published Background Rang                                           |                                   |                      |             |               | 1,000           | I]        | 0,000            | 20      | 200          | 7,200   | 1            | 000                |            |                  | 20               | 0.10     | I            | 2,000      | -0,000                                         |
| NEPC (1999)                                                         |                                   |                      | 1-50        | 1             | 5-1000          | 2-100     | 2-200            |         | 0.03         | 5-500   | 10-300       |                    |            |                  |                  |          |              |            |                                                |
| ANZECC (1992)                                                       |                                   |                      | 0.2-30      | 0.04-2        | 0.5-110         | 1-190     | <2-200           |         | 0.001-0.1    | 2-400   | 2-180        | 0.95-5             |            |                  |                  |          |              |            |                                                |
| ANZECC (2000)                                                       |                                   |                      | 1-53        | 0.016-0.78    |                 | 0.4-412   | 2-81             |         |              | 1-517   | 1-263        |                    |            |                  |                  |          |              |            |                                                |
| Laboratory Results                                                  |                                   |                      |             | •             | •               |           |                  | •       |              |         |              |                    |            |                  | •                |          |              |            |                                                |
| High School                                                         |                                   |                      |             |               |                 |           |                  |         |              |         |              |                    |            |                  |                  |          |              |            |                                                |
| 1 / 0.5-0.6                                                         | filling-F                         | 22/01/18             | 6           | <0.4          | 12              | 20        | 52               |         | <0.1         | 8       | 280          | < 0.05             |            | <0.5             | < 0.05           |          | <0.1         | <25        | <250                                           |
| REPLICATE1-220118                                                   | filling-F                         | 22/01/18             | 13          | <0.4          | 16              | 27        | 58               |         | <0.1         | 13      | 490          | <0.5               |            | <0.5             | <0.5             |          | <0.1         | 120        | 1200                                           |
| 2 / 0.1                                                             | silty clay?                       | 23/01/18             | 4           | <0.4          | 10              | 13        | 70               |         | <0.1         | 3       | 86           | 0.2                |            | <0.5             | <0.05            |          | <0.0         | <25        | 195                                            |
| 3 / 0-0.1                                                           | silty clay?                       | 23/01/18             | 5           | <0.4          | 14              | 13        | 18               |         | <0.1         | 3       | 15           | 0.2                |            | <0.5             | 0.09             |          | <0.1         | <25        | <250                                           |
| Replicate 6                                                         | silty clay?                       | 23/01/18             | 5           | <0.4          | 12              | 14        | 33               |         | <0.1         | 4       | 28           | 2.6                |            | <0.5             | 0.09             |          | <0.1         | <20        | <200                                           |
| 4 / 0-0.1                                                           | filling-C                         | 23/01/18             |             | <0.4          | 12              | 25        | 62               |         | 0.1          | 4       | 120          | 2.0<br>8           |            | <0.5             | 0.2              |          | <0.1         | <25        | <250                                           |
| 5 / 1-1.1                                                           | filling-F                         | 22/01/18             | 9<br>7      | <0.4          |                 | 25<br>18  | 26               |         | <0.1         | 7       |              | o<br><0.05         |            | <0.5             | <0.05            |          | <0.1         | <25        | <250                                           |
| • / · · · ·                                                         | , °                               |                      | -           | <0.4          | 14<br>5         | 8         | 16               |         |              | 1       | 34<br>3      |                    |            | <0.5             | <0.05            |          |              | <25        | <250                                           |
| 6 / 0.2-0.3<br>7 / 0-0.1                                            | silty clay                        | 22/01/18             | <4<br>7     | <0.4          | 28              | 36        | 38               |         | <0.1         | 25      | 83           | <0.05<br>0.1       |            | <0.5             | <0.05            |          | <0.1<br><0.1 | <25<br><25 | <250                                           |
| , , ,                                                               | filling-C                         | 23/01/18             | 7           |               |                 |           |                  | 0.07    | <0.1         |         |              | -                  |            |                  |                  |          |              |            |                                                |
| 7 / 0.5-0.6<br>8 / 0-0.1                                            | filling-F<br>filling-C            | 23/01/18<br>23/01/18 | /<br><4     | <0.4<br><0.4  | 12<br>41        | 30<br>51  | 130<br>15        | 0.07    | <0.1<br><0.1 | 8<br>46 | 82<br>59     | <0.05<br>0.2       |            | <0.5<br><0.5     | <0.05<br><0.05   |          | <0.1<br><0.1 | <25<br><25 | <250<br>770                                    |
| 8 / 0.7-0.8                                                         | filling-C                         | 23/01/18             | <4<br>8     | <0.4          | 10              | 19        | 15               |         | <0.1         | 40<br>7 | 31           | <0.2               |            | <0.5             | <0.05            |          | <0.1         | <25<br><25 | <250                                           |
| 9 / 0.2-0.3                                                         | filling-F                         | 22/01/18             | 12          | <0.4          | 8               | 56        | 8                |         | <0.1         | 33      | 35           | < 0.05             |            | <0.5             | <0.05            |          | <0.1         | <25        | 775                                            |
| 10 / 2-2.1                                                          | filling-F                         | 22/01/18             | 8           | <0.4          | 13              | 21        | 24               |         | <0.1         | 9       | 53           | 0.3                |            | <0.5             | 0.06             |          | <0.1         | <25        | <250                                           |
| 11 / 0-0.1                                                          | filling-C                         | 23/01/18             | 6           | <0.4          | 11              | 21        | 27               |         | <0.1         | 5       | 40           | 46                 | 0.004      | 5.6              | 3.9              | <0.001   | <1 - 0.6     | <25        | 225                                            |
| 12 / 0-0.1                                                          | filling-C                         | 23/01/18             | <4          | <0.4          | 21              | 35        | 11               |         | <0.1         | 25      | 34           | 4.1                | 0.001      | <0.5             | 0.3              | 101001   | <0.1         | <25        | 835                                            |
| Public School and Bush                                              | -                                 | 20/01/10             |             |               |                 |           |                  | 1       |              |         |              |                    | 1 1        | 1010             | 0.0              | 1        |              | -20        |                                                |
| 13 / 0.0-0.1                                                        | filling-C                         | 23/01/18             | 4           | <0.4          | 9               | 45        | 95               |         | 0.4          | 7       | 97           | 23                 | NIL (+)VE  | 3.2              | 2.2              | <0.001   | <0.1         | <25        | 120                                            |
| Replicate 4                                                         | filling-C                         | 23/01/18             | 4           | <0.4          | 16              | 34        | 88               |         | 0.4          | 11      | 83           | 27                 |            | 3.4              | 2.3              |          | 0.2          |            |                                                |
| 13 / 0.4-0.5                                                        | filling-C                         | 23/01/18             | 5           | <0.4          | 18              | 35        | 52               |         | 0.2          | 9       | 82           | 6.1                |            | 1                | 0.64             |          | <0.1         | <25        | <250                                           |
| 14 / 0.0-0.1                                                        | filling-F                         | 23/01/18             | 5           | <0.4          | 10              | 23        | 29               |         | <0.1         | 4       | 64           | < 0.05             | 7          | <0.5             | < 0.05           |          | <0.1         | <25        | <250                                           |
| 15 / 0-0.1<br>16 / 0.0-0.1                                          | filling-F                         | 19/01/18             | 5           | <0.4          | 9               | 31        | 18               | 0.00    | <0.1         | 10      | 62           | <0.05              | NIL (+)VE  | < 0.5            | < 0.05           | -0.004   | <0.1         | <25        | 120                                            |
| 16         /         0.0-0.1           17         /         0.3-0.4 | filling-C<br>silty clay?          | 24/01/18             | 6<br><4     | <0.4<br><0.4  | 8<br>20         | 89<br>2   | 130<br>22        | 0.08    | <0.1<br><0.1 | 8       | 58<br>5      | 86<br>3.4          | INIL (+)VE | <b>16</b><br>0.5 | <b>11</b><br>0.4 | <0.001   | 0.3<br><0.1  | <25<br><25 | 570<br><250                                    |
| 18 / 0.5                                                            | filling-F                         | 23/01/18             | <4          | <0.4          | 30              | 39        | 31               |         | <0.1         | 34      | 44           | 470                |            | 44               | 30               |          | 8            | <25        | 1,440                                          |
| 18 / 1.0-1.1                                                        | filling-F                         | 23/01/18             | <4          | <0.4          | 13              | 16        | 25               |         | <0.1         | 5       | 14           | 620                | 0.08       | 56               | 38               | <0.001   | 9.2          | <25        | 1,800                                          |
| 18 / 1.5                                                            | filling-F                         | 23/01/18             |             |               |                 |           |                  |         |              |         |              | 190                |            | 17               | 12               |          | 3            | <25        | 620                                            |
| 19 / 0-0.1                                                          | filling-C                         | 19/01/18             | <4          | <0.4          | 9               | 20        | 62               |         | <0.1         | 5       | 80           | 22                 |            | 2.1              | 1.4              |          | <0.1         | <25        | <250                                           |
| 20 / 0.0-0.1                                                        | filling-C                         | 24/01/18             | <4          | <0.4          | 16              | 28        | 24               |         | 0.1          | 19      | 48           | 0.94               | 0.004      | < 0.5            | 0.08             | 10.004   | <0.1         | <25        | 1,470                                          |
| 21 / 0.0-0.1<br>21 / 1-1.1                                          | filling-C<br>silty clay?          | 24/01/18<br>24/01/18 | <4          | <0.4          | 35              | 22        | 61               |         | <0.1         | 38      | 48           | 460<br>14          | 0.004      | 57<br>1.7        | 39<br>1.2        | <0.001   | 0.7<br><0.1  | <25<br><25 | 4,100<br><250                                  |
| 22 / 0.3-0.4                                                        | filling-F                         | 24/01/18             | <4          | <0.4          | 19              | 12        | 66               |         | <0.1         | 6       | 30           | 14                 |            | 2.8              | 1.8              |          | <0.1         | <25        | <250                                           |
| 23 / 0-0.1                                                          | filling-F                         | 19/01/18             | 5           | <0.4          | 10              | 19        | 81               |         | <0.1         | 5       | 69           | 31                 |            | 3.4              | 2.3              |          | 0.1          | <25        | 110                                            |
| 24 / 0.3-0.4                                                        | filling-F                         | 24/01/18             | 4           | <0.4          | 13              | 21        | 150              | 0.06    | 0.2          | 7       | 100          | 23                 | NIL (+)VE  | 3.5              | 2.3              | <0.001   | <0.1         | <25        | 440                                            |
| 25 / 0.2-0.3                                                        | filling-C                         | 24/01/18             | <4          | <0.4          | 4               | 2         | 3                |         | <0.1         | 1       | 3            | < 0.05             |            | <0.5             | < 0.05           |          | <0.1         | <25        | <250                                           |
| 26 / 0.2-0.3<br>27 / 0-0.3                                          | filling-C                         | 24/01/18             | 7           | <0.4          | 12              | 16        | 26               |         | <0.1         | 6       | 48           | 4.6                |            | 0.6              | 0.4              |          | <0.1         | <25        | 280                                            |
| 27 / 0-0.3<br>28 / 0.4-0.45                                         | filling-C<br>filling-C            | 19/01/18<br>19/01/18 | 5<br><4     | 0.5<br><0.4   | 16<br>29        | 170<br>26 | <b>120</b><br>91 |         | 0.1          | 19      | 1,000<br>150 | 0.3<br>21          | NIL (+)VE  | <0.5<br>2.9      | 0.06             | <0.001   | <0.1<br>0.1  | <25<br><25 | 4,395<br>760                                   |
| REPLICATE1-190118                                                   | filling-C                         | 19/01/18             | 3.6         | < 0.4         | 13              | 20        | 85               |         | < 0.1        | 9.8     | 170          | 15.7               |            | 2.9              | 1.5              | ~0.001   | < 0.5        | ~20        | 100                                            |
|                                                                     |                                   |                      |             |               |                 |           |                  |         |              |         |              |                    |            |                  |                  |          |              |            |                                                |



#### Table K1: Summary of Laboratory Results for Soil A

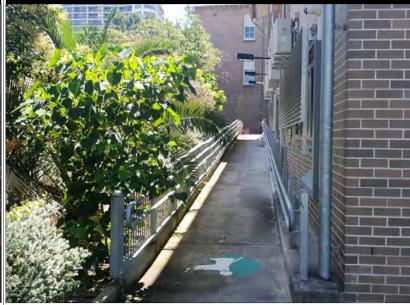
| Table K1: Summary of Labor                       |                          |                      | 1          |            | TRH (NE                    | PM 2013) <sup>i</sup>                |               |                | TPF                                          | I (NEPM 2    | 013)           |              | BT           | EX             |                     |              |                  |                                      | <u> </u>                            | Т            |
|--------------------------------------------------|--------------------------|----------------------|------------|------------|----------------------------|--------------------------------------|---------------|----------------|----------------------------------------------|--------------|----------------|--------------|--------------|----------------|---------------------|--------------|------------------|--------------------------------------|-------------------------------------|--------------|
|                                                  | Soil Type                |                      | 0          | 16         |                            | · · · · ·                            | (F3)          | (F4)           | (silic                                       | a gel clea   | n up)          | e            |              |                | ٥                   | ō            | P                | σ                                    | •                                   |              |
| Sample                                           | (C=coarse<br>F=fine)     | Date<br>Sampled      | C6-C10     | >C10-C16   | C6 – C10 less<br>BTEX (F1) | >C10-C16 less<br>naphthalene<br>(F2) | >C16-C34 (F3) | C34-C40 (F4)   | C10-C16 <sup>j (F2</sup> )                   | C16-C34      | C34-C40 (F     | Benzene      | Toluene      | Ethylbenzene   | xylene <sup>e</sup> | phenol       | PCB <sup>d</sup> | OCP                                  | dдо                                 |              |
|                                                  |                          | -                    | ma/ka      | ma/ka      |                            |                                      |               | ۸<br>ma/ka     | ۸                                            | ۸            | ۸              | ma/ka        | ma/ka        | _              | ma/ka               | malka        | ma/ka            | malka                                | ma/ka                               |              |
| Soil Assessment Criteria (SA                     | C) - NEPM (              | as amended           | mg/kg      | mg/kg      | mg/kg                      | mg/kg                                | mg/kg         | mg/kg          | mg/kg                                        | mg/kg        | mg/kg          | mg/kg        | mg/kg        | mg/kg          | mg/kg               | mg/kg        | mg/kg            | mg/kg                                | mg/kg                               | 10           |
| Residential with Accessible S                    | Soil                     |                      |            |            |                            |                                      |               |                |                                              |              |                |              |              |                |                     |              |                  |                                      |                                     |              |
| HIL A                                            |                          |                      |            | 400        | 400                        |                                      |               | 0.000          | 100                                          |              | 0.000          | 50           | 0.5          |                | 405                 | 3,000        | 1                | 6                                    | 340                                 | 4            |
| EIL/ ESL<br>EIL/ ESL                             | coarse<br>fine           |                      |            | 120<br>120 | 180<br>180                 |                                      | 300<br>1,300  | 2,800<br>5,600 | 120<br>120                                   | 300<br>1,300 | 2,800<br>5,600 | 50<br>65     | 85<br>105    | 70<br>125      | 105<br>45           |              |                  | 180 (DDT)<br>180 (DDT)               | <u> </u>                            | ╞            |
| Management Limit                                 | coarse                   |                      | 700        | 1,000      | 100                        |                                      | 2,500         | 10,000         | 1,000                                        | 2,500        | 10,000         | 00           | 100          | 120            |                     |              |                  | 100 (001)                            |                                     |              |
| Management Limit<br>HSL A&B, vapour intrusion, 0 | fine                     |                      | 800        | 1,000      | 45                         | 110                                  | 3,500         | 10,000         | 1,000<br>110                                 | 3,500        | 10,000         | 0.5          | 160          | 55             | 40                  |              |                  |                                      | <b>—</b>                            | +            |
| HSL A&B, vapour intrusion, 0                     |                          |                      |            |            | 50                         | 280                                  |               |                | 280                                          |              |                | 0.3          | 480          | NL             | 110                 |              |                  |                                      |                                     | ┢            |
| HSL A, direct contact                            |                          |                      |            |            | 4,400                      | 3,300                                | 4,500         | 6,300          | 3,300                                        | 4,500        | 6,300          | 100          | 14,000       | 4,500          | 12,000              |              |                  |                                      |                                     |              |
| Waste Classification Thresho                     |                          |                      |            | 1          |                            | 1                                    | 1             | 1              | 1                                            | 1            | 1              |              |              |                | 1.000               |              |                  | . f                                  |                                     | —            |
| General Solid                                    |                          | T1<br>TCLP1          |            |            |                            |                                      |               |                |                                              |              |                | 10           | 288          | 600            | 1,000               | 288          | <50              | <50 <sup>f</sup>                     | 4 <sup>9</sup>                      | +            |
|                                                  |                          | T2                   |            | -          |                            |                                      |               |                |                                              |              |                | 18<br>40     | 518<br>1,152 | 1,080<br>2,400 | 1,800<br>4,000      | 518<br>1,152 | <50<br><50       | <50 <sup>f</sup><br><50 <sup>f</sup> | 7.5 <sup>g</sup><br>16 <sup>g</sup> | ┢            |
| Restricted Solid                                 |                          | TCLP2                |            |            |                            |                                      |               |                |                                              |              |                | 72           | 2,073        | 4,320          | 7,200               | 2,070        | <50              | <50<br><50 <sup>f</sup>              | 30 <sup>g</sup>                     | +            |
| Published Background Rang                        |                          |                      |            | ·          |                            | <u> </u>                             | ·             | ·              | <u>.                                    </u> | •            | ·              |              |              | .,             | ,                   |              |                  |                                      |                                     | <u> </u>     |
| NEPC (1999)                                      |                          |                      |            |            |                            |                                      |               |                |                                              |              |                |              |              |                |                     |              |                  |                                      |                                     |              |
| ANZECC (1992)<br>ANZECC (2000)                   |                          |                      |            |            |                            |                                      |               |                |                                              |              |                | 0.05 - 1     | 0.1 - 1      |                |                     | 0.03 – 0.5   | 0.02 – 0.1       | <0.001 - <0.97                       | ──                                  | +            |
| Laboratory Results                               |                          |                      |            |            |                            |                                      |               |                |                                              |              |                |              |              |                |                     |              |                  |                                      | <u> </u>                            |              |
| High School                                      |                          |                      |            |            |                            |                                      |               |                |                                              |              |                |              |              |                |                     |              |                  |                                      |                                     | _            |
| 1 / 0.5-0.6                                      | filling-F                | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                | Т            |
| REPLICATE1-220118                                | filling-F                | 22/01/18             | 120        | ~00        | 120                        | ~~~~                                 | \$100         | \$100          |                                              |              |                | <b>NO.2</b>  | <0.0         |                |                     | ~0           | <b>NO.1</b>      | <b>NO.1</b>                          | <0.1                                | t            |
| 2 / 0.1                                          | silty clay?              | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | 120            |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 3 / 0-0.1                                        | silty clay?              | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| Replicate 6                                      | silty clay?              | 23/01/18             |            |            |                            |                                      |               |                |                                              |              |                |              |              |                |                     |              |                  |                                      |                                     |              |
| 4 / 0-0.1                                        | filling-C                | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                | 1            |
| 5 / 1-1.1                                        | filling-F                | 22/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 6 / 0.2-0.3<br>7 / 0-0.1                         | silty clay<br>filling-C  | 22/01/18<br>23/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | <100<br><100  | <100<br><100   |                                              |              |                | <0.2<br><0.2 | <0.5<br><0.5 | <1<br><1       | <1<br><1            | <5<br><5     | <0.1<br><0.1     | <0.1<br><0.1                         | <0.1<br><0.1                        | +            |
| 7 / 0.5-0.6                                      | filling-F                | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                | ť            |
| 8 / 0-0.1                                        | filling-C                | 23/01/18             | <25        | <50        | <25                        | <50                                  | 600           | 570            |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 8 / 0.7-0.8                                      | filling-F                | 23/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 9 / 0.2-0.3                                      | filling-F                | 22/01/18             | <25        | <50        | <25                        | <50                                  | 550           | 700            |                                              |              |                | <0.2         | < 0.5        | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 10 / 2-2.1<br>11 / 0-0.1                         | filling-F                | 22/01/18<br>23/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | <100<br>210   | <100<br><100   |                                              |              |                | <0.2<br><0.2 | <0.5<br><0.5 | <1<br><1       | <1<br><1            | <5           | <0.1<br><0.2     | <0.1                                 | <0.1<br><0.1                        |              |
| 12 / 0-0.1                                       | filling-C<br>filling-C   | 23/01/18             | <25        | <50        | <25                        | <50                                  | 530           | 800            |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5<br><5     | <0.2             | <0.1<br><0.1                         | <0.1                                |              |
| Public School and Bush                           | -                        | 20/01/10             | 120        | 100        | 120                        | 100                                  | 000           | 000            |                                              | I            | I              | <b>NO.2</b>  | <b>N</b> 0.0 |                |                     | ~0           | <b>NO.1</b>      | \$0.1                                | <0.1                                | <u> </u>     |
| 13 / 0.0-0.1                                     | filling-C                | 23/01/18             | <25        | <50        | <25                        | <50                                  | 160           | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                | Π            |
| Replicate 4                                      | filling-C                | 23/01/18             | 05         | 50         | 05                         | 50                                   | 400           | 400            |                                              |              |                |              | 0.5          |                |                     |              |                  |                                      | +                                   | 1            |
| 13 / 0.4-0.5<br>14 / 0.0-0.1                     | filling-C<br>filling-F   | 23/01/18<br>23/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | <100<br><100  | <100<br><100   |                                              |              |                | <0.2<br><0.2 | <0.5<br><0.5 | <1<br><1       | <1<br><1            | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 15 / 0-0.1                                       | filling-F                | 19/01/18             | <25        | <50        | <25                        | <50                                  | 100           | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 16 / 0.0-0.1                                     | filling-C                | 24/01/18             | <25        | <50        | <25                        | <50                                  | 500           | 140            |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.5             | <0.1                                 | <0.1                                |              |
| 17 / 0.3-0.4<br>18 / 0.5                         | silty clay?<br>filling-F | 24/01/18<br>23/01/18 | <25<br><25 | <50<br>87  | <25<br><25                 | <50<br>79                            | <100<br>1,300 | <100<br>210    |                                              |              |                | <0.2<br><0.2 | <0.5<br><0.5 | <1<br><1       | <1<br><1            | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 18 / 1.0-1.1                                     | filling-F                | 23/01/18             | <25        | 140        | <25                        | 130                                  | 1,600         | 220            | 89                                           | 940          | <100           | <0.2         | <0.5         | <1             | <1                  | <5           | <1               | <0.1                                 | <0.1                                |              |
| 18 / 1.5                                         | filling-F                | 23/01/18             | <25        | <50        | <25                        | <50                                  | 570           | <100           |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | -            | .0.4             | .0.1                                 |                                     | Ļ            |
| 19 / 0-0.1<br>20 / 0.0-0.1                       | filling-C<br>filling-C   | 19/01/18<br>24/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | <100<br>1,100 | <100<br>1,100  |                                              |              |                | <0.2<br><0.2 | <0.5<br><0.5 | <1<br><1       | <1<br><1            | <5<br><5     | <0.1<br><0.1     | <0.1<br><0.1                         | <0.1<br><0.1                        |              |
| 21 / 0.0-0.1                                     | filling-C                | 24/01/18             | <25        | 80         | <25                        | 80                                   | 3,500         | 1,900          | <50                                          | 1,400        | 790            | <0.2         | <0.5         | <1             | <1                  | <5           | <1               | <1                                   | <1                                  | ti           |
| 21 / 1-1.1                                       | silty clay?              |                      | <25        | <50        | <25                        | <50                                  | <100          | <100           |                                              |              |                | <0.2         | < 0.5        | <1             | <1                  | .F           | -0.1             | -0.1                                 |                                     | $\downarrow$ |
| 22 / 0.3-0.4<br>23 / 0-0.1                       | filling-F<br>filling-F   | 24/01/18<br>19/01/18 | <25<br><25 | <50<br><50 | <25<br><25                 | <50<br><50                           | <100<br>160   | <100<br><100   |                                              |              |                | <0.2<br><0.2 | <0.5<br><0.5 | <1<br><1       | <1<br><1            | <5<br><5     | <0.1<br><0.1     | <0.1<br><0.1                         | <0.1<br><0.1                        | ┢            |
| 24 / 0.3-0.4                                     | filling-F                | 24/01/18             | <25        | <50        | <25                        | <50                                  | 350           | 280            |                                              |              |                | <0.2         | <0.5         | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                | ti           |
| 25 / 0.2-0.3                                     | filling-C                | 24/01/18             | <25        | <50        | <25                        | <50                                  | <100          | <100           |                                              |              |                | <0.2         | < 0.5        | <1             | <1                  | <5           | <0.1             | <0.1                                 | <0.1                                |              |
| 26 / 0.2-0.3<br>27 / 0-0.3                       | filling-C<br>filling-C   | 24/01/18<br>19/01/18 | <25<br><25 | <50<br>100 | <25<br><25                 | <50<br>100                           | 300<br>2,800  | 240<br>2,000   | <50                                          | 230          | <100           | <0.2<br><0.2 | <0.5<br><0.5 | <1<br><1       | <1<br><1            | <5<br>98     | <0.1<br><0.1     | <0.1<br><0.1                         | <0.1<br><0.1                        |              |
| 28 / 0.4-0.45                                    | filling-C                | 19/01/18             | <25        | <50        | <25                        | <50                                  | 580           | 570            |                                              | 200          | 100            | <0.2         | <0.5         | <1             | <1                  |              | <0.1             | <0.1                                 | <0.1                                |              |
| REPLICATE1-190118                                | filling-C                | 19/01/18             |            |            |                            |                                      |               |                |                                              |              |                |              |              |                |                     |              |                  |                                      |                                     |              |
|                                                  | -                        |                      | -          | -          | -                          |                                      | -             |                |                                              | -            |                |              |              | -              |                     |              |                  |                                      |                                     |              |





# Appendix A Photographic Log

1. NORTHERN-EASTERN ENTRANCE VIA PACIFIC HIGHWAY – 09/01/2019




3. INSIDE PRIMARY SCHOOL PREMISES - 09/01/2019



4. INSIDE PRIMARY SCHOOL PREMISES - 09/01/2019







Job No: 55579

Client: Pells Sullivan Meynink Version: Rev 0 Date: 05.02.2019 Drawn By: MN Checked By: DD Not to Scale Coord. Sys n/a Chatswood PublicSchool Centennial Avenue, Chatswood, NSW APPENDIX A: PHOTOGRAPHIC LOG

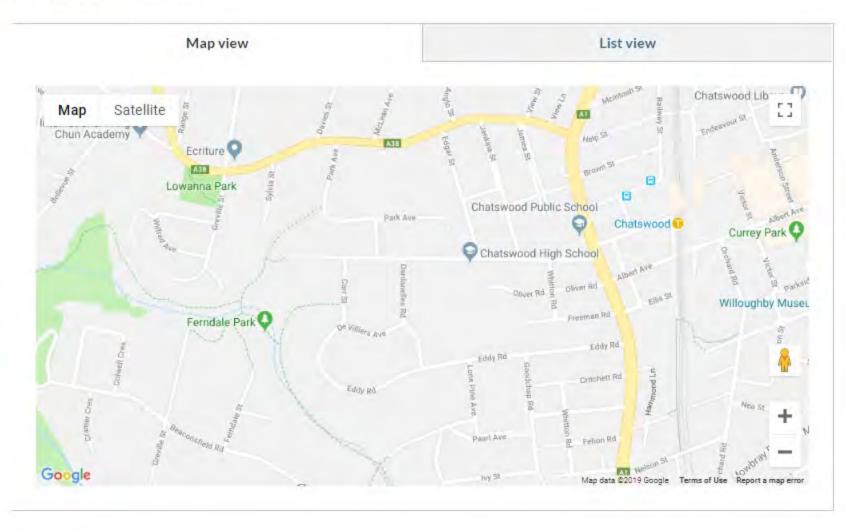




Appendix B PFAS Register

→ C A https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program

Apps 🚯 JBS&G Company Sha 🚷 MPW UF Map 📙 PSI Search


| Contaminated land                       |     |
|-----------------------------------------|-----|
| Managing contaminated land              | ~   |
| Notification policy                     | ~   |
| NSW site auditor scheme                 | ~   |
| Preventing contaminated land            | ~   |
| Assessment and Remediation              | ~   |
| PFAS investigation program              | ^   |
| PFAS investigation process              |     |
| PFAS investigation program FA           | AQs |
| Other contamination issues              | ~   |
| Contaminated land management<br>program | ~   |

# The NSW Government PFAS Investigation Program

NSW has a nation leading, state-wide PFAS investigation program underway to identify the use and impacts of legacy PFAS.

The EPA is leading an investigation program to assess the legacy of PFAS use across NSW. With the assistance of the NSW PFAS Taskforce, which includes NSW Health, Department of Primary Industries and the Office of Environment and Heritage, we provide impacted residents with tailored, precautionary dietary advice to help them reduce any exposure to PFAS.

Current investigations are focused on sites where it is likely that large quantities of PFAS have been used. The EPA is currently investigating PFAS at these sites:





# Sampling and analysis







# Appendix C Loose-Fill Asbestos Insulation Register

# Look up the premises address

Please enter exact address information (including street type) of the address you wish to search (Note, the search fields are not case sensitive).

If a match is found, the premises has been identified as containing loose-fill asbestos insulation.

Results will only appear if an exact match of an address is found.

(The fields marked with \* are required.)

**No Match Found** - A search match was not found in the Loose-fill Asbestos Insulation Register

Address searched: 5 Centennial avenue Avenue Chatswood

This information is correct at the time of the search

| Unit           |        |    |
|----------------|--------|----|
| Street number* |        |    |
| Street name*   |        |    |
| Street type*   | Alley  | .* |
| Suburb*        |        |    |
| Postcode       |        |    |
|                | Submit |    |



Appendix D Borelogs



BH\_P\_01 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

|                  |                         |                |             |                            | Site Address: Centennial Avenue, Chatswood                                                                             |                                                                              |                                              |  |  |
|------------------|-------------------------|----------------|-------------|----------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|--|--|
| Log<br>Co<br>Tot | gged<br>ntrac<br>tal Ho | tor:<br>ole De | M.N/R       | .C<br>nbgs): 1.<br>ı): 200 | Eastings (GDA 94):<br>Northings (GDA 94):<br>Zone/Area/Permit#:<br>4 Reference Level: Ground Surface<br>Elevation (m): | Northings (GDA 94):<br>Zone/Area/Permit#:<br>Reference Level: Ground Surface |                                              |  |  |
| Method           | Depth (mbgs)            | Contact (mbgs) | Graphic Log | Lithological<br>Class      | Lithological Description                                                                                               | Samples<br>Tests<br>Remarks                                                  | Additional Observations                      |  |  |
| SFA              | _                       |                |             | Fill                       | Gravelly silty sand. Grey / brown, moist, heterogeneous, dense. Inclusions of asphalt.                                 | BH_P_01 0.0-0.15<br>PID = 2 ppm                                              | No asbestos, odours or staining observed.    |  |  |
|                  | _                       | 0.20           |             | Fill                       | Silty clay. Brown / light grey, damp, homogeneous.                                                                     |                                                                              |                                              |  |  |
|                  | 0.5                     |                |             |                            |                                                                                                                        | BH_P_01 0.4-0.5<br>PID = 2.6 ppm                                             | No asbestos, odours or staining<br>observed. |  |  |
|                  | -                       |                |             |                            |                                                                                                                        |                                                                              |                                              |  |  |
|                  | 1 <u>.0</u><br>         | 1.00           |             | CL-ML                      | Silty clay. Light grey/red, homogeneous, hard, high plasticity, damp. Inclusions of shale.                             | BH_P_01 1.0-1.1<br>PID = 0.2 ppm                                             | No asbestos, odours or staining<br>observed. |  |  |
|                  | 1 <u>.5</u>             | 1.40           |             |                            | Borehole BH_P_01 terminated at 1.4m                                                                                    |                                                                              |                                              |  |  |
|                  | 2.0                     |                |             |                            |                                                                                                                        |                                                                              |                                              |  |  |

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 11-2-19



BH\_P\_02 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 23-Jan-19 Eastings (GDA 94): Logged By: M.N/R.C Northings (GDA 94): Contractor: Zone/Area/Permit#: Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface Bore Diameter (mm): 200 Elevation (m): Contact (mbgs Depth (mbgs) Samples Graphic Log Lithological Class Lithological Description Tests Additional Observations Method Remarks Gravelly silty sand. Dark brown, dry, heterogeneous and medium dense. Inclusions of asphalt. Fil SFA BH\_P\_02 0.0-0.15 PID = 0.4 ppm No asbestos, odours or staining observed. Silty clayey sand. Brown, damp, heterogeneous and loose. Inclusions of trace gravel, shale and brick 0.20 Fill BH\_P\_02 0.4-0.5 PID = 1.4 ppm No asbestos, odours or staining observed. 0.5 0.90 SHALE Shale. Very hard. 1.0 No asbestos, odours or staining observed. BH\_P\_02 1.0-1.1 PID = 0.3 ppm Refusal on hard shale Borehole BH\_P\_02 terminated at 1.3m 1.30 1.5 2.0

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 11-2-19



BH\_P\_03 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 23-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 1.6 Bore Diameter (mm): 200

| Method                                               | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                              | Samples<br>Tests<br>Remarks       | Additional Observations                      |
|------------------------------------------------------|------------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|
| SFA                                                  | _                |                |             | Fill                  | Silty gravelly sand. Light grey, heterogeneous, dry and dense. Inclusions of asphalt. | BH_P_03 0.0-0.15<br>PID = 2.1 ppm | No asbestos, odours or staining observed.    |
|                                                      | _                | 0.20           |             | Fill                  | Silty clayey sand. Light brown, heterogenous and loose. Inclusions of trace gravels.  |                                   |                                              |
|                                                      | 0.5              |                |             |                       |                                                                                       | BH_P_03 0.4-0.5<br>PID = 1.4 ppm  | No asbestos, odours or staining<br>observed. |
|                                                      | -                | 0.60           |             | Fill                  | Silty clay. Brown / light grey, dry, homogeneous, hard and medium plasticity.         |                                   |                                              |
|                                                      | 1 <u>.0</u>      |                |             |                       |                                                                                       | BH_P_03 1.0-1.1<br>PID = 2.5 ppm  | No asbestos, odours or staining observed.    |
| GDT 11-2-19                                          | _                | 1.20           |             | CL                    | Clay. Light grey, dy, homogeneous, hard and high plasticity. Inlusions of shale.      |                                   |                                              |
| J GINT STD AUSTRALIA                                 | -<br>1 <u>.5</u> |                |             |                       |                                                                                       | BH_P_03 1.4-1.5<br>PID = 1.5 ppm  | No asbestos, odours or staining observed.    |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA | -                | 1.60           |             |                       | Borehole BH_P_03 terminated at 1.6m                                                   |                                   |                                              |
| BOREHOLE JBSG                                        | 2.0              |                |             |                       |                                                                                       |                                   |                                              |



BH\_P\_04 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 23-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 200 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m):

| Method  | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                               | Samples<br>Tests<br>Remarks       | Additional Observations                   |
|---------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| SFA     | _            |                |             | Fill                  | Gravelly silty clay. Brown, heterogeneous, clay and medium dense. Inclusions of rootlets.              | BH_P_04 0.0-0.15<br>PID = 3.7 ppm | No asbestos, odours or staining observed. |
|         | _            | 0.20           |             | Fill                  | Silty clay. Brown, damp, heterogeneous, stiff and medium plasticity. Inclusions of rootlets and shale. |                                   |                                           |
|         |              |                |             |                       |                                                                                                        | BH_P_04 0.4-0.5<br>PID = 4.6 ppm  | No asbestos, odours or staining observed. |
|         | -            |                |             |                       |                                                                                                        |                                   |                                           |
|         | _            | 0.80           |             | CL-ML                 | Silty clay. Brown/grey, damp, heterogeneous, medium plasticity and hard. Inclusions of                 |                                   |                                           |
|         | _            |                |             |                       | shale.                                                                                                 |                                   |                                           |
|         | 1 <u>.0</u>  |                |             |                       |                                                                                                        | BH_P_04 1.0-1.1<br>PID = 1.7 ppm  | No asbestos, odours or staining observed. |
| BI-Z-11 | _            |                |             |                       |                                                                                                        |                                   |                                           |
|         | _            |                |             |                       |                                                                                                        |                                   |                                           |
|         | 1.5          | 1.50           |             |                       | Borehole BH_P_04 terminated at 1.5m                                                                    |                                   |                                           |
|         | _            |                |             |                       |                                                                                                        |                                   |                                           |
|         | 2.0          |                |             |                       |                                                                                                        |                                   |                                           |

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 11-2-19



BH\_P\_05 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 23-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 1.2 Bore Diameter (mm): 200

| Method                                               | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                            | Samples<br>Tests<br>Remarks       | Additional Observations                                                           |
|------------------------------------------------------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------|
| SFA                                                  | _            |                |             | Fill                  | Gravelly silty sand. Heterogeneous, dark brown, medium dense, medium gravels and damp.              | BH_P_05 0.0-0.15<br>PID = 1.3 ppm | No asbestos, odours or staining<br>observed.                                      |
|                                                      | _            | 0.20           |             | Fill                  | Sandy clay. Brown / yellow, heterogeneous, damp, firm and medium plasticity.<br>Inclusions of shale |                                   |                                                                                   |
|                                                      | 0.5          |                |             |                       |                                                                                                     | BH_P_05 0.4-0.5<br>PID = 2.7 ppm  | No asbestos, odours or staining<br>observed. QA20190123RC_01 /<br>QC20190123RC_01 |
|                                                      | _            |                |             |                       |                                                                                                     |                                   |                                                                                   |
|                                                      | _            | 0.80           |             | SHALE                 | Crushed shale, red / brown / light grey, dry, homogeneous and firm.                                 |                                   |                                                                                   |
|                                                      |              |                |             |                       |                                                                                                     |                                   |                                                                                   |
|                                                      | _            |                |             |                       |                                                                                                     | BH_P_05 1.0-1.1<br>PID = 5.5 ppm  | No asbestos, odours or staining<br>observed.                                      |
| GDT 11-2-19                                          |              | 1.20           |             |                       | Borehole BH_P_05 terminated at 1.2m                                                                 |                                   | Refusal on hard shale                                                             |
|                                                      | _            |                |             |                       |                                                                                                     |                                   |                                                                                   |
| SINT STD A                                           | 1 <u>.5</u>  |                |             |                       |                                                                                                     |                                   |                                                                                   |
| 2017.GPJ 0                                           | _            |                |             |                       |                                                                                                     |                                   |                                                                                   |
| REHOLE - 2                                           | _            |                |             |                       |                                                                                                     |                                   |                                                                                   |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA |              |                |             |                       |                                                                                                     |                                   |                                                                                   |
| BOREHOL                                              | 2.0          |                |             |                       |                                                                                                     |                                   |                                                                                   |



BH\_P\_06 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 23-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 1.8 Bore Diameter (mm): 200

| Method                                                | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                         | Samples<br>Tests<br>Remarks       | Additional Observations                      |
|-------------------------------------------------------|--------------|----------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|
| SFA                                                   | _            |                |             | Fill                  | Silty gravel. Black, homogeneous, damp, dense and coarse grained.                                                                | BH_P_06 0.0-0.15<br>PID = 3.5 ppm | No asbestos, odours or staining<br>observed. |
|                                                       | _            | 0.20           |             | Fill                  | Silty clay. Grey/brown, damp, heterogeneous, firm and medium plasticity. Inclusions of gravel, shale and anthropogenic material. |                                   |                                              |
|                                                       | 0.5          |                |             |                       |                                                                                                                                  | BH_P_06 0.4-0.5<br>PID = 4.8 ppm  | No asbestos, odours or staining<br>observed. |
|                                                       | _            | 0.70           |             | Fill                  | Silty sand. Dark brown, heterogeneous and damp. Inclusions of gravels.                                                           |                                   |                                              |
|                                                       | _            |                |             |                       |                                                                                                                                  | BH_P_06 0.8-0.9<br>PID = 3.8 ppm  | No asbestos, odours or staining<br>observed. |
|                                                       | 1 <u>.0</u>  |                |             |                       |                                                                                                                                  |                                   |                                              |
|                                                       | _            | 1.20           |             | CL                    | Clay. Light brown/yellow with light grey and mottling. Homogeneous, damp, hard and high plasticity.                              |                                   |                                              |
| BONEHOLE JB99 BONEHOLE - 2017.917 9111 910 4031 NALIA | 1.5          |                |             |                       |                                                                                                                                  | BH_P_06 1.5-1.6<br>PID = 3.7 ppm  | No asbestos, odours or staining<br>observed. |
|                                                       | _            |                |             |                       |                                                                                                                                  |                                   |                                              |
|                                                       |              | 1.80           |             |                       | Borehole BH_P_06 terminated at 1.8m                                                                                              |                                   |                                              |



BH\_P\_07 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 22-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 1.8 Bore Diameter (mm): 100

| 0.20       Fill       Silly day. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone gravels.       BH P 07 0.40.5 PID = 4.2 ppm       No asbestos or staining observed.         0.5       Fill       Silly day. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone gravels.       BH P 07 0.40.5 PID = 5.3 ppm       No asbestos or staining observed.         0.5       -       -       -       -       -       -       -         0.5       -       -       -       -       -       -       -         0.5       -       -       -       -       -       -       -         0.5       -       -       -       -       -       -       -       -         0.80       -       Fill       Silly clay. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone gravels.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method            | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                     | Samples<br>Tests<br>Remarks       | Additional Observations                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|----------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|
| 0.5       BH P 07 0.40.5<br>PID = 5.3 ppm       No asbestos or staining<br>observed.         0.5       0.80       Fill       Silty clay. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone<br>gravels.       No asbestos or staining<br>observed.         1.0       0.80       Fill       Silty clay. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone       BH P 07 1.0-1.1<br>PID = 3.9 pm       No asbestos or staining<br>observed.         1.0       0.80       Fill       Silty clay. Grey with light grey/light brown mottling. Homogeneous, damp, hard and       No asbestos or staining<br>observed.       No asbestos or staining<br>observed.         1.0       0.80       CL-ML       Silty clay. Grey with light grey/light brown mottling. Homogeneous, damp, hard and       No asbestos or staining<br>observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SFA               | _            |                |             | Fill                  | Silty sand. Dark brown, heterogeneous, damp and medium dense. Inclusions of trace<br>plastics, zip ties, gravel and asphalt. | BH_P_07 0.0-0.15<br>PID = 4.2 ppm | No asbestos, odours or staining observed.    |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | _            | 0.20           |             | Fill                  | Silty clay. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone gravels.                                 |                                   |                                              |
| Image: state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state i |                   | 0 <u>.5</u>  |                |             |                       |                                                                                                                              | BH_P_07 0.4-0.5<br>PID = 5.3 ppm  | observed.                                    |
| Image: state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o |                   | -            |                |             |                       |                                                                                                                              |                                   |                                              |
| 0     -     BH P 07 1.0-1.1<br>PID = 3.9 ppm     observed.       1.20     CL-ML     Silty clay. Grey with light grey/light brown mottling. Homogeneous, damp, hard and high plasticity.     Silty clay. Grey with light grey/light brown mottling. Homogeneous, damp, hard and     Image: Classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical classical class                                                                                   |                   |              | 0.80           |             | Fill                  | Silty clay. Brown, heterogeneous, damp and stiff. Inclusions of shale and sandstone gravels.                                 |                                   | No asbestos or staining                      |
| Pick     high plasticity.       Pick     Pick       Pick     Pick       Pick     Pick       Pick     Pick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | _            |                |             |                       |                                                                                                                              | BH_P_07 1.0-1.1<br>PID = 3.9 ppm  | observed.                                    |
| I     1.5       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -       I     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALIA.GDT 11-2-19  | _            | 1.20           |             | CL-ML                 | Silty clay. Grey with light grey/light brown mottling. Homogeneous, damp, hard and high plasticity.                          |                                   |                                              |
| 0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100 minute     0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PJ GINT STD AUSTR | 1 <u>.5</u>  |                |             |                       |                                                                                                                              |                                   |                                              |
| u     1.80     Borehole BH_P_07 terminated at 1.8m       u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOREHOLE - 2017.G | _            |                |             |                       |                                                                                                                              | BH_P_07 1.7-1.8<br>PID = 8.2 ppm  | No asbestos, odours or staining<br>observed. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REHOLE JBSG B     | _            | 1.80           |             |                       | Borehole BH_P_07 terminated at 1.8m                                                                                          |                                   |                                              |



BH\_P\_08 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 0.5 Bore Diameter (mm): 100

| Method                                                | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                      | Samples<br>Tests<br>Remarks       | Additional Observations                      |
|-------------------------------------------------------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|
| НА                                                    | _            |                |             | Fill                  | Silty clay. Dark brown, heterogeneous, loose and damp. Inclusions of rootlets.                | BH_P_08 0.0-0.15<br>PID = 2.2 ppm | No asbestos, odours or staining<br>observed. |
|                                                       | _            | 0.20           |             | Fill                  | Silty clay. Brown/grey, heterogeneous, damp, hard and medium plasticity. Inclusions of brick. |                                   |                                              |
|                                                       | 0.5          | 0.50           |             |                       | Borehole BH_P_08 terminated at 0.5m                                                           | BH_P_08 0.4-0.5<br>PID = 3.5 ppm  | No asbestos, odours or staining<br>observed. |
|                                                       | _            |                |             |                       |                                                                                               |                                   |                                              |
|                                                       | _            |                |             |                       |                                                                                               |                                   |                                              |
|                                                       | 1 <u>.0</u>  |                |             |                       |                                                                                               |                                   |                                              |
| GDT 11-2-19                                           | _            |                |             |                       |                                                                                               |                                   |                                              |
| AUSTRALIA.GDT                                         | _            |                |             |                       |                                                                                               |                                   |                                              |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA. | 1 <u>.5</u>  |                |             |                       |                                                                                               |                                   |                                              |
| SG BOREHOLE - 20                                      | _            |                |             |                       |                                                                                               |                                   |                                              |
|                                                       | 2.0          |                |             |                       |                                                                                               |                                   |                                              |



BH\_P\_09 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 0.6 Bore Diameter (mm): 100 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m):

| Method                                                           | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                  | Samples<br>Tests<br>Remarks       | Additional Observations                   |
|------------------------------------------------------------------|--------------|----------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| НА                                                               | _            |                |             | Fill                  | Sand. Light grey/brown, heterogeneous, damp and medium grained. Inclusions of shale, twigs, plastic and paper.                            | BH_P_09 0.0-0.15<br>PID = 2.6 ppm |                                           |
|                                                                  | _            | 0.20           |             | Fill                  | Silty sand, light brown / yellow, heterogeneous, damp, medium sand, loose, sub-rounded, poorly graded, with inclusions of cobbles of rock |                                   |                                           |
|                                                                  | 0.5          |                |             |                       |                                                                                                                                           | BH_P_09 0.4-0.5<br>PID = 1.6 ppm  | No asbestos, odours or staining observed. |
|                                                                  |              | 0.60           | ***         |                       | Borehole BH_P_09 terminated at 0.6m                                                                                                       |                                   | Refusal on rock                           |
|                                                                  | -            |                |             |                       |                                                                                                                                           |                                   |                                           |
|                                                                  | 1 <u>.0</u>  |                |             |                       |                                                                                                                                           |                                   |                                           |
| 61-Z-11 176                                                      | _            |                |             |                       |                                                                                                                                           |                                   |                                           |
| פטרבחטבב שפט פטרבחטבב - געון גערט שוון אום אטטוראבוגיטטן וויציוש |              |                |             |                       |                                                                                                                                           |                                   |                                           |
|                                                                  | -            |                |             |                       |                                                                                                                                           |                                   |                                           |
|                                                                  | -            |                |             |                       |                                                                                                                                           |                                   |                                           |
|                                                                  | 2.0          |                |             |                       |                                                                                                                                           |                                   |                                           |

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 11-2-19



BH\_P\_09a

Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 0.6 Bore Diameter (mm): 100

| Method                                                           | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                       | Samples<br>Tests<br>Remarks        | Additional Observations                      |
|------------------------------------------------------------------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|
| НА                                                               | - H          |                |             | Fill                  | Sand. Light grey/brown, heterogeneous, damp and medium grained. Inclusions of shale, twigs, plastic and paper.                 | BH_P_09a 0.0-0.15<br>PID = 1.6 ppm | No asbestos, odours or staining<br>observed. |
|                                                                  | _            | 0.20           |             | Fill                  | Silty sand. Light brown/yellow, heterogeneous, damp, medium grained. Inclusions of<br>sub-rounded, poorly graded rock cobbles. |                                    |                                              |
|                                                                  | 0.5          |                |             |                       |                                                                                                                                | BH_P_09a 0.4-0.5<br>PID = 0.9 ppm  | No asbestos, odours or staining<br>observed. |
|                                                                  |              | 0.60           | ××          |                       | Borehole BH_P_09a terminated at 0.6m                                                                                           |                                    | Refusal on rock                              |
|                                                                  | _            |                |             |                       |                                                                                                                                |                                    |                                              |
|                                                                  | 1 <u>.0</u>  |                |             |                       |                                                                                                                                |                                    |                                              |
|                                                                  | _            |                |             |                       |                                                                                                                                |                                    |                                              |
| JA.GDT 11-2-19                                                   | _            |                |             |                       |                                                                                                                                |                                    |                                              |
| NT STD AUSTRAI                                                   | 1.5          |                |             |                       |                                                                                                                                |                                    |                                              |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA GDT 11-2-19 | _            |                |             |                       |                                                                                                                                |                                    |                                              |
| JBSG BOREHOI                                                     | _            |                |             |                       |                                                                                                                                |                                    |                                              |
| BOREHOLE                                                         | 2.0          |                |             |                       |                                                                                                                                |                                    |                                              |



BH\_P\_10 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 1.2 Bore Diameter (mm): 100

| Method                                               | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                         | Samples<br>Tests<br>Remarks       | Additional Observations                      |
|------------------------------------------------------|--------------|----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|
| HA                                                   | -            |                |             | Fill                  | Silty sand. Brown, heterogeneous, damp and loose. Inclusions of mulch, trace of gravel and bark. | BH_P_10 0.0-0.15<br>PID = 3.7 ppm | No asbestos, odours or staining observed.    |
|                                                      | 0 <u>.5</u>  | 0.60           |             | Fill                  | Silty clayey sand. Brown, damp, heterogeneous and low plasticity. Inclusions of bark and shale.  | BH_P_10 0.6-0.7<br>PID = 1.7 ppm  | No asbestos, odours or staining<br>observed. |
|                                                      |              | 0.80           |             | SHALE                 | Crushed shale. Light grey, damp, homogeneous, dense and hard.                                    |                                   |                                              |
| 19                                                   |              | 1.20           |             |                       | Borehole BH_P_10 terminated at 1.2m                                                              | BH_P_10 1.0-1.1<br>PID = 2.3 ppm  | No asbestos, odours or staining observed.    |
| TRALIA.GDT 11-2-19                                   | _            |                |             |                       |                                                                                                  |                                   |                                              |
| SPJ GINT STD AUS                                     | 1 <u>.5</u>  |                |             |                       |                                                                                                  |                                   |                                              |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA |              |                |             |                       |                                                                                                  |                                   |                                              |
| BOREHOLE JE                                          | 2.0          |                |             |                       |                                                                                                  |                                   |                                              |



BH\_P\_11 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 24-Jan-19 Logged By: M.N/R.C Contractor: Total Hole Depth (mbgs): 1.2 Bore Diameter (mm): 100

| Method                                               | Depth (mbgs) |      |  |       |                                                                                                   | Samples<br>Tests<br>Remarks       | Additional Observations                                   |
|------------------------------------------------------|--------------|------|--|-------|---------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|
| HA                                                   | _            |      |  | Fill  | Silty sand. Brown, damp and heterogeneous. Trace inculsions of shale gravels.                     | BH_P_11 0.0-0.15<br>PID = 0.3 ppm | No asbestos, odours or staining<br>observed.              |
|                                                      | - 0.5        | 0.30 |  | Fill  | Silty clayey sand. Brown, damp, heterogeneous and loose. Inclusions of trace shales and rootlets. | BH_P_11 0.4-0.5<br>PID = 2.7 ppm  | No asbestos or staining<br>observed.<br>Slight HC odours. |
|                                                      |              | 0.60 |  | Fill  | Silty clay. Brown/light grey, damp, homogeneous, stiff and medium plasticity.                     |                                   |                                                           |
|                                                      |              |      |  |       |                                                                                                   | BH_P_11 0.8-0.9<br>PID = 2.1 ppm  | No asbestos or staining<br>observed.<br>Slight HC odours. |
| 6                                                    | -            | 1.00 |  | SHALE | Crushed shale. Light grey, damp, homogeneous and medium dense.                                    | BH_P_11 1.1-1.2<br>PID = 3.8 ppm  | No asbestos or staining<br>observed.<br>Slight HC odours. |
| USTRALIA.GDT 11-2-19                                 | _            |      |  |       |                                                                                                   |                                   |                                                           |
| - 2017.GPJ GINT STD /                                | 1 <u>.5</u>  |      |  |       |                                                                                                   |                                   |                                                           |
| BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA | -            |      |  |       |                                                                                                   |                                   |                                                           |
| BOREH                                                | 2.0          |      |  |       |                                                                                                   |                                   |                                                           |



BH\_P\_12 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 11/10/2019 Logged By: MN Contractor: BG Drilling Total Hole Depth (mbgs): 8 Bore Diameter (mm): 150

| Mathod                                                                  | Contact (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Graphic Log | Lithological<br>Class | Lithological Description                                                                              | Additional Observations                                              |                                                                              |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| Solid Elicibt Auror                                                     | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | ∖Fill∕<br>Fill        | Asphalt<br>Gravelly clay, brown, homogeneous, damp, firm, medium/high plasticity                      | BH_P_12 0.1-0.20<br>PID = 2 ppm<br>BH_P_12 0.4-0.50<br>PID = 1.8 ppm | No ACM, odours or staining observed.<br>No ACM, odours or staining observed. |
| ů                                                                       | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | СН                    | Clay, grey/light brown, heterogeneous, medium plasticity, stiff, with inclusion of<br>weathered shale |                                                                      | No ACM, odours or staining observed.                                         |
| BOREHOLE JBSG BOREHOLE - 2018 - SQL.GPJ GINT STD AUSTRALIA.GDT 17/10/19 | 1       1.00         -       -         -       -         2       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       - <t< td=""><td></td><td>SHALE</td><td>Weathered shale (pulverized), brown, homogeneous, dry</td><td>BH_P_120.9-1.00<br/>PID = 1.9 ppm</td><td>No ACM, odours or staining observed.</td></t<> |             | SHALE                 | Weathered shale (pulverized), brown, homogeneous, dry                                                 | BH_P_120.9-1.00<br>PID = 1.9 ppm                                     | No ACM, odours or staining observed.                                         |



BH\_P\_13 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 10/10/2019 Logged By: MN Contractor: BG Drilling Total Hole Depth (mbgs): 4 Bore Diameter (mm): 150

| 1 - 14-14                                                               | Depth (mbgs)     | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                            | Samples<br>Tests<br>Remarks                                                | Additional Observations                                                      |
|-------------------------------------------------------------------------|------------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                         | _                | 0.05           |             | Fill<br>Fill          | Asphalt<br>Clay, brown, heterogeneous, damp, firm, medium/high plasticity, with inclusion of<br>gravel              | BH_P_13 0.1-0.20<br>PID = 0.4 ppm /<br>BH_P_13 0.5-0.60<br>PID = 0.3 ppm / | No ACM, odours or staining observed.<br>No ACM, odours or staining observed. |
|                                                                         | <br>             | 0.80           | $\approx$   | СН                    | Clay, light brown/grey, heterogeneous, damp, stiff, high plasticity, with inclusion of rootlets and weathered shale | BH_P_13 1.0-1.10<br>PID = 0.5 ppm                                          |                                                                              |
|                                                                         | 2                |                |             |                       |                                                                                                                     |                                                                            | No ACM, odours or staining observed.                                         |
|                                                                         | _<br>_<br>3<br>_ | 3.00           |             | SHALE                 | Weathered shale, grey, homogeneous, dry, loose                                                                      |                                                                            |                                                                              |
|                                                                         | 4                | 4.00           |             |                       | Borehole BH_P_13 terminated at 4m                                                                                   |                                                                            | No ACM, odours or staining observed.                                         |
| /10/19                                                                  |                  |                |             |                       |                                                                                                                     |                                                                            |                                                                              |
| AUSTRALIA.GDT 17                                                        | 5                |                |             |                       |                                                                                                                     |                                                                            |                                                                              |
| BOREHOLE JBSG BOREHOLE - 2018 - SQL.GPJ GINT STD AUSTRALIA.GDT 17/10/19 | 6                |                |             |                       |                                                                                                                     |                                                                            |                                                                              |
| BOREHOLE - 2018 -                                                       | -<br>7<br>-      |                |             |                       |                                                                                                                     |                                                                            |                                                                              |
| BOREHOLE JBSG                                                           | 8                |                |             |                       |                                                                                                                     |                                                                            |                                                                              |



BH\_P\_14 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 10/10/2019 Logged By: MN Contractor: BG Drilling Total Hole Depth (mbgs): 4 Bore Diameter (mm): 150

| Method                                                                  | Depth (mbgs) | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                        | Samples<br>Tests<br>Remarks                                            | Additional Observations              |
|-------------------------------------------------------------------------|--------------|----------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|
| Solid Flight Auger                                                      | -            |                |             | Fill                  | Sandy clay, brown/grey, heterogeneous, damp, firm, medium plasticity, with inclusion<br>of gravel and sandstone | BH_P_14 0.0-0.10<br>PID = 0.3 ppm<br>BH_P_14 0.4-0.50<br>PID = 0.2 ppm | No ACM, odours or staining observed. |
|                                                                         |              | 0.70           |             | СН                    | Clay, grey, heterogeneous, damp, stiff, high plasticity, with inclusion of brown weathered shale                | BH_P_14 0.9-1.00<br>PID = 0.2 ppm                                      | No ACM, odours or staining observed. |
|                                                                         |              | 1.60           |             | SHALE                 | Weathered shale, grey/brown, homogeneous, damp, hard                                                            |                                                                        |                                      |
|                                                                         |              |                |             |                       |                                                                                                                 |                                                                        | No ACM, odours or staining observed. |
|                                                                         |              | 4.00           |             |                       | Borehole BH_P_14 terminated at 4m                                                                               | -                                                                      |                                      |
| /10/19                                                                  | -            |                |             |                       |                                                                                                                 |                                                                        |                                      |
| AUSTRALIA.GDT 17                                                        | 5            |                |             |                       |                                                                                                                 |                                                                        |                                      |
| BOREHOLE JBSG BOREHOLE - 2018 - SQL.GPJ GINT STD AUSTRALIA.GDT 17/10/19 |              |                |             |                       |                                                                                                                 |                                                                        |                                      |
| BOREHOLE - 2018                                                         | 7            | -              |             |                       |                                                                                                                 |                                                                        |                                      |
| BOREHOLE JBSC                                                           | 8            |                |             |                       |                                                                                                                 |                                                                        |                                      |



BH\_P\_16 Project Number: 55579 Client: Pells Sullivan Meynink Project Name: Chatswood Education Precinct Site Address: Centennial Avenue, Chatswood

Date: 11/10/2019 Logged By: MN Contractor: BG Drilling Total Hole Depth (mbgs): 4 Bore Diameter (mm): 150

| Method                                                                                     | Depth (mbgs)          | Contact (mbgs) | Graphic Log | Lithological<br>Class | Lithological Description                                                                                                                                                                                                                                                  | Samples<br>Tests<br>Remarks                                                                                                                      | Additional Observations              |
|--------------------------------------------------------------------------------------------|-----------------------|----------------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Flight Auger                                                                               |                       |                |             | Fill                  | Sandy clay, brown, heterogeneous, damp, firm, high plasticity, with inclusion of gravel                                                                                                                                                                                   | BH_P_16 0.0-0.10<br>PID = 0.9 ppm<br>BH_P_16 0.4-0.50                                                                                            | No ACM, odours or staining observed. |
| BOREHOLE JBSG BOREHOLE - 2018 - SQL.GPJ GINT STD AUSTRALIA.GDT 17/10/19 Solid Flight Auger |                       | 0.50           |             | Fill                  | Sandy clay, brown, heterogeneous, damp, firm, high plasticity, with inclusion of gravel Clay, light brown with grey mottling, damp, hard, high plasticity, with inclusion of shale Weathered shale, grey/light brown, homogeneous, hard Borehole BH_P_16 terminated at 4m | BH P_16 0.0-0.10<br>PID = 0.9 ppm<br>BH P_16 0.4-0.50<br>PID = 1.3 ppm<br>BH P_16 1.4-1.50<br>PID = 1.1 ppm<br>BH P_16 1.9-2.00<br>PID = 1.4 ppm | No ACM, odours or staining observed. |
| BOREHOLE JBSG BOREH                                                                        | -<br>-<br>-<br>-<br>- |                |             |                       |                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                      |



### Appendix E PID Calibration and Decontamination Field Forms

# Field Equipment Calibration and Decontamination



PROJECT NAME: ChartSWOOD Education Precinct PROJECT NO: 55579 FIELD DATES: 21/1/19 - 25/1/19 FIELD STAFF: MN, RC

1/2

| CALIBRATION   | SUMMARY  |                                       | · |
|---------------|----------|---------------------------------------|---|
| EQUIPMENT:    | PID      | · · · · · · · · · · · · · · · · · · · |   |
| CALIBRATION S | TANDARD: | 100ppm isobutylene.                   |   |

| DATE     | TIME                                   | READING (ppm <sub>v</sub> ) | COMMENTS    |
|----------|----------------------------------------|-----------------------------|-------------|
| 21/1/19  | 7:00am                                 | 0                           | Ambient     |
| 21/1/19  | 7:03an                                 | 100                         | isobutylene |
| 21/1/19  | 7:05am                                 | n 100.2                     | Bump.       |
| 22/1/19  | 7:00am                                 | 0                           | Ambient     |
| 22/1/19  | 7:02am                                 | 001                         | isobutylene |
| 22/1/19  |                                        | 100.5                       | bump.       |
| 23/1/19  | 7:00am                                 | 0                           | Anbient     |
| 23/1/19  | 7:03am                                 | 100                         | isobutylene |
| 23/1/19- | 7:06am                                 | 99.8                        | bump        |
| 24/1/19- | 7:01am                                 | 0                           | Andrent.    |
| 21/1/19- | ······································ |                             | isobutylene |
| 24/1/19= | 1:05am                                 | 190.1                       | Bump        |

| ef new sample. Nitrile goves were changed for<br>each scimple collection.         1. Was the equipment decontaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?         3. Was the equipment contaminated with grease, tar or similar material?<br>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?         4. Was phosphate-free detergent used to wash the equipment?         5. Was the equipment rinsed with clean water?         6. Was the equipment then rinsed with delonised water?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                                                                                                                                                                                           | I NA                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| eff new Sample. Nitrile gloves were changed for<br>each sample collection.         1. Was the equipment decontaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?         3. Was the equipment contaminated with grease, tar or similar material?         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?         Y         4. Was phosphate-free detergent used to wash the equipment?         5. Was the equipment rinsed with clean water?         6. Was the equipment then rinsed with deionised water?         Y         Y. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                                                                                                                                                                 |                                       |
| of new sample. Nitrile gloves were changed for<br>each sample collection.         1. Was the equipment decontaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?         3. Was the equipment contaminated with grease, tar or similar material?         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?         Y         4. Was phosphate-free detergent used to wash the equipment?         5. Was the equipment rinsed with clean water?         6. Was the equipment then rinsed with deionised water?         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y |                                       |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?       Image: Contaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?       Image: Contaminated with grease, tar or similar material?         3. Was the equipment contaminated with grease, tar or similar material?       Y         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?       Y         4. Was phosphate-free detergent used to wash the equipment?       Image: Container contaminated with clean water?         5. Was the equipment rinsed with clean water?       Image: Container container container container cleaned and acid or solvent washed prior to sample collection?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?       Y                                         | I NA                                  |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?       Image: Contaminated appropriately prior to sampling at each location?         2. Was excess soil removed by scraping, brushing or wiping with disposable towels?       Image: Contaminated with grease, tar or similar material?         3. Was the equipment contaminated with grease, tar or similar material?       Y         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?       Y         4. Was phosphate-free detergent used to wash the equipment?       Image: Container contaminated with clean water?         5. Was the equipment rinsed with clean water?       Image: Container container container container cleaned and acid or solvent washed prior to sample collection?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?       Y                                         | I NA                                  |
| <ul> <li>2. Was excess soil removed by scraping, brushing or wiping with disposable towels?</li> <li>3. Was the equipment contaminated with grease, tar or similar material?</li> <li>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?</li> <li>4. Was phosphate-free detergent used to wash the equipment?</li> <li>5. Was the equipment rinsed with clean water?</li> <li>6. Was the equipment then rinsed with delonised water?</li> <li>7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?</li> <li>Y</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |
| 3. Was the equipment contaminated with grease, tar or similar material?       Y         If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?       Y         4. Was phosphate-free detergent used to wash the equipment?       Image: Color of the equipment rinsed with clean water?         5. Was the equipment rinsed with clean water?       Image: Color of the equipment then rinsed with deionised water?         6. Was the equipment then rinsed with deionised water?       Image: Color of the equipment then rinsed with deionised water?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?       Y                                                                                                                                                                                                                                                                                | I NA                                  |
| <ul> <li>4. Was phosphate-free detergent used to wash the equipment?</li> <li>5. Was the equipment rinsed with clean water?</li> <li>6. Was the equipment then rinsed with deionised water?</li> <li>7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?</li> <li>Y</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| 5. Was the equipment rinsed with clean water?       Image: Comparison of the clean water?         6. Was the equipment then rinsed with deionised water?       Image: Comparison of the clean water?         7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?       Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · ·                               |
| 6. Was the equipment then rinsed with deionised water?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                    |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection? Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (NA)                                  |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |

# **Field Equipment Calibration and Decontamination**



| PROJECT NAME:  | hatswood Ed    | PROJECT NO:  | 55579 |     |
|----------------|----------------|--------------|-------|-----|
| FIELD DATES: 2 | 1/1/19-25/1/19 | FIELD STAFF: | MN, R | - ( |

| CALIBRATION SUMMARY   |                                       |            | <u> </u>                              |
|-----------------------|---------------------------------------|------------|---------------------------------------|
| EQUIPMENT: PID        | · · · · · · · · · · · · · · · · · · · |            |                                       |
| CALIBRATION STANDARD: | looppin                               | sobutylene |                                       |
|                       |                                       |            | · · · · · · · · · · · · · · · · · · · |

| DATE    | TIME    | READING (ppm <sub>v</sub> ) | COMMENTS                        |
|---------|---------|-----------------------------|---------------------------------|
| 25/1/19 | 1:00an  | ~ 0<br>~ 100                | Ampient                         |
| 25/1/19 | 7: Ogan | n 100                       | isobutylene                     |
| 25/1/19 | 7:072   | ~ 100.2                     | Ambient<br>isobutylene<br>bump. |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |
|         |         |                             |                                 |

| DECONTAMINATION SUMMARY                                                                                                                                          | ······            |     |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|------|
| EQUIPMENT: Auger                                                                                                                                                 |                   | ·   |      |
| EQUIPMENT:<br>Mashed with decontamination water<br><u>collection of new samples</u> . Nitrile gloves<br><u>changed for each sample collection</u> .              | ber               | Sar | ~e   |
| collection of new samples. Nitrile gloves                                                                                                                        | in.               | ert | 2    |
| changed for each sample collection.                                                                                                                              |                   |     |      |
| 1. Was the equipment decontaminated appropriately prior to sampling at each location?                                                                            | Ø                 | N   | NA   |
| 2. Was excess soil removed by scraping, brushing or wiping with disposable towels?                                                                               | Ø                 | N   | NA   |
| 3. Was the equipment contaminated with grease, tar or similar material?<br>If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? | Y                 | Ø   | (NA) |
|                                                                                                                                                                  | Y                 | N   |      |
| 4. Was phosphate-free detergent used to wash the equipment?                                                                                                      | $\mathcal{O}_{-}$ | N   | NA   |
| 5. Was the equipment rinsed with clean water?                                                                                                                    | 0                 | N   | NA   |
| 6. Was the equipment then rinsed with delonised water?                                                                                                           | $\Theta$          | N   | NA   |
| 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?                                                                     | Y                 | N   | NA   |
| WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.                                                                                          |                   |     |      |
|                                                                                                                                                                  |                   |     |      |
|                                                                                                                                                                  |                   |     |      |



### Appendix F QAQC Assessment

### Table 1 - QA/QC Results Summary

| Data Quality Indicator                           | Results                                                          | DQI met?             |
|--------------------------------------------------|------------------------------------------------------------------|----------------------|
| Precision                                        |                                                                  |                      |
| Soil Blind duplicates (intra laboratory)         | 0-175% RPD                                                       | Partial <sup>1</sup> |
|                                                  | Intra laboratory samples were analysed at a rate                 |                      |
|                                                  | greater than 1 in 20 samples.                                    |                      |
| Soil Blind triplicates (inter laboratory)        | 0-160% RPD                                                       | Partial <sup>1</sup> |
|                                                  | Inter laboratory samples were analysed at a rate                 |                      |
|                                                  | greater than 1 in 20 samples.                                    |                      |
|                                                  | 0-6% RPD                                                         | Yes                  |
| Laboratory duplicates                            | Intra laboratory samples were analysed at a rate of 1 in         |                      |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          | 20 samples.                                                      |                      |
| Accuracy                                         |                                                                  |                      |
| Surrogate spikes                                 | 54-124% Recovery                                                 | Partial <sup>1</sup> |
|                                                  | Surrogate spikes were completed for all organic                  | . ar tiai            |
|                                                  | samples                                                          |                      |
| Laboratory Control Samples                       | 71-126% Recovery                                                 | Yes                  |
| ··· / ··· ··· ·····                              | Laboratory control samples were completed for all                |                      |
|                                                  | organic and metals samples                                       |                      |
| Matrix spikes                                    | 70- 123% Recovery                                                | Yes                  |
|                                                  | Matrix spikes were completed for all organic and                 |                      |
|                                                  | metals samples                                                   |                      |
| Representativeness                               |                                                                  |                      |
| Sampling appropriate for media and               | All sampling conducted in accordance with JBS&G                  | Yes                  |
| analytes                                         | procedures                                                       |                      |
| Laboratory blanks                                | <lor< td=""><td>Yes</td></lor<>                                  | Yes                  |
| Samples extracted and analysed within            | All samples were extracted and analysed within holding           | Yes                  |
| holding times.                                   | times less than 14 days.                                         |                      |
| Trip spikes                                      | NA                                                               | Yes                  |
| Trip blanks                                      | NA                                                               | No                   |
| Rinsate blank                                    | <lor< td=""><td>Partial</td></lor<>                              | Partial              |
| Comparability                                    |                                                                  |                      |
| Standard operating procedures used for           | Field staff used same standard operating procedures              | Yes                  |
| sample collection & handling                     | throughout works                                                 |                      |
| Standard analytical methods used                 | Standard analytical methods used as listed in <b>Table 5.2</b> . | Yes                  |
| Consistent field conditions, sampling staff      | Sampling was conducted by a field scientist using                | Yes                  |
| and laboratory analysis                          | standard operating procedures in the same conditions             |                      |
|                                                  | throughout the works. The laboratories remained                  |                      |
|                                                  | consistent throughout the investigation.                         |                      |
| Limits of reporting appropriate and              | Limits of reporting were consistent and appropriate.             | Yes                  |
| consistent                                       |                                                                  |                      |
| Completeness                                     |                                                                  |                      |
| Soil description & COCs completed                | All bore logs and COCs were completed appropriately.             | Yes                  |
| Appropriate documentation                        | All appropriate field documentation is included in the           | Yes                  |
| Caticfactory fraguency / to the fact OC          | Appendices.                                                      | Vac                  |
| Satisfactory frequency/result for QC             | The QC results are considered adequate for the                   | Yes                  |
| samples                                          | purposes of the investigation.                                   | Vac                  |
| Data from critical samples is considered         | Data from critical samples is considered valid.                  | Yes                  |
| valid 1. See discussion of DQI exceedances below |                                                                  | I                    |

1. See discussion of DQI exceedances below.

### QA/QC Discussion

### Precision

### Blind / Split Duplicates

The rate of duplicate sampling and analysis for soils was 2 duplicates per 5 primary samples for heavy metals, and PAHs, and 2 duplicates per 10 primary samples for asbestos. As such, the



frequency of duplicate sample analysis for all key contaminants of concern met/exceeded the nominated 1/20 frequency.

High RPDs in the duplicate samples can be expected when materials are heterogeneous and/or when analyte concentrations are close to LOR. The elevated RPDs presented for both intralaboratory and inter-laboratory duplicates are considered to be acceptable on the basis that the reported concentrations are typically within 10 times the LOR. As a conservative measure the highest values have been considered in the interpretation of data.

The elevated RPDs presented for laboratory duplicates are considered acceptable as reported concentrations are <10 times the LOR and therefore the RPD limit is generally not applicable (as stated by the laboratory QC acceptance criteria).

### Laboratory Duplicates

The laboratory completed a total of 3 laboratory duplicate soil samples within the JBS&G acceptance criteria of 1 in 20 samples. Laboratory duplicates analysed had RPDs within the JBS&G DQI of 0%-50%.

### Accuracy

### Laboratory Control Samples

A total of 18 soil and 6 water laboratory control samples (LCS) we tested, meeting the DQIs. All LCS were reported as having recoveries within the JBS&G acceptable range of 70-130%.

### Surrogate Spikes

Surrogate spike exceedances are considered acceptable as they are within the laboratory acceptance criteria of 50-150% recovery for surrogate spikes.

### Matrix Spikes

Matrix spike recoveries were within the acceptable range of 70-130% with the exception of sample NCP\_Ja24618\_637848-SPK (copper recovery 170%), NCP\_Ja24618\_637848-SPK (lead recovery 219%) and sample NCP\_Ja24618\_637848-SPK (zinc recovery 150%). These recoveries are not considered to be reflective of an unacceptable level of accuracy in the dataset as an acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

### Representativeness

The extraction and analysis of selected samples was completed within the recommended holding times for all analytes.

JBS&G note that no trip spikes or trip blanks (TS/TB) were analysed as part of the assessment herein. It is noted that all sample handling procedures, including the transfer and storage of samples into chilled eskis were adhered to prior to, and during shipment to the laboratory. As such, JBS&G do not consider the omission of TB/TS samples adversely affect the representativeness of the data set.

All laboratory blanks analysed reported no concentrations above the laboratory LOR.

All field equipment was decontaminated and calibrated appropriately.

A rinsate sample was collected following decontamination of all non-disposable sampling equipment for the intrusive investigation. All analyte concentrations in rinsate samples were below the laboratory limit of reporting (LOR) with the exception of DDT (0.0001 for DDT+DDE+DDD (Total) and 4.4'-DDT), detected within the rinsate sample S19-Ja24422 collected on the 23<sup>rd</sup> January 2019. JBS&G note that no pesticides were reported within soils at any of the sample locations and therefore the Type 2 error is not considered to significantly impact upon the data set.



### Comparability

Eurofins | mgt, the primary laboratory, and Envirolab Services, the secondary laboratory, are NATA accredited for all analytical methods used. The laboratories used similar analytical methods and the analytical data were comparable between laboratories as indicated by the results of duplicate analysis. Where different LORs were adopted by the laboratories, consideration of the data set was not impacted.

The samples collected for assessment purposes are considered comparable as all samples were collected by experienced JBS&G personnel in accordance with standard JBS&G sampling methods.

### Completeness

All laboratory and field documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix M**.

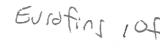
The frequency of analysis of all QC samples was considered appropriate and valid.

### Sensitivity

The adopted analytical methods provided suitable LORs with respect to the adopted site assessment criteria for all mediums.

### **QA/QC** Conclusions

The field sampling and handling procedures across the site produced QA/QC results which indicate that soil and groundwater data collected is of an acceptable quality.


The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil, soil vapour and groundwater data is of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.

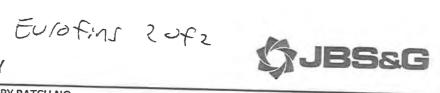


## Appendix G Laboratory Documentation

07561






### CHAIN OF CUSTODY

| PROJECT NO .: 5557                                                                | 1                   | 1.1               |                  |                                          |            |           | LAB     | RATO       | DRY B    | ATCH NO .:               |                                                  |          |                |                 |                  |
|-----------------------------------------------------------------------------------|---------------------|-------------------|------------------|------------------------------------------|------------|-----------|---------|------------|----------|--------------------------|--------------------------------------------------|----------|----------------|-----------------|------------------|
| PROJECT NAME: Chats                                                               | roog 6              | oducatio          | ma tip           | icint Mimory school                      | jc.        |           |         |            |          | CMN                      |                                                  |          |                |                 |                  |
| PHONE: Sydneye 02 0245 020                                                        | 0.1.0               |                   |                  |                                          |            |           | QC L    | EVEL:      | NEPN     | VI (2013)                |                                                  |          |                |                 |                  |
| PHONE: Sydney: 02 8245 030                                                        | 0   Perth:          | 08 9488 01        | LOO   Brisl      | pane: 07 3112 2688                       |            |           |         |            |          |                          |                                                  |          |                | _               |                  |
| SEND REPORT & INVOICE TO<br>COMMENTS / SPECIAL HANDLING / STOR                    | : (1) admin         | insw@jbsg.        | .com.au; (       | 2) Ulenaro                               | @jbsg.c    | com.au    | ı; (3)  | mn         | OVA      | 0.im 6                   | ibse com au                                      | D char   | Sin a Q .      | 1               | (.)              |
| COMMENTS/ SPECIAL HANDLING / STOR                                                 | AGE OR DISPOS       | SAL:              |                  |                                          |            |           |         | 211        | 2        | - 1                      | 1035.0011.20                                     | Izena    | ommej          | and an or       |                  |
|                                                                                   |                     |                   |                  |                                          |            | 1.161017  | 3 4     | P          | AC       | RE                       |                                                  |          | ASE            | ESTOS<br>ALYSIS | The cost unspect |
|                                                                                   |                     |                   |                  |                                          |            | 8         | 1       | E          | 00       | D B 3                    |                                                  |          |                |                 | un an make       |
| SAMPLE ID                                                                         | LAATDIN             | 1                 | -                |                                          |            | 5         |         | R          |          | lists                    |                                                  |          | ICATIO         | R.              | Put onhaid       |
|                                                                                   | MATRIX              | DATE              | TIME             | TYPE & PRESERVATIVE                      |            | рН        |         | X          |          | TCLP Mehode / PAN<br>PCB |                                                  |          | IDENTIFICATION | NEPM/WA         |                  |
| BH-P-010.4-05                                                                     | leaz                | 23/119            |                  | Saumilbuy, Justic                        | e          |           | XX      | X          | X        | X                        |                                                  |          | 9              | X               | NOTES:           |
| BH-P-02 0-015                                                                     | 9                   |                   |                  |                                          |            | 1         |         | X          | X        |                          |                                                  |          |                |                 |                  |
| BH-P-03 1-1.1                                                                     |                     |                   |                  |                                          |            |           |         | X          | X        |                          |                                                  |          |                | X               |                  |
| BH-P-04 0-0.15                                                                    | 1                   |                   |                  |                                          |            |           |         |            | -        | ×                        |                                                  |          | -              | X               |                  |
| BH-P-05 0.4-015                                                                   |                     |                   |                  |                                          |            |           |         |            | -        |                          |                                                  |          |                | X               |                  |
| BH-P-06 0.8-24                                                                    | 1                   | 1                 |                  |                                          | -          | -         |         | X          | ~        |                          |                                                  |          |                | X               |                  |
| BH-P-070-415                                                                      | 1                   | 22/1/14           |                  |                                          | -          | -         |         |            | ~        |                          |                                                  |          |                | X               |                  |
| BH-P-080.4-25                                                                     |                     | 24/114            |                  |                                          |            | -         |         | -          |          |                          |                                                  |          |                | X               |                  |
| BH-P-040-015                                                                      |                     | 24/114            |                  |                                          |            | -H        |         | V          | -        |                          |                                                  |          |                | X               |                  |
| BH-P-10 0.6-07                                                                    |                     | 24/114            |                  |                                          |            | -11       | 1       | X          | X        |                          |                                                  |          |                | X               |                  |
| B-20-01 0-015                                                                     |                     | 23/114            |                  | 1                                        |            |           | -       |            | -        |                          |                                                  |          |                | X               |                  |
| BU-1-10-9-413                                                                     |                     | 1                 |                  | Jaltice                                  |            | -         | -       |            | -        |                          |                                                  | _        |                |                 |                  |
| BH-P-02 0.4-0.5                                                                   |                     |                   |                  | buy jartice                              | -          |           | -       | -          | -        |                          |                                                  |          |                |                 |                  |
| BH-P-02 1-1.1                                                                     | Ĩ.                  |                   |                  | Jultice                                  |            | -         | +       |            |          |                          |                                                  |          |                |                 |                  |
| BH-P-03 0-D-15                                                                    |                     |                   |                  | bog ialtice                              |            | -         | -       |            | +        |                          |                                                  |          |                |                 |                  |
| BH-D-03 04-0.5                                                                    |                     |                   |                  | she laitice                              |            | -         | -       |            | -        |                          |                                                  |          |                |                 |                  |
| DH-P-03 1.4-1.5                                                                   |                     |                   |                  | buy hartice                              |            |           | -       |            | _        |                          |                                                  |          |                |                 |                  |
| BH-P-04 0.4-05                                                                    |                     |                   |                  |                                          |            |           | -       |            | -        |                          |                                                  |          |                |                 |                  |
| BH-P-04 1-1.                                                                      | N/                  | V                 |                  | bal jaltice                              |            | -         | 1       |            |          |                          |                                                  |          |                |                 |                  |
| RELINQUISHED BY:                                                                  |                     |                   |                  | had jaitice                              |            |           |         |            |          |                          |                                                  |          |                |                 |                  |
| NAME: ASS DATE: 25                                                                | 1/10                | CONSI             | GNMENT NO        | METHOD OF SHIPMENT:                      |            | -         |         | ~          | RECEIN   | VED BY:                  |                                                  | FOR      | RECEIVING LA   | ABUS            | FONLY            |
| DF: JBS&G                                                                         | are t               |                   |                  |                                          |            | 5         |         | 251        | 1.g      |                          | COOLER SE                                        | AL-Voc M | lo Inte        | ct              | Broken           |
| NAME: DATE:                                                                       |                     |                   | PORT CO.         | co.                                      |            |           |         | E10        | S        |                          | COOLER TEL                                       | 3.9      |                |                 |                  |
|                                                                                   |                     | CONSI             | GNMENT NO        | HENO.                                    |            | N         | AME     | 1          |          | DATE:                    | COOLER TEMP deg C<br>COOLER SEAL – Yes No Intact |          |                |                 |                  |
| OF:                                                                               |                     | TRANS             | PORT CO          |                                          |            |           | )F:     |            |          |                          |                                                  |          |                |                 |                  |
| Container & Preservative Codes: P = Plast<br>SO FormsO13 - Chain of Custody - Gen | ic; J = Soil Jar; I | B = Glass Bottle; | ; N = Nitric Aci | d Prsvd.; C = Sodium Hydroxide Prsvd; V0 | C = Hydrod | chloric A | cid Prs | /d Vial: \ | S = Sulf | furic Arid Provel Viel C | COOLER TEL                                       | MP deg C |                |                 |                  |

d; E = EDTA Prsvd; ST = Sterile Bottle; O = Other

07562

-



## CHAIN OF CUSTODY

| PROJECT NO.: 55579                                                                |                      |                                                           |             | LABO         | RATOR        | Y BATCH NO         |            |                 |           |         |               |         |                 |
|-----------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------|-------------|--------------|--------------|--------------------|------------|-----------------|-----------|---------|---------------|---------|-----------------|
| PROJECT NAME: CIADES WOOD                                                         | Education Pr         | ecint Plimary School                                      |             |              |              | RIM                |            |                 |           |         |               | _       |                 |
| DATE ALLOLD DI. (1)                                                               |                      |                                                           |             |              |              | EPM (2013)         | N          |                 |           |         |               |         |                 |
| PHONE: Sydney: 02 8245 0300   Pert                                                | h: 08 9488 0100   Br | isbane: 07 3112 2688                                      |             |              |              |                    |            |                 |           |         |               |         |                 |
| SEND REPORT & INVOICE TO: (1) adm<br>COMMENTS / SPECIAL HANDLING / STORAGE OR DIS | innsw@jbsg.com.au    | : (2) Denalo Oih                                          |             | (7)          | 100.0        | ALAL               |            |                 |           |         |               |         |                 |
| COMMENTS / SPECIAL HANDLING / STORAGE OR DIS                                      | POSAL:               | (L),                                                      | sg.com      | .au; (3)     |              | Jain.              | @          | jbsg.com.a      | au G      | lchoor  | nane          | j bs    | ), (on idu      |
|                                                                                   |                      |                                                           |             | Metal        | 120          | 22                 |            |                 |           |         | TY            | PEOF    | The Unspecifier |
|                                                                                   |                      |                                                           |             | Vetal        | 52           | 325                |            |                 |           |         | AN            | ALYSIS  | the UNI printia |
|                                                                                   |                      |                                                           |             | 2            | 575          | 3                  |            |                 |           | 11      | NUIN          |         | Putonholu       |
| SAMPLE ID MATRI                                                                   | DATE TIME            | TYPE & PRESERVATIVE                                       | pH          |              | 2'           | ACB WORKS          |            |                 |           |         | DENTIFICATION | NEPM/WA | 0111010         |
| BH-P-05 0-0.15 Suil                                                               | 23/1/12              | bon jaltice                                               | pit         |              |              | 1D H               | -          | -               |           |         | IDEN          | NEPA    | NOTES:          |
| BH_P_05 1-1.1                                                                     |                      | Jul +ice                                                  |             |              |              |                    |            |                 |           |         | -             |         |                 |
| BH-P-06 0-0.15                                                                    |                      | bui jui -: (2                                             | 1           |              |              |                    |            | -               |           |         |               |         |                 |
| BH-P-06 Och-Dis                                                                   |                      | bus jorisice                                              | -           |              |              |                    | -          |                 |           |         |               |         |                 |
| BH- P-06 1.5-1.6                                                                  | V                    | Bo Jult, CP                                               | -           |              |              |                    |            |                 |           |         |               |         |                 |
| BH-P-07 0.4-0.5                                                                   | 24/10-               | Jultice                                                   | -           |              |              |                    |            |                 |           |         |               |         |                 |
| BH-P-07 1-1.1                                                                     |                      | 629, jar(+100                                             | -           |              |              |                    |            |                 |           |         |               |         |                 |
| BH-P-07 1.7-1.8                                                                   |                      | by just tice                                              |             |              |              |                    |            | 1.11            |           |         |               |         |                 |
| BH-P-08 0-0.15                                                                    | 24/10                | 501+102                                                   | 1           |              |              |                    |            |                 |           |         |               |         |                 |
| BH-P-09 014-015                                                                   | C4114                | bud jultice                                               |             |              |              |                    |            |                 |           |         |               | ++      |                 |
| BH-P-09a 0-015                                                                    |                      | hay, istaice                                              |             |              |              |                    |            |                 |           | -       |               |         |                 |
| B14-P-09a Q4-as                                                                   |                      | d ī                                                       |             |              |              |                    |            |                 |           |         | ++-           | -       |                 |
| D14-1-0-10.014-015                                                                |                      | 1 A                                                       |             |              |              |                    |            |                 |           |         | -             |         |                 |
| BH-P-10 0-0.15                                                                    |                      |                                                           |             |              |              |                    |            |                 |           |         |               |         |                 |
| BH-P-10 1-11                                                                      |                      | 3017100                                                   |             |              |              |                    |            |                 |           |         |               |         |                 |
| BH-P-11 0-0115                                                                    |                      | burg, jail+ice                                            |             |              |              |                    |            |                 |           |         |               |         |                 |
| BH-P-11 0-4-05                                                                    |                      | 1                                                         |             |              | -            |                    |            | -               |           |         |               |         |                 |
| BH_ P-11 0.3-0.4                                                                  |                      |                                                           |             |              |              |                    | -          |                 |           |         |               |         |                 |
| BH_D-11 11-1.2                                                                    |                      | Jour +ice                                                 |             | -            | -            |                    | -          |                 |           |         |               |         |                 |
|                                                                                   |                      |                                                           |             | -            |              |                    |            |                 |           |         |               |         |                 |
| AME:                                                                              |                      | METHOD OF SHIPMENT:                                       |             |              |              |                    |            | 1111            | 1         |         |               |         |                 |
| ME: METHOD OF SHIPMENT: CONSIGNMENT NOTE NO.                                      |                      |                                                           |             |              | RE           | CEIVED BY:         |            |                 |           | FOR REC | EIVING L      | AB USE  | ONLY:           |
| BIS&G TRANSPORT CO                                                                |                      |                                                           |             | DATE:        |              |                    |            | COOLER          | SEAL – Ye | s No    | Inta          | ct      | Broken          |
| AME: DATE: CONSIGNMENT NOTE NO.                                                   |                      |                                                           |             | OF:          |              |                    |            | COOLER          | TEMP      | . deg C |               |         |                 |
| F:                                                                                |                      |                                                           |             | NAME:<br>OF: |              | DAT                |            | COOLER          | SEAL - Ye | s No    | Inta          | act     | Broken          |
| Container & Preservative Codes: P = Plastic: L = Soil In                          | TRANSPORT CO         |                                                           |             | 5            |              |                    |            | COOLER          | TEMO      |         |               |         |                 |
| O FormsO13 - Chain of Custody - Generic                                           | , NITICA             | <pre>kuu Prsva.; C = Sodium Hydroxide Prsvd; VC = H</pre> | ydrochlorid | Acid Prsv    | d Vial; VS = | Sulfuric Acid Prsv | d Vial S = | Sulfuric Acid D | I EIVIP   | . deg C |               | _       |                 |



# Certificate of Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Attention:<br>Report<br>Project Name<br>Project ID<br>Received Date<br>Date Reported | Daniel Denaro<br>637818-AID<br>CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL<br>55579<br>Jan 25, 2019<br>Feb 04, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methodology:<br>Asbestos Fibre<br>Identification                                     | Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.<br>NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unknown Mineral<br>Fibres                                                            | Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as<br>Electron Microscopy, to confirm unequivocal identity.<br>NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the<br>optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an<br>independent technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subsampling Soil<br>Samples                                                          | The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed.<br>NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bonded asbestos-<br>containing material<br>(ACM)                                     | The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.                                                                                                                                                                                                                                                        |
| Limit of Reporting                                                                   | The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH. |





Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project NameCHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOLProject ID55579Date SampledJan 22, 2019 to Jan 24, 2019Report637818-AID

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description                                                                                                | Result                                                                                                                   |
|------------------|------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| BH_P_01 0.4-0.5  | 19-Ja24219                   | Jan 23, 2019 | Approximate Sample 488g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH_P_02 0-0.15   | 19-Ja24220                   | Jan 23, 2019 | Approximate Sample 697g<br>Sample consisted of: Dark brown coarse-grained soil, rocks and<br>fragments of bitumen | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH_P_03 1-1.1    | 19-Ja24221                   | Jan 23, 2019 | Approximate Sample 685g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH_P_04 0-0.15   | 19-Ja24222                   | Jan 23, 2019 | Approximate Sample 818g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH_P_05 0.4-0.5  | 19-Ja24223                   | Jan 23, 2019 | Approximate Sample 643g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH_P_06 0.8-0.9  | 19-Ja24224                   | Jan 23, 2019 | Approximate Sample 544g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH_P_07 0-0.15   | 19-Ja24225                   | Jan 22, 2019 | Approximate Sample 789g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH_P_08 0.4-0.5  | 19-Ja24226                   | Jan 24, 2019 | Approximate Sample 618g<br>Sample consisted of: Brown coarse-grained soil and rocks                               | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Client Sample ID | Eurofins   mgt<br>Sample No. | Date Sampled | Sample Description      | Result                                                                                                                   |
|------------------|------------------------------|--------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| BH_P_09 0-0.15   | 19-Ja24227                   | Jan 24, 2019 | Approximate Sample 6069 | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |
| BH_P_10 0.6-0.7  | 19-Ja24228                   | Jan 24, 2019 | Approximate Sample 700g | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No respirable fibres detected. |



### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyJan 29, 2019Indefinite

|       | euro                                |                                                    | ABN –<br>e.mail :<br>web : v  | 50 005<br>Enviro<br>vww.eur | 085 52<br>Sales@<br>ofins.cc     | 1<br>eurofins<br>om.au    | s.com     |                               | Dander<br>Phone<br>NATA # | erey Ro<br>nong So<br>: +61 3 | uth VIC 3175<br>8564 5000 | Sydney<br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : - 461 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 46<br>NATA # 1261 Site # 20 |   |                                       |                     |                                                               |  |
|-------|-------------------------------------|----------------------------------------------------|-------------------------------|-----------------------------|----------------------------------|---------------------------|-----------|-------------------------------|---------------------------|-------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---|---------------------------------------|---------------------|---------------------------------------------------------------|--|
|       | mpany Name:<br>dress:               | JBS & G Aus<br>Level 1, 50 N<br>Sydney<br>NSW 2000 | stralia (NSW)<br>∕largaret St | P/L                         |                                  |                           | Re        | der N<br>port i<br>one:<br>x: |                           |                               | 37818<br>2 824            |                                                                                                                                   | 0                                                                                                       |   | Receive<br>Due:<br>Priority<br>Contac | Feb<br>: 5 Da       | Jan 25, 2019 5:50 PM<br>Feb 4, 2019<br>5 Day<br>Daniel Denaro |  |
|       | oject Name:<br>oject ID:            | CHATSWOC<br>55579                                  | D EDUCATIO                    | ON PRECINCT                 | PRIMARY SCHC                     | JOL                       |           |                               |                           |                               |                           |                                                                                                                                   |                                                                                                         |   | Eurofins   mgt /                      | Analytical Services | Manager : Nibha Vaidya                                        |  |
|       |                                     |                                                    | Asbestos - WA guidelines      | HOLD                        | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set                  | Eurofins   mgt Suite B7   | JBS&G Suite 2                 |                           |                                                                                                                                   |                                                                                                         |   |                                       |                     |                                                               |  |
| Vlelb | ourne Laborato                      | ory - NATA Site                                    | # 1254 & 142                  | 271                         |                                  |                           | Х         | Х                             | Х                         | Х                             | Х                         | Х                                                                                                                                 | х                                                                                                       |   |                                       |                     |                                                               |  |
|       | ney Laboratory                      |                                                    |                               |                             |                                  | X                         |           |                               |                           |                               |                           |                                                                                                                                   |                                                                                                         |   |                                       |                     |                                                               |  |
|       | bane Laboratory                     |                                                    |                               |                             |                                  |                           |           |                               |                           |                               |                           |                                                                                                                                   |                                                                                                         |   |                                       |                     |                                                               |  |
|       | h Laboratory - N<br>rnal Laboratory |                                                    | 30                            |                             |                                  |                           |           |                               |                           |                               | -                         |                                                                                                                                   |                                                                                                         |   |                                       |                     |                                                               |  |
| No    | Sample ID                           | Sample Date                                        | Sampling<br>Time              | Matrix                      | LAB ID                           |                           |           |                               |                           |                               |                           |                                                                                                                                   |                                                                                                         |   |                                       |                     |                                                               |  |
| 1     | BH_P_01 0.4-<br>0.5                 | Jan 23, 2019                                       |                               | Soil                        | S19-Ja24219                      | х                         |           |                               |                           |                               | x                         |                                                                                                                                   | x                                                                                                       |   |                                       |                     |                                                               |  |
| 2     | BH_P_02 0-<br>0.15                  | Jan 23, 2019                                       |                               | Soil                        | S19-Ja24220                      | х                         |           |                               | x                         |                               | x                         | х                                                                                                                                 |                                                                                                         |   |                                       |                     |                                                               |  |
| 3     | BH_P_03 1-<br>1.1                   | Jan 23, 2019                                       |                               | Soil                        | S19-Ja24221                      | x                         |           |                               | x                         |                               | x                         | х                                                                                                                                 |                                                                                                         |   |                                       |                     |                                                               |  |
| 4     | BH_P_04 0-<br>0.15                  | Jan 23, 2019                                       |                               | Soil                        | S19-Ja24222                      | x                         |           | x                             |                           | Х                             | x                         |                                                                                                                                   |                                                                                                         |   |                                       |                     |                                                               |  |
| 5     | BH_P_05 0.4-<br>0.5                 | Jan 23, 2019                                       |                               | Soil                        | S19-Ja24223                      | х                         |           | x                             |                           | х                             | x                         |                                                                                                                                   |                                                                                                         |   |                                       |                     |                                                               |  |
|       | BH_P_06 0.8-                        | Jan 23, 2019                                       | 1                             | Soil                        | S19-Ja24224                      | x                         | 1         | 1                             | 1                         | 1                             | 1                         | 1                                                                                                                                 | x                                                                                                       | 1 |                                       |                     |                                                               |  |

|      | euro                             | ABN –<br>e.mail<br>web : v                                   | 50 005<br>Enviros<br>vww.eur | 085 521<br>Sales@<br>ofins.co | eurofins<br>m.au                 | s.com                     |                               | Dander<br>Phone<br>NATA # | erey Roa<br>nong Sou<br>: +61 3 8 | uth VIC 3175<br>564 5000 | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 2079 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>4 NATA # 1261<br>Site # 23736 |                                        |                       |                                  |
|------|----------------------------------|--------------------------------------------------------------|------------------------------|-------------------------------|----------------------------------|---------------------------|-------------------------------|---------------------------|-----------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|----------------------------------|
|      | mpany Name:<br>dress:            | JBS & G Australia<br>Level 1, 50 Marga<br>Sydney<br>NSW 2000 |                              |                               |                                  | Re                        | der N<br>port a<br>one:<br>x: |                           |                                   | 37818<br>2 824           |                                                                                                                                        | 0                                                                                                           |                                                                                                            | Receive<br>Due:<br>Priority<br>Contact | Feb 4,<br>5 Day       | , 2019 5:50 PM<br>2019<br>Denaro |
|      | oject Name:<br>oject ID:         | CHATSWOOD EE<br>55579                                        | DUCATION PRECIN              | ICT PRIMARY SCHO              | OL                               |                           |                               |                           |                                   |                          |                                                                                                                                        |                                                                                                             |                                                                                                            | Eurofins   mgt #                       | Analytical Services M | lanager : Nibha Vaidya           |
|      |                                  | Sample                                                       | Asbestos - WA guidelines     | НОГД                          | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8                     | Moisture Set              | Eurofins   mgt Suite B7           | JBS&G Suite 2            |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| Melb | ourne Laborato                   | ory - NATA Site # 12                                         | 54 & 14271                   |                               |                                  | Х                         | Х                             | Х                         | х                                 | Х                        | Х                                                                                                                                      | х                                                                                                           |                                                                                                            |                                        |                       |                                  |
| Sydı | ney Laboratory                   | - NATA Site # 18217                                          |                              |                               | Х                                |                           |                               |                           |                                   |                          |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
|      |                                  | y - NATA Site # 2079                                         | 94                           |                               |                                  |                           |                               |                           |                                   |                          |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| Pert |                                  | ATA Site # 23736                                             |                              |                               |                                  | <u> </u>                  |                               |                           | <u> </u>                          | <u> </u>                 |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| 7    | 0.9<br>BH_P_07 0-<br>0.15        | Jan 22, 2019                                                 | Soil                         | S19-Ja24225                   | x                                |                           | x                             |                           | x                                 | x                        |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| 3    | BH_P_08 0.4-<br>0.5              | Jan 24, 2019                                                 | Soil                         | S19-Ja24226                   | x                                |                           | x                             |                           | x                                 | x                        |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| 9    | BH_P_09 0-<br>0.15               | Jan 24, 2019                                                 | Soil                         | S19-Ja24227                   | x                                |                           |                               | х                         |                                   | x                        | х                                                                                                                                      |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| 10   | BH_P_10 0.6-<br>0.7              | Jan 24, 2019                                                 | Soil                         | S19-Ja24228                   | x                                |                           | х                             |                           | х                                 | x                        |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| 11   | BH_P_01 0-<br>0.15<br>BH_P_01 1- | Jan 23, 2019                                                 | Soil                         | S19-Ja24229                   |                                  | x                         |                               |                           |                                   |                          |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| 10   |                                  | Jan 23, 2019                                                 | Soil                         | S19-Ja24230                   |                                  | Х                         |                               |                           |                                   |                          |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |
| 12   | 1.1<br>BH_P_02 0.4-              | Jan 23, 2019                                                 | Soil                         | S19-Ja24231                   |                                  |                           |                               |                           |                                   |                          |                                                                                                                                        |                                                                                                             |                                                                                                            |                                        |                       |                                  |

|                      | euro                     | ABN –<br>e.mail :<br>web : v                          | 50 005<br>Enviros<br>vww.eur | 085 52<br>Sales@<br>ofins.co     | l<br>eurofins<br>om.au     | s.com     |              | Dander<br>Phone<br>NATA      | erey Roa<br>nong Sou<br>: +61 3 8 | uth VIC 3175<br>3564 5000 | Sydney<br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |  |                                        |                        |                      |
|----------------------|--------------------------|-------------------------------------------------------|------------------------------|----------------------------------|----------------------------|-----------|--------------|------------------------------|-----------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|----------------------------------------|------------------------|----------------------|
|                      | mpany Name:<br>dress:    | JBS & G Austr<br>Level 1, 50 Ma<br>Sydney<br>NSW 2000 | ```                          | /L                               |                            |           | Re           | der N<br>port<br>ione:<br>x: | #:                                | -                         | 37818<br>2 824                                                                                                                  | 3<br>5 030                                                                                                   | 0                                                                                                        |  | Receive<br>Due:<br>Priority<br>Contact | Feb 4, 2<br>5 Day      |                      |
|                      | oject Name:<br>oject ID: | CHATSWOOE<br>55579                                    | D EDUCATIOI                  | N PRECINC                        | CT PRIMARY SCHO            | OL        |              |                              |                                   |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  | Eurofins   mgt #                       | Analytical Services Ma | nager : Nibha Vaidya |
|                      |                          | Asbestos - WA guidelines                              | НОГД                         | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides  | Metals M8 | Moisture Set | Eurofins   mgt Suite B7      | JBS&G Suite 2                     |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  |                                        |                        |                      |
| Melb                 | ourne Laborato           | ory - NATA Site #                                     | 1254 & 1427                  | '1                               |                            |           | х            | Х                            | Х                                 | Х                         | Х                                                                                                                               | Х                                                                                                            | Х                                                                                                        |  |                                        |                        |                      |
|                      |                          | - NATA Site # 18                                      |                              |                                  |                            | Х         |              |                              |                                   |                           |                                                                                                                                 |                                                                                                              | $\square$                                                                                                |  |                                        |                        |                      |
|                      |                          | y - NATA Site # 2                                     |                              |                                  |                            |           |              |                              |                                   |                           |                                                                                                                                 |                                                                                                              | $\mid$                                                                                                   |  |                                        |                        |                      |
| Pert                 |                          | NATA Site # 2373                                      | 6                            |                                  |                            |           |              | <u> </u>                     |                                   |                           | <u> </u>                                                                                                                        |                                                                                                              | +                                                                                                        |  |                                        |                        |                      |
| 14                   | 0.5<br>BH_P_02 1-<br>1.1 | Jan 23, 2019                                          |                              | Soil                             | S19-Ja24232                |           | x            |                              |                                   |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  |                                        |                        |                      |
| 15                   | BH_P_03 0-<br>0.15       | Jan 23, 2019                                          | Ş                            | Soil                             | S19-Ja24233                |           | х            |                              |                                   |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  |                                        |                        |                      |
| 6                    | BH_P_03 0.4-<br>0.5      | Jan 23, 2019                                          |                              | Soil                             | S19-Ja24234                |           | x            |                              |                                   |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  |                                        |                        |                      |
|                      | 1.5                      | Jan 23, 2019                                          |                              | Soil                             | S19-Ja24235                |           | x            |                              |                                   |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  |                                        |                        |                      |
|                      | <b>B 1 1 1 1 1 1</b>     | Jan 23, 2019                                          | 9                            | Soil                             | S19-Ja24236                |           | х            |                              |                                   |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  |                                        |                        |                      |
| 18                   | BH_P_04 0.4-<br>0.5      |                                                       |                              | C e il                           | 040 1-04007                |           |              |                              |                                   |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  |                                        |                        |                      |
| 17<br>18<br>19<br>20 |                          | Jan 23, 2019<br>Jan 23, 2019                          |                              | Soil                             | S19-Ja24237<br>S19-Ja24238 |           | x<br>x       |                              |                                   |                           |                                                                                                                                 |                                                                                                              |                                                                                                          |  |                                        |                        |                      |

|             | euro                                                            | ofins                                              | mgt          |              |                            | ABN –<br>e.mail :<br>web : w | 50 005<br>Enviros<br>/ww.eur | 085 52<br>Sales@<br>ofins.cc     | 1<br>eurofins<br>om.au    | s.com     |                | Dander<br>Phone<br>NATA # | erey Roa<br>nong So<br>: +61 3 8 | uth VIC 3175<br>8564 5000 | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|-------------|-----------------------------------------------------------------|----------------------------------------------------|--------------|--------------|----------------------------|------------------------------|------------------------------|----------------------------------|---------------------------|-----------|----------------|---------------------------|----------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|             | npany Name:<br>dress:                                           | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | · · ·        | P/L          |                            |                              | Re                           | der N<br>port i<br>ione:<br>x:   | #:                        | -         | 37818<br>2 824 | 3<br>5 030                | 0                                |                           | Receiv<br>Due:<br>Priority<br>Contac                                                                                                   | Feb 4,<br>5 Day                                                                                              | 2019 5:50 PM<br>2019<br>Denaro                                                                           |
|             | ject Name:<br>ject ID:                                          | CHATSWOO<br>55579                                  | D EDUCATIC   | ON PRECIN    | CT PRIMARY SCHC            | OL                           |                              |                                  |                           |           |                |                           |                                  |                           | Eurofins   mgt /                                                                                                                       | Analytical Services M                                                                                        | lanager : Nibha Vaidya                                                                                   |
|             | Sample Detail<br>Bibourne Laboratory - NATA Site # 1254 & 14271 |                                                    |              |              |                            | Asbestos - WA guidelines     | НОГД                         | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set   | Eurofins   mgt Suite B7   | JBS&G Suite 2                    |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| <b>Nelb</b> | ourne Laborato                                                  | ory - NATA Site                                    | # 1254 & 142 | 71           |                            |                              | Х                            | Х                                | Х                         | х         | Х              | Х                         | х                                |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
|             |                                                                 | - NATA Site # 18                                   |              |              |                            | Х                            |                              |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
|             |                                                                 | y - NATA Site #                                    |              |              |                            |                              | <u> </u>                     |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
|             |                                                                 | NATA Site # 237                                    | 36           |              |                            |                              |                              |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 21          | <u>0.15</u><br>BH_P_05 1-<br>1.1                                | Jan 23, 2019                                       |              | Soil         | S19-Ja24239                |                              | x                            |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 22          | BH_P_06 0-<br>0.15                                              | Jan 23, 2019                                       |              | Soil         | S19-Ja24240                |                              | x                            |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
|             | BH_P_06 0.4-<br>0.5                                             | Jan 23, 2019                                       |              | Soil         | S19-Ja24241                |                              | х                            |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 24          | BH_P_06 1.5-<br>1.6                                             | Jan 23, 2019                                       |              | Soil         | S19-Ja24242                |                              | x                            |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
|             | BH_P_07 0.4-                                                    | Jan 22, 2019                                       |              | Soil         | S19-Ja24243                |                              | х                            |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 25          | 0.5                                                             | lon 22, 2010                                       |              | Coil         | S10 1024244                |                              |                              |                                  |                           | 1         | 1              |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 25<br>26    |                                                                 | Jan 22, 2019<br>Jan 22, 2019                       |              | Soil<br>Soil | S19-Ja24244<br>S19-Ja24245 |                              | x<br>x                       |                                  |                           |           |                |                           |                                  |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |

|       | euro                                                            | ofins                                                   | mgt            |                  | ABN –<br>e.mail :<br>web : w | 50 005<br>Enviros<br>/ww.eur | 085 52<br>Sales@<br>rofins.co    | l<br>eurofins<br>om.au    | s.com     |                | Dander<br>Phone<br>NATA | erey Roa<br>nong Sou<br>: +61 3 8 | uth VIC 3175<br>8564 5000 | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|-------|-----------------------------------------------------------------|---------------------------------------------------------|----------------|------------------|------------------------------|------------------------------|----------------------------------|---------------------------|-----------|----------------|-------------------------|-----------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|       | mpany Name:<br>dress:                                           | JBS & G Austra<br>Level 1, 50 Mar<br>Sydney<br>NSW 2000 |                |                  |                              | Re                           | der N<br>port i<br>ione:<br>ix:  | #:                        | -         | 37818<br>2 824 | 3<br>5 030              | 0                                 |                           | Receive<br>Due:<br>Priority<br>Contac                                                                                                  | Feb 4, 2                                                                                                     |                                                                                                          |
|       | oject Name:<br>oject ID:                                        | CHATSWOOD<br>55579                                      | EDUCATION PREC | NCT PRIMARY SCHC | OL                           |                              |                                  |                           |           |                |                         |                                   |                           | Eurofins   mgt /                                                                                                                       | Analytical Services M                                                                                        | anager : Nibha Vaidya                                                                                    |
|       | Sample Detail<br>Bibourne Laboratory - NATA Site # 1254 & 14271 |                                                         |                |                  |                              | HOLD                         | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set   | Eurofins   mgt Suite B7 | JBS&G Suite 2                     |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| /lelb | ourne Laborato                                                  | ory - NATA Site # 1                                     | 254 & 14271    |                  |                              | Х                            | Х                                | Х                         | Х         | Х              | Х                       | х                                 |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| -     |                                                                 | - NATA Site # 1821                                      |                |                  | Х                            |                              |                                  |                           | <u> </u>  |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
|       |                                                                 | y - NATA Site # 20                                      |                |                  |                              |                              |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| Pertl |                                                                 | NATA Site # 23736                                       |                |                  |                              |                              |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 28    | 1.8<br>BH_P_08 0-<br>0.15                                       | Jan 24, 2019                                            | Soil           | S19-Ja24246      |                              | x                            |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 29    | BH_P_09 0.4-<br>0.5                                             | Jan 24, 2019                                            | Soil           | S19-Ja24247      |                              | х                            |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 30    | BH_P_09A 0-<br>0.15                                             | Jan 24, 2019                                            | Soil           | S19-Ja24248      |                              | x                            |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
|       | BH_P_09A<br>0.4-0.5                                             | Jan 24, 2019                                            | Soil           | S19-Ja24249      | <u> </u>                     | х                            |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
|       |                                                                 | Jan 24, 2019                                            | Soil           | S19-Ja24250      |                              | х                            |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 32    | BH_P_10 0-<br>0.15                                              | lon 24, 2010                                            | Soil           | S10 1024254      |                              |                              |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |
| 32    | BH_P_10 0-<br>0.15<br>BH_P_10 1-<br>1.1                         | Jan 24, 2019                                            | Soil           | S19-Ja24251      |                              | х                            |                                  |                           |           |                |                         |                                   |                           |                                                                                                                                        |                                                                                                              |                                                                                                          |

|       | euro                        | ofins                                                   | mgt           |                    | ABN –<br>e.mail<br>web : \ | 50 005<br>: Enviro<br>vww.eui | 085 52<br>Sales@<br>ofins.co     | l<br>eurofins<br>om.au    | s.com     |                | Dande<br>Phone<br>NATA  | terey Roa<br>nong Sou<br>: +61 3 8 | uth VIC 3175<br>564 5000 | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | <b>Brisbane</b><br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>NATA # 1261<br>Site # 23736 |
|-------|-----------------------------|---------------------------------------------------------|---------------|--------------------|----------------------------|-------------------------------|----------------------------------|---------------------------|-----------|----------------|-------------------------|------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|       | mpany Name:<br>dress:       | JBS & G Austra<br>Level 1, 50 Mar<br>Sydney<br>NSW 2000 |               |                    |                            | Re                            | der N<br>port :<br>ione:<br>x:   | #:                        |           | 37818<br>2 824 |                         | 00                                 |                          | Receive<br>Due:<br>Priority<br>Contact                                                                                                 | Feb 4, 1<br>5 Day                                                                                                   |                                                                                                          |
|       | oject Name:<br>oject ID:    | CHATSWOOD<br>55579                                      | EDUCATION PRE | CINCT PRIMARY SCHO | OOL                        |                               |                                  |                           |           |                |                         |                                    |                          | Eurofins   mgt A                                                                                                                       | nalytical Services M                                                                                                | anager : Nibha Vaidya                                                                                    |
|       |                             | Samı                                                    | ple Detail    |                    | Asbestos - WA guidelines   | HOLD                          | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set   | Eurofins   mgt Suite B7 | JBS&G Suite 2                      |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |
| /lelb | ourne Laborato              | ory - NATA Site #                                       | 1254 & 14271  |                    |                            | Х                             | х                                | х                         | Х         | х              | х                       | X                                  |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |
| Sydn  | ney Laboratory              | - NATA Site # 182                                       | 217           |                    | Х                          |                               |                                  |                           |           |                |                         |                                    |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |
|       |                             | y - NATA Site # 20                                      |               |                    |                            |                               |                                  |                           |           |                |                         |                                    |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |
|       |                             | NATA Site # 23736                                       | 6             |                    |                            |                               |                                  |                           |           |                |                         | +                                  |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |
| 35    | 0.15<br>BH_P_11 0.4-<br>0.5 | Jan 24, 2019                                            | Soil          | S19-Ja24253        |                            | x                             |                                  |                           |           |                |                         |                                    |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |
| 36    | BH_P_11 0.8-<br>0.9         | Jan 24, 2019                                            | Soil          | S19-Ja24254        |                            | х                             |                                  |                           |           |                |                         |                                    |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |
| 37    | BH_P_11 1.1-<br>1.2         | Jan 24, 2019                                            | Soil          | S19-Ja24255        |                            | х                             |                                  |                           |           |                |                         |                                    |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |
| Test  | Counts                      |                                                         |               |                    | 10                         | 27                            | 5                                | 3                         | 5         | 10             | 3                       | 2                                  |                          |                                                                                                                                        |                                                                                                                     |                                                                                                          |



### Internal Quality Control Review and Glossary General

### 1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

#### Units

| % w/w: weight for weight | ght basis                                                                                                                              | grams per kilogram                                                                                                                                                     |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filter loading:          |                                                                                                                                        | fibres/100 graticule areas                                                                                                                                             |
| Reported Concentration   | in:                                                                                                                                    | fibres/mL                                                                                                                                                              |
| Flowrate:                |                                                                                                                                        | L/min                                                                                                                                                                  |
| Terms                    |                                                                                                                                        |                                                                                                                                                                        |
| Dry                      | Sample is dried by heating prior to analysis                                                                                           |                                                                                                                                                                        |
| LOR                      | Limit of Reporting                                                                                                                     |                                                                                                                                                                        |
| COC                      | Chain of Custody                                                                                                                       |                                                                                                                                                                        |
| SRA                      | Sample Receipt Advice                                                                                                                  |                                                                                                                                                                        |
| ISO                      | International Standards Organisation                                                                                                   |                                                                                                                                                                        |
| AS                       | Australian Standards                                                                                                                   |                                                                                                                                                                        |
| WA DOH                   |                                                                                                                                        | ralia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated<br>Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011) |
| NEPM                     | National Environment Protection (Assessment of Site Contamination                                                                      | ion) Measure, 2013 (as amended)                                                                                                                                        |
| ACM                      | Asbestos Containing Materials. Asbestos contained within a non-a<br>NEPM, ACM is generally restricted to those materials that do not p | asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the<br>bass a 7mm x 7mm sieve.                                              |
| AF                       | Asbestos Fines. Asbestos containing materials, including friable, v<br>equivalent to "non-bonded / friable".                           | veathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as                                                                           |
| FA                       | Fibrous Asbestos. Asbestos containing materials in a friable and/o<br>materials that do not pass a 7mm x 7mm sieve.                    | or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those                                                                     |
| Friable                  | Asbestos-containing materials of any size that may be broken or o<br>outside of the laboratory's remit to assess degree of friability. | rrumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is                                                                           |
| Trace Analysis           | Analytical procedure used to detect the presence of respirable fibr                                                                    | es in the matrix.                                                                                                                                                      |



### Comments

Ja24219: Sample received was less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |
|                                                                         |     |

### **Qualifier Codes/Comments**

CodeDescriptionN/ANot applicable

#### Asbestos Counter/Identifier:

Laxman Dias

Senior Analyst-Asbestos (NSW)

### Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | rigit shall not be liable for loss, coss, damages or expenses incurred by the cient, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rigit be liable for coss, coss, damages or expenses incurred by the cient, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins | rigit be liable for the samples as received.



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Daniel Denaro

Report Project name Project ID Received Date 637818-S CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL 55579

| 50010        |  |
|--------------|--|
| Jan 25, 2019 |  |

| Client Sample ID                                  |       |       | BH_P_01 0.4-<br>0.5 | <sup>R16</sup> BH_P_02 0-<br>0.15 | BH_P_03 1-1.1 | BH_P_04 0-<br>0.15 |
|---------------------------------------------------|-------|-------|---------------------|-----------------------------------|---------------|--------------------|
| Sample Matrix                                     |       |       | Soil                | Soil                              | Soil          | Soil               |
| Eurofins   mgt Sample No.                         |       |       | S19-Ja24219         | S19-Ja24220                       | S19-Ja24221   | S19-Ja24222        |
| Date Sampled                                      |       |       | Jan 23, 2019        | Jan 23, 2019                      | Jan 23, 2019  | Jan 23, 2019       |
| Test/Reference                                    | LOR   | Unit  |                     |                                   |               |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Frac   | tions |       |                     |                                   |               |                    |
| TRH C6-C9                                         | 20    | mg/kg | < 20                | < 40                              | < 20          | -                  |
| TRH C10-C14                                       | 20    | mg/kg | < 20                | < 20                              | < 20          | -                  |
| TRH C15-C28                                       | 50    | mg/kg | < 50                | 6400                              | < 50          | -                  |
| TRH C29-C36                                       | 50    | mg/kg | < 50                | 3900                              | < 50          | -                  |
| TRH C10-36 (Total)                                | 50    | mg/kg | < 50                | 10300                             | < 50          | -                  |
| BTEX                                              |       |       |                     |                                   |               |                    |
| Benzene                                           | 0.1   | mg/kg | < 0.1               | < 0.2                             | < 0.1         | -                  |
| Toluene                                           | 0.1   | mg/kg | < 0.1               | < 0.2                             | < 0.1         | -                  |
| Ethylbenzene                                      | 0.1   | mg/kg | < 0.1               | < 0.2                             | < 0.1         | -                  |
| m&p-Xylenes                                       | 0.2   | mg/kg | < 0.2               | < 0.4                             | < 0.2         | -                  |
| o-Xylene                                          | 0.1   | mg/kg | < 0.1               | < 0.2                             | < 0.1         | -                  |
| Xylenes - Total                                   | 0.3   | mg/kg | < 0.3               | < 0.6                             | < 0.3         | -                  |
| 4-Bromofluorobenzene (surr.)                      | 1     | %     | 75                  | 88                                | 68            | -                  |
| Total Recoverable Hydrocarbons - 2013 NEPM Frac   | tions |       |                     |                                   |               |                    |
| Naphthalene <sup>N02</sup>                        | 0.5   | mg/kg | < 0.5               | 1.5                               | < 0.5         | -                  |
| TRH C6-C10                                        | 20    | mg/kg | < 20                | < 40                              | < 20          | -                  |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20    | mg/kg | < 20                | < 40                              | < 20          | -                  |
| TRH >C10-C16                                      | 50    | mg/kg | < 50                | 120                               | < 50          | -                  |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50    | mg/kg | < 50                | 118.5                             | < 50          | -                  |
| TRH >C16-C34                                      | 100   | mg/kg | < 100               | 9000                              | < 100         | -                  |
| TRH >C34-C40                                      | 100   | mg/kg | < 100               | 2200                              | < 100         | -                  |
| TRH >C10-C40 (total)*                             | 100   | mg/kg | < 100               | 11320                             | < 100         | -                  |
| Polycyclic Aromatic Hydrocarbons                  | 1     | -     |                     |                                   |               |                    |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5   | mg/kg | < 0.5               | 120                               | < 0.5         | 3.2                |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5   | mg/kg | 0.6                 | 120                               | 0.6           | 3.4                |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5   | mg/kg | 1.2                 | 120                               | 1.2           | 3.7                |
| Acenaphthene                                      | 0.5   | mg/kg | < 0.5               | 1.0                               | < 0.5         | < 0.5              |
| Acenaphthylene                                    | 0.5   | mg/kg | < 0.5               | 1.7                               | < 0.5         | < 0.5              |
| Anthracene                                        | 0.5   | mg/kg | < 0.5               | 7.2                               | < 0.5         | < 0.5              |
| Benz(a)anthracene                                 | 0.5   | mg/kg | < 0.5               | 47                                | < 0.5         | 1.5                |
| Benzo(a)pyrene                                    | 0.5   | mg/kg | < 0.5               | 82                                | < 0.5         | 2.5                |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5   | mg/kg | < 0.5               | 55                                | < 0.5         | 1.9                |
| Benzo(g.h.i)perylene                              | 0.5   | mg/kg | < 0.5               | 41                                | < 0.5         | 0.8                |
| Benzo(k)fluoranthene                              | 0.5   | mg/kg | < 0.5               | 59                                | < 0.5         | 1.9                |
| Chrysene                                          | 0.5   | mg/kg | < 0.5               | 48                                | < 0.5         | 1.5                |



| Client Sample ID                    |      |       | BH_P_01 0.4-<br>0.5 | <sup>R16</sup> BH_P_02 0-<br>0.15 | BH_P_03 1-1.1 | BH_P_04 0-<br>0.15 |
|-------------------------------------|------|-------|---------------------|-----------------------------------|---------------|--------------------|
| Sample Matrix                       |      |       | Soil                | Soil                              | Soil          | Soil               |
| Eurofins   mgt Sample No.           |      |       | S19-Ja24219         | S19-Ja24220                       | S19-Ja24221   | S19-Ja24222        |
| Date Sampled                        |      |       | Jan 23, 2019        | Jan 23, 2019                      | Jan 23, 2019  | Jan 23, 2019       |
| Test/Reference                      | LOR  | Unit  |                     |                                   |               |                    |
| Polycyclic Aromatic Hydrocarbons    |      |       |                     |                                   |               |                    |
| Dibenz(a.h)anthracene               | 0.5  | mg/kg | < 0.5               | 11                                | < 0.5         | < 0.5              |
| Fluoranthene                        | 0.5  | mg/kg | < 0.5               | 96                                | < 0.5         | 2.6                |
| Fluorene                            | 0.5  | mg/kg | < 0.5               | 1.0                               | < 0.5         | < 0.5              |
| Indeno(1.2.3-cd)pyrene              | 0.5  | mg/kg | < 0.5               | 61                                | < 0.5         | 1.4                |
| Naphthalene                         | 0.5  | mg/kg | < 0.5               | 0.7                               | < 0.5         | < 0.5              |
| Phenanthrene                        | 0.5  | mg/kg | < 0.5               | 29                                | < 0.5         | 1.0                |
| Pyrene                              | 0.5  | mg/kg | < 0.5               | 110                               | < 0.5         | 2.9                |
| Total PAH*                          | 0.5  | mg/kg | < 0.5               | 650.6                             | < 0.5         | 18                 |
| 2-Fluorobiphenyl (surr.)            | 1    | %     | 82                  | 73                                | 75            | 81                 |
| p-Terphenyl-d14 (surr.)             | 1    | %     | 97                  | 73                                | 88            | 84                 |
| Organochlorine Pesticides           |      |       |                     |                                   |               |                    |
| Chlordanes - Total                  | 0.1  | mg/kg | < 0.1               | < 0.1                             | < 0.1         | -                  |
| 4.4'-DDD                            | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| 4.4'-DDE                            | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| 4.4'-DDT                            | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| a-BHC                               | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Aldrin                              | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| b-BHC                               | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| d-BHC                               | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Dieldrin                            | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Endosulfan I                        | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Endosulfan II                       | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Endosulfan sulphate                 | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Endrin                              | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Endrin aldehyde                     | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Endrin ketone                       | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| g-BHC (Lindane)                     | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Heptachlor                          | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Heptachlor epoxide                  | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Hexachlorobenzene                   | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Methoxychlor                        | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Toxaphene                           | 1    | mg/kg | < 1                 | < 1                               | < 1           | -                  |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | < 0.05              | < 0.05                            | < 0.05        | -                  |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | < 0.1               | < 0.1                             | < 0.1         | -                  |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | < 0.1               | < 0.1                             | < 0.1         | -                  |
| Dibutylchlorendate (surr.)          | 1    | %     | 121                 | 97                                | 94            | -                  |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | 55                  | 100                               | 100           | -                  |
| Polychlorinated Biphenyls           |      |       |                     |                                   |               |                    |
| Aroclor-1016                        | 0.1  | mg/kg | < 0.1               | -                                 | -             | -                  |
| Aroclor-1221                        | 0.1  | mg/kg | < 0.1               | -                                 | -             | -                  |
| Aroclor-1232                        | 0.1  | mg/kg | < 0.1               | -                                 | -             | -                  |
| Aroclor-1242                        | 0.1  | mg/kg | < 0.1               | -                                 | -             | -                  |
| Aroclor-1248                        | 0.1  | mg/kg | < 0.1               | -                                 | -             | -                  |
| Aroclor-1254                        | 0.1  | mg/kg | < 0.1               | -                                 | -             | -                  |
| Aroclor-1260                        | 0.1  | mg/kg | < 0.1               | -                                 | -             | -                  |
| Total PCB*                          | 0.1  | mg/kg | < 0.1               | -                                 | -             | -                  |
| Dibutylchlorendate (surr.)          | 1    | %     | 121                 | -                                 | -             | -                  |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | 55                  | -                                 | -             | -                  |



| Client Sample ID          |     |       | BH_P_01 0.4-<br>0.5 | <sup>R16</sup> BH_P_02 0-<br>0.15 | BH_P_03 1-1.1 | BH_P_04 0-<br>0.15 |
|---------------------------|-----|-------|---------------------|-----------------------------------|---------------|--------------------|
| Sample Matrix             |     |       | Soil                | Soil                              | Soil          | Soil               |
| Eurofins   mgt Sample No. |     |       | S19-Ja24219         | S19-Ja24220                       | S19-Ja24221   | S19-Ja24222        |
| Date Sampled              |     |       | Jan 23, 2019        | Jan 23, 2019                      | Jan 23, 2019  | Jan 23, 2019       |
| Test/Reference            | LOR | Unit  |                     |                                   |               |                    |
| Heavy Metals              |     |       |                     |                                   |               |                    |
| Arsenic                   | 2   | mg/kg | 8.2                 | 2.1                               | 4.1           | 3.8                |
| Cadmium                   | 0.4 | mg/kg | < 0.4               | 0.7                               | < 0.4         | < 0.4              |
| Chromium                  | 5   | mg/kg | 15                  | 29                                | 14            | 12                 |
| Copper                    | 5   | mg/kg | < 5                 | 44                                | < 5           | 75                 |
| Lead                      | 5   | mg/kg | 16                  | 100                               | 23            | 58                 |
| Mercury                   | 0.1 | mg/kg | < 0.1               | < 0.1                             | < 0.1         | < 0.1              |
| Nickel                    | 5   | mg/kg | < 5                 | 32                                | < 5           | 8.3                |
| Zinc                      | 5   | mg/kg | 320                 | 110                               | 6.3           | 78                 |
| % Moisture                | 1   | %     | 20                  | 2.9                               | 14            | 8.4                |

| Client Sample ID                                  |           |       | BH_P_05 0.4-<br>0.5 | BH_P_06 0.8-<br>0.9 | BH_P_07 0-<br>0.15 | BH_P_08 0.4-<br>0.5 |
|---------------------------------------------------|-----------|-------|---------------------|---------------------|--------------------|---------------------|
| Sample Matrix                                     |           |       | Soil                | Soil                | Soil               | Soil                |
| Eurofins   mgt Sample No.                         |           |       | S19-Ja24223         | S19-Ja24224         | S19-Ja24225        | S19-Ja24226         |
| Date Sampled                                      |           |       | Jan 23, 2019        | Jan 23, 2019        | Jan 22, 2019       | Jan 24, 2019        |
| Test/Reference                                    | LOR       | Unit  |                     |                     |                    |                     |
| Total Recoverable Hydrocarbons - 1999 NEPM F      | Fractions |       |                     |                     |                    |                     |
| TRH C6-C9                                         | 20        | mg/kg | -                   | < 20                | -                  | -                   |
| TRH C10-C14                                       | 20        | mg/kg | -                   | < 20                | -                  | -                   |
| TRH C15-C28                                       | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| TRH C29-C36                                       | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| TRH C10-36 (Total)                                | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| BTEX                                              |           |       |                     |                     |                    |                     |
| Benzene                                           | 0.1       | mg/kg | -                   | < 0.1               | -                  | -                   |
| Toluene                                           | 0.1       | mg/kg | -                   | < 0.1               | -                  | -                   |
| Ethylbenzene                                      | 0.1       | mg/kg | -                   | < 0.1               | -                  | -                   |
| m&p-Xylenes                                       | 0.2       | mg/kg | -                   | < 0.2               | -                  | -                   |
| o-Xylene                                          | 0.1       | mg/kg | -                   | < 0.1               | -                  | -                   |
| Xylenes - Total                                   | 0.3       | mg/kg | -                   | < 0.3               | -                  | -                   |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | -                   | 70                  | -                  | -                   |
| Total Recoverable Hydrocarbons - 2013 NEPM F      | ractions  |       |                     |                     |                    |                     |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | -                   | < 0.5               | -                  | -                   |
| TRH C6-C10                                        | 20        | mg/kg | -                   | < 20                | -                  | -                   |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20        | mg/kg | -                   | < 20                | -                  | -                   |
| TRH >C10-C16                                      | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | -                   | < 50                | -                  | -                   |
| TRH >C16-C34                                      | 100       | mg/kg | -                   | < 100               | -                  | -                   |
| TRH >C34-C40                                      | 100       | mg/kg | -                   | < 100               | -                  | -                   |
| TRH >C10-C40 (total)*                             | 100       | mg/kg | -                   | < 100               | -                  | -                   |
| Polycyclic Aromatic Hydrocarbons                  |           |       |                     |                     |                    |                     |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5       | mg/kg | 1.2                 | 1.3                 | < 0.5              | 2.2                 |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5       | mg/kg | 1.4                 | 1.6                 | 0.6                | 2.5                 |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5       | mg/kg | 1.7                 | 1.8                 | 1.2                | 2.7                 |
| Acenaphthene                                      | 0.5       | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Acenaphthylene                                    | 0.5       | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Anthracene                                        | 0.5       | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Benz(a)anthracene                                 | 0.5       | mg/kg | 0.6                 | 0.6                 | < 0.5              | 1.3                 |



| Client Sample ID                      |      |       | BH_P_05 0.4-<br>0.5 | BH_P_06 0.8-<br>0.9 | BH_P_07 0-<br>0.15 | BH_P_08 0.4-<br>0.5 |
|---------------------------------------|------|-------|---------------------|---------------------|--------------------|---------------------|
| Sample Matrix                         |      |       | Soil                | Soil                | Soil               | Soil                |
| Eurofins   mgt Sample No.             |      |       | S19-Ja24223         | S19-Ja24224         | S19-Ja24225        | S19-Ja24226         |
| Date Sampled                          |      |       | Jan 23, 2019        | Jan 23, 2019        | Jan 22, 2019       | Jan 24, 2019        |
| Test/Reference                        | LOR  | Unit  |                     |                     |                    |                     |
| Polycyclic Aromatic Hydrocarbons      |      |       |                     |                     |                    |                     |
| Benzo(a)pyrene                        | 0.5  | mg/kg | 0.9                 | 1.0                 | < 0.5              | 1.7                 |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5  | mg/kg | 0.5                 | 0.9                 | < 0.5              | 1.2                 |
| Benzo(g.h.i)perylene                  | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5              | 0.6                 |
| Benzo(k)fluoranthene                  | 0.5  | mg/kg | 0.7                 | 1.0                 | < 0.5              | 1.5                 |
| Chrysene                              | 0.5  | mg/kg | 0.5                 | 0.7                 | < 0.5              | 1.1                 |
| Dibenz(a.h)anthracene                 | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Fluoranthene                          | 0.5  | mg/kg | 1.3                 | 1.1                 | < 0.5              | 2.5                 |
| Fluorene                              | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Indeno(1.2.3-cd)pyrene                | 0.5  | mg/kg | 0.7                 | 0.5                 | < 0.5              | 0.9                 |
| Naphthalene                           | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5              | < 0.5               |
| Phenanthrene                          | 0.5  | mg/kg | 0.9                 | < 0.5               | < 0.5              | 1.5                 |
| Pyrene                                | 0.5  | mg/kg | 1.4                 | 1.2                 | < 0.5              | 2.5                 |
| Total PAH*                            | 0.5  | mg/kg | 7.5                 | 7                   | < 0.5              | 14.8                |
| 2-Fluorobiphenyl (surr.)              | 1    | %     | 72                  | 75                  | 74                 | 89                  |
| p-Terphenyl-d14 (surr.)               | 1    | %     | 72                  | 71                  | 75                 | 90                  |
| Organochlorine Pesticides             | •    | •     |                     |                     |                    |                     |
| Chlordanes - Total                    | 0.1  | mg/kg | -                   | < 0.1               | -                  | -                   |
| 4.4'-DDD                              | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| 4.4'-DDE                              | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| 4.4'-DDT                              | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| a-BHC                                 | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Aldrin                                | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| b-BHC                                 | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| d-BHC                                 | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Dieldrin                              | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Endosulfan I                          | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Endosulfan II                         | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Endosulfan sulphate                   | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Endrin                                | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Endrin aldehyde                       | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Endrin ketone                         | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| g-BHC (Lindane)                       | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Heptachlor                            | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Heptachlor epoxide                    | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Hexachlorobenzene                     | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Methoxychlor                          | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Toxaphene                             | 1    | mg/kg | -                   | < 1                 | -                  | -                   |
| Aldrin and Dieldrin (Total)*          | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| DDT + DDE + DDD (Total)*              | 0.05 | mg/kg | -                   | < 0.05              | -                  | -                   |
| Vic EPA IWRG 621 OCP (Total)*         | 0.1  | mg/kg | -                   | < 0.1               | -                  | -                   |
| Vic EPA IWRG 621 Other OCP (Total)*   | 0.1  | mg/kg | -                   | < 0.1               | -                  | -                   |
| Dibutylchlorendate (surr.)            | 1    | %     | -                   | 91                  | -                  | -                   |
| Tetrachloro-m-xylene (surr.)          | 1    | %     | -                   | 97                  | -                  | -                   |
| Polychlorinated Biphenyls             |      |       |                     |                     |                    |                     |
| Aroclor-1016                          | 0.1  | mg/kg | -                   | < 0.1               | -                  | -                   |
| Aroclor-1221                          | 0.1  | mg/kg | -                   | < 0.1               | -                  | -                   |
| Aroclor-1232                          | 0.1  | mg/kg | -                   | < 0.1               | -                  | -                   |
| Aroclor-1242                          | 0.1  | mg/kg | -                   | < 0.1               | -                  | -                   |
| Aroclor-1248                          | 0.1  | mg/kg | -                   | < 0.1               | -                  | -                   |



| Client Sample ID             |     |       | BH_P_05 0.4-<br>0.5 | BH_P_06 0.8-<br>0.9 | BH_P_07 0-<br>0.15 | BH_P_08 0.4-<br>0.5 |
|------------------------------|-----|-------|---------------------|---------------------|--------------------|---------------------|
| Sample Matrix                |     |       | Soil                | Soil                | Soil               | Soil                |
| Eurofins   mgt Sample No.    |     |       | S19-Ja24223         | S19-Ja24224         | S19-Ja24225        | S19-Ja24226         |
| Date Sampled                 |     |       | Jan 23, 2019        | Jan 23, 2019        | Jan 22, 2019       | Jan 24, 2019        |
| Test/Reference               | LOR | Unit  |                     |                     |                    |                     |
| Polychlorinated Biphenyls    |     |       |                     |                     |                    |                     |
| Aroclor-1254                 | 0.1 | mg/kg | -                   | < 0.1               | -                  | -                   |
| Aroclor-1260                 | 0.1 | mg/kg | -                   | < 0.1               | -                  | -                   |
| Total PCB*                   | 0.1 | mg/kg | -                   | < 0.1               | -                  | -                   |
| Dibutylchlorendate (surr.)   | 1   | %     | -                   | 91                  | -                  | -                   |
| Tetrachloro-m-xylene (surr.) | 1   | %     | -                   | 97                  | -                  | -                   |
| Heavy Metals                 |     |       |                     |                     |                    |                     |
| Arsenic                      | 2   | mg/kg | 4.4                 | 4.5                 | < 2                | 4.0                 |
| Cadmium                      | 0.4 | mg/kg | < 0.4               | 0.4                 | < 0.4              | < 0.4               |
| Chromium                     | 5   | mg/kg | 14                  | 11                  | 42                 | 9.1                 |
| Copper                       | 5   | mg/kg | 8.8                 | 34                  | 55                 | 18                  |
| Lead                         | 5   | mg/kg | 19                  | 98                  | < 5                | 180                 |
| Mercury                      | 0.1 | mg/kg | < 0.1               | 0.1                 | < 0.1              | < 0.1               |
| Nickel                       | 5   | mg/kg | 8.5                 | 6.7                 | 70                 | 6.0                 |
| Zinc                         | 5   | mg/kg | 14                  | 310                 | 55                 | 120                 |
|                              |     |       |                     |                     |                    |                     |
| % Moisture                   | 1   | %     | 8.8                 | 16                  | 6.4                | 17                  |

| Client Sample ID                                  |           |       | BH_P_09 0-<br>0.15 | BH_P_10 0.6-<br>0.7 |
|---------------------------------------------------|-----------|-------|--------------------|---------------------|
| Sample Matrix                                     |           |       | Soil               | Soil                |
| Eurofins   mgt Sample No.                         |           |       | S19-Ja24227        | S19-Ja24228         |
| Date Sampled                                      |           |       | Jan 24, 2019       | Jan 24, 2019        |
| Test/Reference                                    | LOR       | Unit  |                    |                     |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |       |                    |                     |
| TRH C6-C9                                         | 20        | mg/kg | < 20               | -                   |
| TRH C10-C14                                       | 20        | mg/kg | < 20               | -                   |
| TRH C15-C28                                       | 50        | mg/kg | 54                 | -                   |
| TRH C29-C36                                       | 50        | mg/kg | 120                | -                   |
| TRH C10-36 (Total)                                | 50        | mg/kg | 174                | -                   |
| BTEX                                              |           |       |                    |                     |
| Benzene                                           | 0.1       | mg/kg | < 0.1              | -                   |
| Toluene                                           | 0.1       | mg/kg | < 0.1              | -                   |
| Ethylbenzene                                      | 0.1       | mg/kg | < 0.1              | -                   |
| m&p-Xylenes                                       | 0.2       | mg/kg | < 0.2              | -                   |
| o-Xylene                                          | 0.1       | mg/kg | < 0.1              | -                   |
| Xylenes - Total                                   | 0.3       | mg/kg | < 0.3              | -                   |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | 79                 | -                   |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |       |                    |                     |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | < 0.5              | -                   |
| TRH C6-C10                                        | 20        | mg/kg | < 20               | -                   |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20        | mg/kg | < 20               | -                   |
| TRH >C10-C16                                      | 50        | mg/kg | < 50               | -                   |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | < 50               | -                   |
| TRH >C16-C34                                      | 100       | mg/kg | 130                | -                   |
| TRH >C34-C40                                      | 100       | mg/kg | < 100              | -                   |
| TRH >C10-C40 (total)*                             | 100       | mg/kg | 130                | -                   |



| Client Sample ID                      |      |                              | BH_P_09 0-<br>0.15 | BH_P_10 0.6-<br>0.7 |
|---------------------------------------|------|------------------------------|--------------------|---------------------|
| Sample Matrix                         |      |                              | Soil               | Soil                |
| Eurofins   mgt Sample No.             |      |                              | S19-Ja24227        | S19-Ja24228         |
| Date Sampled                          |      |                              | Jan 24, 2019       | Jan 24, 2019        |
| Test/Reference                        |      | Linit                        | 0an 24, 2013       | 0an 24, 2013        |
| Polycyclic Aromatic Hydrocarbons      | LOR  | Unit                         |                    |                     |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5  | malka                        | < 0.5              | < 0.5               |
| Benzo(a)pyrene TEQ (nedium bound) *   | 0.5  | mg/kg<br>mg/kg               | < 0.5<br>0.6       | < 0.5<br>0.6        |
| Benzo(a)pyrene TEQ (upper bound) *    | 0.5  | mg/kg                        | 1.2                | 1.2                 |
| Acenaphthene                          | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Acenaphthylene                        | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Anthracene                            | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Benz(a)anthracene                     | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Benzo(a)pyrene                        | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Benzo(g.h.i)perylene                  | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Benzo(k)fluoranthene                  | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Chrysene                              | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Dibenz(a.h)anthracene                 | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Fluoranthene                          | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Fluorene                              | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Indeno(1.2.3-cd)pyrene                | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
| Naphthalene                           | 0.5  |                              | < 0.5              | < 0.5               |
| Phenanthrene                          | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
|                                       | 0.5  | mg/kg<br>mg/kg               | < 0.5              | < 0.5               |
| Pyrene<br>Total PAH*                  | 0.5  | mg/kg                        | < 0.5              | < 0.5               |
|                                       | 0.5  | ті <u>д</u> /к <u>д</u><br>% | < 0.5<br>82        |                     |
| 2-Fluorobiphenyl (surr.)              | 1    | %                            | 82                 | 89<br>95            |
| p-Terphenyl-d14 (surr.)               | I    | 70                           | 02                 | 95                  |
| Organochlorine Pesticides             | 0.4  |                              | .0.1               |                     |
| Chlordanes - Total                    | 0.1  | mg/kg                        | < 0.1              | -                   |
| 4.4'-DDD                              | 0.05 | mg/kg                        | < 0.05             | -                   |
| 4.4'-DDE<br>4.4'-DDT                  | 0.05 | mg/kg                        | < 0.05             | -                   |
|                                       | 0.05 | mg/kg                        | < 0.05             | -                   |
| a-BHC                                 | 0.05 | mg/kg                        | < 0.05             | -                   |
| Aldrin<br>b-BHC                       | 0.05 | mg/kg                        | < 0.05             | -                   |
| d-BHC                                 | 0.05 | mg/kg                        | < 0.05             | -                   |
| Dieldrin                              | 0.05 | mg/kg                        | < 0.05             | -                   |
|                                       |      | mg/kg                        | < 0.05             | -                   |
| Endosulfan I<br>Endosulfan II         | 0.05 | mg/kg                        | < 0.05             | -                   |
| Endosulfan il<br>Endosulfan sulphate  | 0.05 | mg/kg                        | < 0.05             | -                   |
| •                                     | 0.05 | mg/kg<br>mg/kg               | < 0.05             | -                   |
| Endrin<br>Endrin aldehyde             | 0.05 |                              | < 0.05             | -                   |
| Endrin aldenyde<br>Endrin ketone      | 0.05 | mg/kg<br>mg/kg               | < 0.05             | -                   |
| g-BHC (Lindane)                       |      |                              | < 0.05             | -                   |
| g-BHC (Lindane)<br>Heptachlor         | 0.05 | mg/kg                        | < 0.05             | -                   |
| Heptachlor epoxide                    | 0.05 | mg/kg                        | < 0.05             | -                   |
| Hexachlorobenzene                     | 0.05 | mg/kg                        | < 0.05             | -                   |
| Methoxychlor                          | 0.05 | mg/kg                        | < 0.05             | -                   |
|                                       |      | mg/kg                        | < 0.05             | -                   |
| Toxaphene                             | 1    | mg/kg                        | < 1                | -                   |
| Aldrin and Dieldrin (Total)*          | 0.05 | mg/kg                        | < 0.05             | -                   |
| DDT + DDE + DDD (Total)*              | 0.05 | mg/kg                        | < 0.05             | -                   |
| Vic EPA IWRG 621 OCP (Total)*         | 0.1  | mg/kg                        | < 0.1              | -                   |
| Vic EPA IWRG 621 Other OCP (Total)*   | 0.1  | mg/kg                        | < 0.1              | -                   |
| Dibutylchlorendate (surr.)            | 1    | %                            | 117                | -                   |
| Tetrachloro-m-xylene (surr.)          | 1    | %                            | 101                | -                   |



| Client Sample ID                                           |     |       | BH_P_09 0-<br>0.15                  | BH_P_10 0.6-<br>0.7                 |                |     |      |  |  |
|------------------------------------------------------------|-----|-------|-------------------------------------|-------------------------------------|----------------|-----|------|--|--|
| Sample Matrix<br>Eurofins   mgt Sample No.<br>Date Sampled |     |       | Soil<br>S19-Ja24227<br>Jan 24, 2019 | Soil<br>S19-Ja24228<br>Jan 24, 2019 |                |     |      |  |  |
|                                                            |     |       |                                     |                                     | Test/Reference | LOR | Unit |  |  |
|                                                            |     |       |                                     |                                     | Heavy Metals   |     |      |  |  |
| Arsenic                                                    | 2   | mg/kg | 2.7                                 | 4.9                                 |                |     |      |  |  |
| Cadmium                                                    | 0.4 | mg/kg | < 0.4                               | < 0.4                               |                |     |      |  |  |
| Chromium                                                   | 5   | mg/kg | 5.1                                 | 13                                  |                |     |      |  |  |
| Copper                                                     | 5   | mg/kg | 15                                  | 20                                  |                |     |      |  |  |
| Lead                                                       | 5   | mg/kg | 14                                  | 32                                  |                |     |      |  |  |
| Mercury                                                    | 0.1 | mg/kg | < 0.1                               | < 0.1                               |                |     |      |  |  |
| Nickel                                                     | 5   | mg/kg | < 5                                 | < 5                                 |                |     |      |  |  |
| Zinc                                                       | 5   | mg/kg | 190                                 | 160                                 |                |     |      |  |  |
|                                                            |     | 1     |                                     |                                     |                |     |      |  |  |
| % Moisture                                                 | 1   | %     | 5.7                                 | 15                                  |                |     |      |  |  |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                            | <b>Testing Site</b> | Extracted    | Holding Time |
|------------------------------------------------------------------------|---------------------|--------------|--------------|
| JBS&G Suite 2                                                          |                     |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                   | Melbourne           | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |                     |              |              |
| BTEX                                                                   | Melbourne           | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices |                     |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne           | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |                     |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                   | Melbourne           | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2010 TRH C6-C40                                      |                     |              |              |
| Polycyclic Aromatic Hydrocarbons                                       | Melbourne           | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water               |                     |              |              |
| Organochlorine Pesticides                                              | Melbourne           | Feb 01, 2019 | 14 Day       |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |                     |              |              |
| Polychlorinated Biphenyls                                              | Melbourne           | Feb 01, 2019 | 28 Days      |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                     |                     |              |              |
| Metals M8                                                              | Melbourne           | Feb 01, 2019 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS   |                     |              |              |
| % Moisture                                                             | Melbourne           | Jan 29, 2019 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                                        |                     |              |              |
|                                                                        |                     |              |              |

|      | 🔅 eur                              | ofins                                              | e.mail : Enviro               | ABN- 50 005 085 521<br>e.mail : EnviroSales@eurofins.con<br>web : www.eurofins.com.au |                                  |                           |           | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3175<br>Phone : +61 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 |                         |               |                | Sydney         Brisbane         Perth           Unit F3, Building F         1/21 Smallwood Place         2/91 Leach Highway           16 Mars Road         Murarrie QLD 4172         Kewdale WA 6105           Lane Cove West NSW 2066         Phone : +61 7 3902 4600         Phone : +61 8 9251 9600           Phone : +61 2 9900 8400         NATA # 1261 Site # 20794         NATA # 1261           NATA # 1261 Site # 18217         Site # 23736 |        |                                                                                      |
|------|------------------------------------|----------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------|----------------------------------|---------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------|
|      | ompany Name:<br>Idress:            | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | stralia (NSW)<br>⁄largaret St | P/L                                                                                   |                                  |                           | Re<br>Ph  | rder N<br>eport :<br>none:<br>ix:                                                                                         |                         |               | 37818<br>2 824 |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0      | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|      | oject Name:<br>oject ID:           | CHATSWOC<br>55579                                  | D EDUCATIO                    | ON PRECINCT                                                                           | PRIMARY SCHC                     | OL                        |           |                                                                                                                           |                         |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                            |
|      |                                    |                                                    | Asbestos - WA guidelines      | HOLD                                                                                  | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8 | Moisture Set                                                                                                              | Eurofins   mgt Suite B7 | JBS&G Suite 2 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                      |
| Mell | oourne Laborato                    | ory - NATA Site                                    | # 1254 & 142                  | 271                                                                                   |                                  |                           | Х         | Х                                                                                                                         | х                       | Х             | Х              | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Х      |                                                                                      |
|      | ney Laboratory                     |                                                    |                               |                                                                                       |                                  | Х                         |           |                                                                                                                           |                         |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                      |
|      | bane Laborator                     |                                                    |                               |                                                                                       |                                  |                           |           |                                                                                                                           |                         |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mid$ | -                                                                                    |
|      | h Laboratory - N                   |                                                    | 36                            |                                                                                       |                                  |                           |           |                                                                                                                           | <u> </u>                |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -                                                                                    |
| No   | ernal Laboratory<br>Sample ID      | Sample Date                                        | Sampling<br>Time              | Matrix                                                                                | LAB ID                           |                           |           |                                                                                                                           |                         |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -                                                                                    |
| 1    | BH_P_01 0.4-<br>0.5                | Jan 23, 2019                                       |                               | Soil                                                                                  | S19-Ja24219                      | х                         |           |                                                                                                                           |                         |               | х              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x      |                                                                                      |
| 2    | BH_P_02 0-<br>0.15                 | Jan 23, 2019                                       |                               | Soil                                                                                  | S19-Ja24220                      | х                         |           |                                                                                                                           | х                       |               | х              | х                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | _                                                                                    |
| 3    | BH_P_03 1-<br>1.1                  | Jan 23, 2019                                       |                               | Soil                                                                                  | S19-Ja24221                      | х                         |           |                                                                                                                           | х                       |               | х              | х                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | _                                                                                    |
| 4    | BH_P_04 0-<br>0.15<br>BH_P_05 0.4- | Jan 23, 2019<br>Jan 23, 2019                       |                               | Soil<br>Soil                                                                          | S19-Ja24222<br>S19-Ja24223       | X                         |           | X                                                                                                                         | ┣_                      | X             | X              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -                                                                                    |
| 6    | BH_P_06 0.8-                       | Jan 23, 2019                                       |                               | Soil                                                                                  | S19-Ja24223                      | X                         |           | X                                                                                                                         | <u> </u>                | X             | X              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -                                                                                    |
| 0    | DD_P_00 0.8-                       | Jan 23, 2019                                       |                               | 3011                                                                                  | 1319-Jaz4224                     | X                         | 1         | 1                                                                                                                         | 1                       | 1             | X              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X      |                                                                                      |

|          | 🔅 eur                             | And a heart of the                                            | ngt             | ABN- 50 005<br>e.mail : Enviro<br>web : www.eu | Sales@                   | eurofine | s.com                            | 6<br>D<br>P<br>N          | lelbourr<br>Monter<br>andenc<br>hone : -<br>IATA #<br>ite # 12 | ey Roa<br>ng Sou<br>⊦61 3 8<br>1261 | th VIC 3<br>564 500     | 8175<br>0          | Sydney         Brisbane         Perth           Unit F3, Building F         1/21 Smallwood Place         2/91 Leach Highway           16 Mars Road         Murarrie QLD 4172         Kewdale WA 6105           Lane Cove West NSW 2066         Phone : +61 7 3902 4600         Phone : +61 8 9251 9600           Phone : +61 2 9900 8400         NATA # 1261 Site # 20794         NATA # 1261           NATA # 1261 Site # 18217         Site # 23736 |
|----------|-----------------------------------|---------------------------------------------------------------|-----------------|------------------------------------------------|--------------------------|----------|----------------------------------|---------------------------|----------------------------------------------------------------|-------------------------------------|-------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | ompany Name:<br>Idress:           | JBS & G Australia<br>Level 1, 50 Margar<br>Sydney<br>NSW 2000 |                 |                                                |                          | Re       | der N<br>eport #<br>none:<br>ix: |                           |                                                                | 37818<br>2 824                      | 3<br>5 030              | 0                  | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro                                                                                                                                                                                                                                                                                                                                                                  |
|          | oject Name:<br>oject ID:          | CHATSWOOD ED<br>55579                                         | UCATION PRECING | CT PRIMARY SCHO                                | OL                       |          |                                  |                           |                                                                |                                     |                         |                    | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                   | Sample                                                        | Detail          |                                                | Asbestos - WA guidelines | HOLD     | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides | Metals M8                                                      | Moisture Set                        | Eurofins   mgt Suite B7 | JBS&G Suite 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mell     | bourne Laborato                   | ory - NATA Site # 125                                         | 4 & 14271       |                                                |                          | Х        | х                                | Х                         | Х                                                              | Х                                   | Х                       | х                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                   | - NATA Site # 18217                                           |                 |                                                | х                        | -        |                                  |                           |                                                                |                                     |                         | $\mid$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                   | y - NATA Site # 20794                                         |                 |                                                |                          |          |                                  |                           |                                                                |                                     |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pert     |                                   | IATA Site # 23736                                             |                 |                                                |                          |          |                                  |                           |                                                                |                                     |                         | $\left  - \right $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7        | 0.9<br>BH_P_07 0-<br>0.15         | Jan 22, 2019                                                  | Soil            | S19-Ja24225                                    | x                        |          | x                                |                           | x                                                              | x                                   |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8        | BH_P_08 0.4-<br>0.5               | Jan 24, 2019                                                  | Soil            | S19-Ja24226                                    | x                        |          | x                                |                           | x                                                              | x                                   |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9        | BH_P_09 0-<br>0.15                | Jan 24, 2019                                                  | Soil            | S19-Ja24227                                    | х                        |          |                                  | х                         |                                                                | x                                   | x                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10<br>11 | BH_P_10 0.6-<br>0.7<br>BH_P_01 0- | Jan 24, 2019<br>Jan 23, 2019                                  | Soil            | S19-Ja24228                                    | X                        |          | X                                |                           | X                                                              | X                                   |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12       | 0.15<br>BH_P_01 1-                | Jan 23, 2019                                                  | Soil            | S19-Ja24230                                    |                          | x<br>x   |                                  |                           |                                                                |                                     |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13       | 1.1<br>BH_P_02 0.4-               | Jan 23, 2019                                                  | Soil            | S19-Ja24231                                    |                          | x        |                                  |                           |                                                                |                                     |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|          | 🔅 eur                             | ofins                                                      | e.mail : Enviro   | ABN- 50 005 085 521<br>e.mail : EnviroSales@eurofins.com<br>web : www.eurofins.com.au |                          |      |                                  | <b>Melbourne</b><br>6 Monterey Road<br>Dandenong South VIC 3175<br>Phone : +61 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 |           |                | 175<br>0                | Sydney         Brisbane         Perth           Unit F3, Building F         1/21 Smallwood Place         2/91 Leach Highway           16 Mars Road         Murarrie QLD 4172         Kewdale WA 6105           Lane Cove West NSW 2066         Phone : +61 7 3902 4600         Phone : +61 8 9251 9600           Phone : +61 2 9900 8400         NATA # 1261 Site # 20794         NATA # 1261           NATA # 1261 Site # 18217         Site # 23736 |                                                                                      |
|----------|-----------------------------------|------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|--------------------------|------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|          | ompany Name:<br>ddress:           | JBS & G Australi<br>Level 1, 50 Marg<br>Sydney<br>NSW 2000 |                   |                                                                                       |                          | Re   | der N<br>port i<br>ione:<br>x:   |                                                                                                                                  |           | 37818<br>2 824 |                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|          | roject Name:<br>roject ID:        | CHATSWOOD E<br>55579                                       | EDUCATION PRECINC | CT PRIMARY SCHO                                                                       | OL                       |      |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                            |
|          |                                   | Sampl                                                      | e Detail          |                                                                                       | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides                                                                                                        | Metals M8 | Moisture Set   | Eurofins   mgt Suite B7 | JBS&G Suite 2                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |
| Mel      | bourne Laborato                   | ory - NATA Site # 12                                       | 254 & 14271       |                                                                                       |                          | Х    | х                                | Х                                                                                                                                | Х         | Х              | Х                       | х                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |
| Syd      | ney Laboratory                    | - NATA Site # 1821                                         | 7                 |                                                                                       | Х                        |      |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Bris     | bane Laborator                    | y - NATA Site # 207                                        | /94               |                                                                                       |                          |      |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Pert     |                                   | NATA Site # 23736                                          | 1                 |                                                                                       |                          |      |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 14       | 0.5<br>BH_P_02 1-<br>1.1          | Jan 23, 2019                                               | Soil              | S19-Ja24232                                                                           |                          | x    |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                    |
| 15       | BH_P_03 0-<br>0.15                | Jan 23, 2019                                               | Soil              | S19-Ja24233                                                                           |                          | x    |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 16       | BH_P_03 0.4-<br>0.5               | Jan 23, 2019                                               | Soil              | S19-Ja24234                                                                           |                          | x    |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 17       | BH_P_03 1.4-<br>1.5               | Jan 23, 2019                                               | Soil              | S19-Ja24235                                                                           |                          | x    |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 18<br>19 | BH_P_04 0.4-<br>0.5<br>BH_P_04 1- | Jan 23, 2019                                               | Soil              | S19-Ja24236<br>S19-Ja24237                                                            |                          | х    |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                    |
| 19       | BH_P_04 1-<br>1.1                 | Jan 23, 2019                                               | 3011              | 519-Jaz423/                                                                           |                          | Х    |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 20       | BH_P_05 0-                        | Jan 23, 2019                                               | Soil              | S19-Ja24238                                                                           |                          | x    |                                  |                                                                                                                                  |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |

|     | 🔅 eur                      | ABN-5<br>e.mail:<br>web:w                                    |                  |                 |                          |      |                                  | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3175<br>Phone :- 461 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 |           |                | h VIC 3<br>64 500       | 3175<br>0     | Sydney         Brisbane         Perth           Unit F3, Building F         1/21 Smallwood Place         2/91 Leach Highway           16 Mars Road         Murarrie QLD 4172         Kewdale WA 6105           Lane Cove West NSW 2066         Phone :+61 7 3902 4600         Phone: +61 8 9251 9600           Phone : +61 2 9900 8400         NATA # 1261 Site # 20794         NATA # 1261           NATA # 1261 Site # 18217         Site # 23736 |
|-----|----------------------------|--------------------------------------------------------------|------------------|-----------------|--------------------------|------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | ompany Name:<br>ddress:    | JBS & G Australia<br>Level 1, 50 Marga<br>Sydney<br>NSW 2000 |                  |                 |                          | Re   | der N<br>port #<br>one:<br>x:    |                                                                                                                            |           | 37818<br>2 824 |                         | 0             | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro                                                                                                                                                                                                                                                                                                                                                                |
|     | roject Name:<br>roject ID: | CHATSWOOD EE<br>55579                                        | DUCATION PRECING | CT PRIMARY SCHO | OL                       |      |                                  |                                                                                                                            |           |                |                         |               | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                            | Sample                                                       | Detail           |                 | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides                                                                                                  | Metals M8 | Moisture Set   | Eurofins   mgt Suite B7 | JBS&G Suite 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mel | bourne Laborato            | ory - NATA Site # 125                                        | 54 & 14271       |                 |                          | Х    | Х                                | Х                                                                                                                          | х         | Х              | Х                       | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Syc | ney Laboratory             | - NATA Site # 18217                                          |                  |                 | Х                        |      |                                  |                                                                                                                            |           |                |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                            | y - NATA Site # 2079                                         | 4                |                 |                          |      |                                  |                                                                                                                            |           |                |                         |               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Per |                            | ATA Site # 23736                                             |                  |                 |                          |      |                                  |                                                                                                                            |           |                |                         |               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21  | 0.15<br>BH_P_05 1-<br>1.1  | Jan 23, 2019                                                 | Soil             | S19-Ja24239     |                          | x    |                                  |                                                                                                                            |           |                |                         |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22  | BH_P_06 0-<br>0.15         | Jan 23, 2019                                                 | Soil             | S19-Ja24240     |                          | x    |                                  |                                                                                                                            |           |                |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23  | BH_P_06 0.4-<br>0.5        | Jan 23, 2019                                                 | Soil             | S19-Ja24241     |                          | x    |                                  |                                                                                                                            |           |                |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24  | BH_P_06 1.5-<br>1.6        | Jan 23, 2019                                                 | Soil             | S19-Ja24242     |                          | x    |                                  |                                                                                                                            |           |                |                         |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25  | BH_P_07 0.4-<br>0.5        | Jan 22, 2019                                                 | Soil             | S19-Ja24243     |                          | х    |                                  |                                                                                                                            |           |                |                         |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 26  | BH_P_07 1-<br>1.1          | Jan 22, 2019                                                 | Soil             | S19-Ja24244     |                          | х    |                                  |                                                                                                                            |           |                |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 27  | BH_P_07 1.7-               | Jan 22, 2019                                                 | Soil             | S19-Ja24245     |                          | х    |                                  |                                                                                                                            |           |                |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|          | 🔅 eur                    | ofins                                                      | e.mail : Enviro   | ABN- 50 005 085 521<br>e.mail : EnviroSales@eurofins.com<br>web : www.eurofins.com.au |                          |      |                                  | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3175<br>Phone : +61 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 |           |                | 8175<br>0               | Sydney         Brisbane         Perth           Unit F3, Building F         1/21 Smallwood Place         2/91 Leach Highway           16 Mars Road         Murarie QLD 4172         Kewdale WA 6105           Lane Cove West NSW 2066         Phone : +61 7 3902 4600         Phone : +61 8 9251 9600           Phone : +61 2 9900 8400         NATA # 1261 Site # 20794         NATA # 1261           NATA # 1261 Site # 18217         Site # 23736 |                                                                                      |
|----------|--------------------------|------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|--------------------------|------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|          | ompany Name:<br>ddress:  | JBS & G Australi<br>Level 1, 50 Marg<br>Sydney<br>NSW 2000 |                   |                                                                                       |                          | Re   | der N<br>port #<br>one:<br>x:    |                                                                                                                           |           | 37818<br>2 824 |                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Received:Jan 25, 2019 5:50 PMDue:Feb 4, 2019Priority:5 DayContact Name:Daniel Denaro |
|          | oject Name:<br>oject ID: | CHATSWOOD E<br>55579                                       | EDUCATION PRECINC | CT PRIMARY SCHO                                                                       | OL                       |      |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eurofins   mgt Analytical Services Manager : Nibha Vaidya                            |
|          |                          | Sample                                                     | e Detail          |                                                                                       | Asbestos - WA guidelines | HOLD | Polycyclic Aromatic Hydrocarbons | Organochlorine Pesticides                                                                                                 | Metals M8 | Moisture Set   | Eurofins   mgt Suite B7 | JBS&G Suite 2                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |
| Mel      | bourne Laborato          | ory - NATA Site # 12                                       | 254 & 14271       |                                                                                       |                          | х    | х                                | Х                                                                                                                         | х         | Х              | Х                       | х                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| Syd      | ney Laboratory           | - NATA Site # 1821                                         | 7                 |                                                                                       | х                        |      |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
|          |                          | y - NATA Site # 207                                        | '94               |                                                                                       |                          |      |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| Per      |                          | NATA Site # 23736                                          |                   |                                                                                       |                          |      |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                    |
| <u> </u> | 1.8                      |                                                            |                   |                                                                                       | -                        |      |                                  |                                                                                                                           |           |                |                         | $\left  - \right $                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                    |
| 28       | BH_P_08 0-<br>0.15       | Jan 24, 2019                                               | Soil              | S19-Ja24246                                                                           |                          | х    |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| 29       | BH_P_09 0.4-<br>0.5      | Jan 24, 2019                                               | Soil              | S19-Ja24247                                                                           |                          | х    |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| 30       | BH_P_09A 0-<br>0.15      | Jan 24, 2019                                               | Soil              | S19-Ja24248                                                                           |                          | х    |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| 31       | BH_P_09A<br>0.4-0.5      | Jan 24, 2019                                               | Soil              | S19-Ja24249                                                                           |                          | х    |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| 32       | BH_P_10 0-<br>0.15       | Jan 24, 2019                                               | Soil              | S19-Ja24250                                                                           |                          | х    |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| 33       | BH_P_10 1-<br>1.1        | Jan 24, 2019                                               | Soil              | S19-Ja24251                                                                           |                          | x    |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| 34       | BH_P_11 0-               | Jan 24, 2019                                               | Soil              | S19-Ja24252                                                                           |                          | х    |                                  |                                                                                                                           |           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |

|      | 🔅 eur                    | ofins                                              | ABN– 50 005<br>e.mail : Envirc<br>web : www.eu | Sales@     | Sales@eurofins.com |    |      | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3175<br>Phone : +61 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 |                           |           | 3175<br>0      | Sydney<br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>4 NATA # 1261<br>Site # 23736 |                         |                                                               |
|------|--------------------------|----------------------------------------------------|------------------------------------------------|------------|--------------------|----|------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------|
|      | ompany Name:<br>Idress:  | JBS & G Aus<br>Level 1, 50 M<br>Sydney<br>NSW 2000 | stralia (NSW)<br>Margaret St                   | P/L        |                    |    | Re   | der N<br>port :<br>ione:<br>x:                                                                                            |                           |           | 37818<br>2 824 |                                                                                                                                 | 0                                                                                                            |                                                                                                            | Due:<br>Priority:       | Jan 25, 2019 5:50 PM<br>Feb 4, 2019<br>5 Day<br>Daniel Denaro |
|      | oject Name:<br>oject ID: | CHATSWOC<br>55579                                  | OD EDUCATIO                                    | ON PRECINC | T PRIMARY SCHC     | OL |      |                                                                                                                           |                           |           |                |                                                                                                                                 |                                                                                                              | Eurofin                                                                                                    | s   mgt Analytical Serv | vices Manager : Nibha Vaidya                                  |
|      | Sample Detail            |                                                    |                                                |            |                    |    | HOLD | Polycyclic Aromatic Hydrocarbons                                                                                          | Organochlorine Pesticides | Metals M8 | Moisture Set   | Eurofins   mgt Suite B7                                                                                                         | JBS&G Suite 2                                                                                                |                                                                                                            |                         |                                                               |
| Mell | bourne Laborato          | ory - NATA Site                                    | # 1254 & 142                                   | 271        |                    |    | Х    | Х                                                                                                                         | Х                         | Х         | Х              | Х                                                                                                                               | Х                                                                                                            |                                                                                                            |                         |                                                               |
|      | ney Laboratory           |                                                    |                                                |            |                    | X  |      |                                                                                                                           |                           |           |                |                                                                                                                                 |                                                                                                              |                                                                                                            |                         |                                                               |
|      | bane Laboratory          |                                                    |                                                |            |                    |    |      |                                                                                                                           |                           |           |                |                                                                                                                                 |                                                                                                              |                                                                                                            |                         |                                                               |
| Pert | h Laboratory - N<br>0.15 | ATA SILE # 231                                     |                                                |            |                    |    | -    |                                                                                                                           |                           |           |                |                                                                                                                                 |                                                                                                              |                                                                                                            |                         |                                                               |
| 35   | BH_P_11 0.4-<br>0.5      | Jan 24, 2019                                       |                                                | Soil       | S19-Ja24253        |    | x    |                                                                                                                           |                           |           |                |                                                                                                                                 |                                                                                                              |                                                                                                            |                         |                                                               |
| 36   | BH_P_11 0.8-<br>0.9      | Jan 24, 2019                                       |                                                | Soil       | S19-Ja24254        |    | х    |                                                                                                                           |                           |           |                |                                                                                                                                 |                                                                                                              |                                                                                                            |                         |                                                               |
| 37   | BH_P_11 1.1-<br>1.2      | Jan 24, 2019                                       |                                                | Soil       | S19-Ja24255        |    | х    |                                                                                                                           |                           |           |                |                                                                                                                                 |                                                                                                              |                                                                                                            |                         |                                                               |
| Test | t Counts                 |                                                    |                                                |            |                    | 10 | 27   | 5                                                                                                                         | 3                         | 5         | 10             | 3                                                                                                                               | 2                                                                                                            | ]                                                                                                          |                         |                                                               |



### Internal Quality Control Review and Glossary

### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. \*\*NOTE: pH duplicates are reported as a range NOT as RPD

### Units

| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         |
|------------------------------------------|------------------------------------|
| ppm: Parts per million                   | ppb: Parts per billion             |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units |

ug/L: micrograms per litre %: Percentage MPN/100mL: Most Probable Number of organisms per 100 millilitres

### Terms

|   | Terma            |                                                                                                                                                                    |
|---|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I | Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| I | LOR              | Limit of Reporting.                                                                                                                                                |
| ; | SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| ļ | RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| ļ | LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| ( | CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| ļ | Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| ; | Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| I | Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| 1 | USEPA            | United States Environmental Protection Agency                                                                                                                      |
| 4 | APHA             | American Public Health Association                                                                                                                                 |
| • | TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| ( | coc              | Chain of Custody                                                                                                                                                   |
| ; | SRA              | Sample Receipt Advice                                                                                                                                              |
| ( | QSM              | US Department of Defense Quality Systems Manual Version 5.2 2018                                                                                                   |
| ( | СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| I | NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| • | TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
|   |                  |                                                                                                                                                                    |

### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                           | Units   | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------|---------|----------|----------------------|----------------|--------------------|
| Method Blank                                   |         | <b></b>  | - 1                  |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fra | actions |          |                      |                |                    |
| TRH C6-C9                                      | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH C10-C14                                    | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH C15-C28                                    | mg/kg   | < 50     | 50                   | Pass           |                    |
| TRH C29-C36                                    | mg/kg   | < 50     | 50                   | Pass           |                    |
| Method Blank                                   |         | <b>I</b> | - 4                  |                |                    |
| BTEX                                           |         |          |                      |                |                    |
| Benzene                                        | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Toluene                                        | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Ethylbenzene                                   | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| m&p-Xylenes                                    | mg/kg   | < 0.2    | 0.2                  | Pass           |                    |
| o-Xylene                                       | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| Xylenes - Total                                | mg/kg   | < 0.3    | 0.3                  | Pass           |                    |
| Method Blank                                   |         | 1 010    | 0.0                  | 1 400          |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fra | actions |          |                      |                |                    |
| Naphthalene                                    | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| TRH C6-C10                                     | mg/kg   | < 20     | 20                   | Pass           |                    |
| TRH >C10-C16                                   | mg/kg   | < 50     | 50                   | Pass           |                    |
| TRH >C16-C34                                   | mg/kg   | < 100    | 100                  | Pass           |                    |
| TRH >C34-C40                                   | mg/kg   | < 100    | 100                  | Pass           |                    |
| Method Blank                                   | ing/kg  | < 100    | 100                  | 1 433          |                    |
| Polycyclic Aromatic Hydrocarbons               |         |          |                      |                |                    |
| Acenaphthene                                   | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Acenaphthylene                                 | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Anthracene                                     | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benz(a)anthracene                              | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                 | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(b&i)fluoranthene                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                           | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                           | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Chrysene                                       | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                          | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Fluoranthene                                   | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Fluorene                                       | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Naphthalene                                    | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Phenanthrene                                   | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Pyrene                                         | mg/kg   | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                                   | iiig/kg | < 0.5    | 0.5                  | 1 855          |                    |
| Organochlorine Pesticides                      |         |          |                      |                |                    |
| Chlordanes - Total                             | mg/kg   | < 0.1    | 0.1                  | Pass           |                    |
| 4.4'-DDD                                       | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| 4.4-DDD<br>4.4'-DDE                            | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| 4.4-DDE<br>4.4'-DDT                            | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| a-BHC                                          | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Aldrin                                         |         |          | 0.05                 | Pass           |                    |
|                                                | mg/kg   | < 0.05   |                      |                |                    |
| b-BHC                                          | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| d-BHC                                          | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Dieldrin                                       | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan I                                   | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan II                                  | mg/kg   | < 0.05   | 0.05                 | Pass           |                    |



| Test                                                 | Units | Result 1 |     | otance Pas<br>nits Lim                |    |
|------------------------------------------------------|-------|----------|-----|---------------------------------------|----|
| Endosulfan sulphate                                  | mg/kg | < 0.05   | 0.  | 05 Pa:                                | s  |
| Endrin                                               | mg/kg | < 0.05   | 0.  | 05 Pa:                                | s  |
| Endrin aldehyde                                      | mg/kg | < 0.05   | 0.  | 05 Pa:                                | s  |
| Endrin ketone                                        | mg/kg | < 0.05   | 0.  | 05 Pa:                                | s  |
| g-BHC (Lindane)                                      | mg/kg | < 0.05   | 0.  | 05 Pa:                                | ss |
| Heptachlor                                           | mg/kg | < 0.05   | 0.  | 05 Pa:                                | s  |
| Heptachlor epoxide                                   | mg/kg | < 0.05   | 0.  | 05 Pa:                                | s  |
| Hexachlorobenzene                                    | mg/kg | < 0.05   | 0.  | 05 Pa:                                | ss |
| Methoxychlor                                         | mg/kg | < 0.05   | 0.  | 05 Pa:                                | ss |
| Toxaphene                                            | mg/kg | < 1      |     | 1 Pa                                  | ss |
| Method Blank                                         |       |          |     |                                       |    |
| Polychlorinated Biphenyls                            |       |          |     |                                       |    |
| Aroclor-1016                                         | mg/kg | < 0.1    | 0   | .1 Pa                                 | ss |
| Aroclor-1221                                         | mg/kg | < 0.1    | 0   | .1 Pa                                 | s  |
| Aroclor-1232                                         | mg/kg | < 0.1    | 0   | .1 Pa                                 | s  |
| Aroclor-1242                                         | mg/kg | < 0.1    | 0   |                                       |    |
| Aroclor-1248                                         | mg/kg | < 0.1    | 0   |                                       |    |
| Aroclor-1254                                         | mg/kg | < 0.1    | 0   |                                       |    |
| Aroclor-1260                                         | mg/kg | < 0.1    | 0   |                                       |    |
| Total PCB*                                           | mg/kg | < 0.1    | 0   |                                       |    |
| Method Blank                                         | 1 0 0 |          |     |                                       |    |
| Heavy Metals                                         |       |          |     |                                       |    |
| Arsenic                                              | mg/kg | < 2      |     | 2 Pa                                  | s  |
| Cadmium                                              | mg/kg | < 0.4    |     | .4 Pa                                 |    |
| Chromium                                             | mg/kg | < 5      |     | 5 Pa                                  |    |
| Copper                                               | mg/kg | < 5      |     | 5 Pa                                  |    |
| Lead                                                 | mg/kg | < 5      |     | 5 Pa                                  |    |
| Mercury                                              | mg/kg | < 0.1    | 0   |                                       |    |
| Nickel                                               | mg/kg | < 5      |     | 5 Pa                                  |    |
| Zinc                                                 | mg/kg | < 5      |     | 5 Pa                                  |    |
| LCS - % Recovery                                     |       | • •      |     | · · · · · · · · · · · · · · · · · · · |    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |       |          |     |                                       |    |
| TRH C6-C9                                            | %     | 82       | 70- | 130 Pa                                | s  |
| TRH C10-C14                                          | %     | 79       |     | 130 Pa                                |    |
| LCS - % Recovery                                     |       |          |     |                                       |    |
| BTEX                                                 |       |          |     |                                       |    |
| Benzene                                              | %     | 91       | 70- | 130 Pa                                | s  |
| Toluene                                              | %     | 97       | 70- | 130 Pa                                | s  |
| Ethylbenzene                                         | %     | 99       | 70- | 130 Pa                                |    |
| m&p-Xylenes                                          | %     | 100      | 70- | 130 Pa                                |    |
| Xylenes - Total                                      | %     | 101      | 70- | 130 Pa                                |    |
| LCS - % Recovery                                     |       |          |     |                                       |    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |       |          |     |                                       |    |
| Naphthalene                                          | %     | 87       | 70- | 130 Pa                                | ss |
| TRH C6-C10                                           | %     | 79       | 70- | 130 Pa                                | s  |
| TRH >C10-C16                                         | %     | 74       | 70- | 130 Pa                                |    |
| LCS - % Recovery                                     |       |          |     |                                       |    |
| Polycyclic Aromatic Hydrocarbons                     |       |          |     |                                       |    |
| Acenaphthene                                         | %     | 80       | 70- | 130 Pa                                | s  |
| Acenaphthylene                                       | %     | 76       |     | 130 Pa                                |    |
| Anthracene                                           | %     | 75       |     | 130 Pa                                |    |
| Benz(a)anthracene                                    | %     | 80       |     | 130 Pa                                |    |
| Benzo(a)pyrene                                       | %     | 99       |     | 130 Pa                                |    |
|                                                      | /0    | 91       |     | 130 Pa                                |    |



| Tes                           | t             |              | Units | Result 1 |   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------|---------------|--------------|-------|----------|---|----------------------|----------------|--------------------|
| Benzo(g.h.i)perylene          |               |              | %     | 128      |   | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene          |               |              | %     | 87       |   | 70-130               | Pass           |                    |
| Chrysene                      |               |              | %     | 81       |   | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene         |               |              | %     | 110      |   | 70-130               | Pass           |                    |
| Fluoranthene                  |               |              | %     | 76       |   | 70-130               | Pass           |                    |
| Fluorene                      |               |              | %     | 78       |   | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene        |               |              | %     | 126      |   | 70-130               | Pass           |                    |
| Naphthalene                   |               |              | %     | 78       |   | 70-130               | Pass           |                    |
| Phenanthrene                  |               |              | %     | 74       |   | 70-130               | Pass           |                    |
| Pyrene                        |               |              | %     | 78       |   | 70-130               | Pass           |                    |
| LCS - % Recovery              |               |              | 70    | 10       |   | 10 100               | 1 433          |                    |
| Organochlorine Pesticides     |               |              |       |          |   | 1                    |                |                    |
| Chlordanes - Total            |               |              | %     | 117      |   | 70-130               | Pass           |                    |
| 4.4'-DDD                      |               |              | %     | 95       |   | 70-130               | Pass           |                    |
| 4.4'-DDE                      |               |              | %     | 125      |   | 70-130               | Pass           |                    |
|                               |               |              |       |          |   |                      |                |                    |
| 4.4'-DDT                      |               |              | %     | 90       |   | 70-130               | Pass           |                    |
| a-BHC                         |               |              | %     | 107      |   | 70-130               | Pass           |                    |
| Aldrin                        |               |              | %     | 106      |   | 70-130               | Pass           |                    |
| b-BHC                         |               |              | %     | 77       |   | 70-130               | Pass           |                    |
| d-BHC                         |               |              | %     | 92       |   | 70-130               | Pass           |                    |
| Dieldrin                      |               |              | %     | 122      |   | 70-130               | Pass           |                    |
| Endosulfan I                  |               |              | %     | 126      |   | 70-130               | Pass           |                    |
| Endosulfan II                 |               |              | %     | 94       |   | 70-130               | Pass           |                    |
| Endosulfan sulphate           |               |              | %     | 98       |   | 70-130               | Pass           |                    |
| Endrin                        |               |              | %     | 78       |   | 70-130               | Pass           |                    |
| Endrin aldehyde               |               |              | %     | 114      |   | 70-130               | Pass           |                    |
| Endrin ketone                 |               |              | %     | 106      |   | 70-130               | Pass           |                    |
| g-BHC (Lindane)               |               |              | %     | 122      |   | 70-130               | Pass           |                    |
| Heptachlor                    |               |              | %     | 78       |   | 70-130               | Pass           |                    |
| Heptachlor epoxide            |               |              | %     | 91       |   | 70-130               | Pass           |                    |
| Hexachlorobenzene             |               |              | %     | 109      |   | 70-130               | Pass           |                    |
| Methoxychlor                  |               |              | %     | 88       |   | 70-130               | Pass           |                    |
| LCS - % Recovery              |               |              |       | •        |   |                      |                |                    |
| Polychlorinated Biphenyls     |               |              |       |          |   |                      |                |                    |
| Aroclor-1260                  |               |              | %     | 124      |   | 70-130               | Pass           |                    |
| LCS - % Recovery              |               |              |       |          |   |                      |                |                    |
| Heavy Metals                  |               |              |       |          |   |                      |                |                    |
| Arsenic                       |               |              | %     | 109      |   | 80-120               | Pass           |                    |
| Cadmium                       |               |              | %     | 102      |   | 80-120               | Pass           |                    |
| Chromium                      |               |              | %     | 120      |   | 80-120               | Pass           |                    |
| Copper                        |               |              | %     | 120      |   | 80-120               | Pass           |                    |
| Lead                          |               |              | %     | 110      |   | 80-120               | Pass           |                    |
|                               |               |              |       |          |   |                      |                |                    |
| Mercury                       |               |              | %     | 88       |   | 75-125               | Pass           |                    |
| Nickel                        |               |              | %     | 109      |   | 80-120               | Pass           |                    |
| Zinc                          |               |              | %     | 105      |   | 80-120               | Pass           | <b>.</b>           |
| Test                          | Lab Sample ID | QA<br>Source | Units | Result 1 |   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery            | (000)         |              |       |          |   |                      |                |                    |
| Total Recoverable Hydrocarbon |               |              | 1.    | Result 1 |   | +                    |                |                    |
| TRH C6-C9                     | S19-Ja24219   | CP           | %     | 85       |   | 70-130               | Pass           |                    |
| TRH C10-C14                   | S19-Ja24219   | CP           | %     | 77       |   | 70-130               | Pass           |                    |
| Spike - % Recovery            |               |              |       |          | 1 | 1                    | 1              |                    |
| втех                          |               |              |       | Result 1 |   |                      |                |                    |
| Benzene                       | S19-Ja24219   | CP           | %     | 85       |   | 70-130               | Pass           |                    |
|                               |               |              |       |          |   |                      |                |                    |



| Test                           | Lab Sample ID       | QA<br>Source | Units | Result 1 |       | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|---------------------|--------------|-------|----------|-------|----------------------|----------------|--------------------|
| Ethylbenzene                   | S19-Ja24219         | CP           | %     | 103      |       | 70-130               | Pass           |                    |
| m&p-Xylenes                    | S19-Ja24219         | CP           | %     | 102      |       | 70-130               | Pass           |                    |
| o-Xylene                       | S19-Ja24219         | CP           | %     | 103      |       | 70-130               | Pass           |                    |
| Xylenes - Total                | S19-Ja24219         | CP           | %     | 103      |       | 70-130               | Pass           |                    |
| Spike - % Recovery             |                     |              |       | 1        | []    |                      |                |                    |
| Total Recoverable Hydrocarbons | s - 2013 NEPM Fract | ions         |       | Result 1 |       |                      |                |                    |
| Naphthalene                    | S19-Ja24219         | CP           | %     | 85       |       | 70-130               | Pass           |                    |
| TRH C6-C10                     | S19-Ja24219         | CP           | %     | 83       |       | 70-130               | Pass           |                    |
| TRH >C10-C16                   | S19-Ja24219         | CP           | %     | 71       |       | 70-130               | Pass           |                    |
| Spike - % Recovery             |                     |              |       |          | Г Г Т |                      |                |                    |
| Organochlorine Pesticides      | 1                   |              |       | Result 1 |       |                      |                |                    |
| Chlordanes - Total             | M19-Ja23929         | NCP          | %     | 115      |       | 70-130               | Pass           |                    |
| 4.4'-DDD                       | M19-Ja23929         | NCP          | %     | 102      |       | 70-130               | Pass           |                    |
| 4.4'-DDE                       | M19-Ja23929         | NCP          | %     | 123      |       | 70-130               | Pass           |                    |
| 4.4'-DDT                       | M19-Ja23929         | NCP          | %     | 80       |       | 70-130               | Pass           |                    |
| a-BHC                          | M19-Ja23929         | NCP          | %     | 100      |       | 70-130               | Pass           |                    |
| Aldrin                         | M19-Ja23929         | NCP          | %     | 127      |       | 70-130               | Pass           |                    |
| b-BHC                          | M19-Ja23929         | NCP          | %     | 103      |       | 70-130               | Pass           |                    |
| d-BHC                          | M19-Ja23929         | NCP          | %     | 113      |       | 70-130               | Pass           |                    |
| Dieldrin                       | M19-Ja23929         | NCP          | %     | 103      |       | 70-130               | Pass           |                    |
| Endosulfan I                   | M19-Ja23929         | NCP          | %     | 87       |       | 70-130               | Pass           |                    |
| Endosulfan II                  | M19-Ja23929         | NCP          | %     | 97       |       | 70-130               | Pass           |                    |
| Endosulfan sulphate            | M19-Ja23929         | NCP          | %     | 89       |       | 70-130               | Pass           |                    |
| Endrin                         | M19-Ja24635         | NCP          | %     | 103      |       | 70-130               | Pass           |                    |
| Endrin aldehyde                | M19-Ja23929         | NCP          | %     | 82       |       | 70-130               | Pass           |                    |
| Endrin ketone                  | M19-Ja23929         | NCP          | %     | 101      |       | 70-130               | Pass           |                    |
| g-BHC (Lindane)                | M19-Ja23929         | NCP          | %     | 130      |       | 70-130               | Pass           |                    |
| Heptachlor                     | M19-Ja23929         | NCP          | %     | 86       |       | 70-130               | Pass           |                    |
| Heptachlor epoxide             | M19-Ja23929         | NCP          | %     | 94       |       | 70-130               | Pass           |                    |
| Hexachlorobenzene              | M19-Ja23929         | NCP          | %     | 118      |       | 70-130               | Pass           |                    |
| Methoxychlor                   | M19-Ja24635         | NCP          | %     | 75       |       | 70-130               | Pass           |                    |
| Spike - % Recovery             |                     |              |       |          |       |                      |                |                    |
| Polychlorinated Biphenyls      |                     |              |       | Result 1 |       |                      |                |                    |
| Aroclor-1016                   | M19-Ja25847         | NCP          | %     | 126      |       | 70-130               | Pass           |                    |
| Aroclor-1260                   | M19-Ja25847         | NCP          | %     | 122      |       | 70-130               | Pass           |                    |
| Spike - % Recovery             |                     | <u> </u>     |       |          |       |                      |                |                    |
| Heavy Metals                   |                     |              |       | Result 1 |       |                      |                |                    |
| Arsenic                        | M19-Fe01747         | NCP          | %     | 102      |       | 75-125               | Pass           |                    |
| Cadmium                        | M19-Fe01747         | NCP          | %     | 107      |       | 75-125               | Pass           |                    |
| Chromium                       | M19-Fe01747         | NCP          | %     | 107      |       | 75-125               | Pass           |                    |
| Copper                         | M19-Fe01747         | NCP          | %     | 98       |       | 75-125               | Pass           |                    |
| Lead                           | M19-Fe01747         | NCP          | %     | 99       |       | 75-125               | Pass           |                    |
| Mercury                        | M19-Fe01747         | NCP          | %     | 89       |       | 70-130               | Pass           |                    |
| Nickel                         | M19-Fe01747         | NCP          | %     | 95       |       | 75-125               | Pass           |                    |
| Zinc                           | M19-Fe01747         | NCP          | %     | 78       |       | 75-125               | Pass           |                    |
| Spike - % Recovery             |                     |              |       |          |       |                      |                |                    |
| Polycyclic Aromatic Hydrocarbo | ns                  |              |       | Result 1 |       |                      |                |                    |
| Acenaphthene                   | S19-Ja24223         | СР           | %     | 91       |       | 70-130               | Pass           |                    |
| Acenaphthylene                 | S19-Ja24223         | CP           | %     | 87       |       | 70-130               | Pass           |                    |
| Anthracene                     | S19-Ja24223         | CP           | %     | 87       |       | 70-130               | Pass           |                    |
| Benz(a)anthracene              | S19-Ja24223         | CP           | %     | 92       |       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                 | S19-Ja24223         | CP           | %     | 128      |       | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene         | S19-Ja24223         | CP           | %     | 117      |       | 70-130               | Pass           |                    |
|                                |                     |              |       |          |       |                      |                |                    |



| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lab Sample ID                                                                                                                                                                                                                                                                                                               | QA<br>Source                                                               | Units                                                                                                                      | Result 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | Acceptance<br>Limits                                               | Pass<br>Limits                                               | Qualifying<br>Code |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------|
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 113                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 91                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Dibenz(a.h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 76                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 85                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 91                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Indeno(1.2.3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 98                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 88                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 77                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S19-Ja24223                                                                                                                                                                                                                                                                                                                 | СР                                                                         | %                                                                                                                          | 102                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Spike - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                                                            |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                    |                                                              |                    |
| Total Recoverable Hydrocarbons -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1999 NEPM Fract                                                                                                                                                                                                                                                                                                             | ions                                                                       |                                                                                                                            | Result 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                    |                                                              |                    |
| TRH C6-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | СР                                                                         | %                                                                                                                          | 84                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Spike - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                                                            | -                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                                                                    |                                                              |                    |
| BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                                                            | Result 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                    |                                                              |                    |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | СР                                                                         | %                                                                                                                          | 85                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 98                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 103                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| m&p-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 105                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 106                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Xylenes - Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 105                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| Spike - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 010 0024224                                                                                                                                                                                                                                                                                                                 | 01                                                                         | 70                                                                                                                         | 100                                                                          | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           | 10100                                                              | 1 400                                                        |                    |
| Total Recoverable Hydrocarbons -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2013 NEPM Eract                                                                                                                                                                                                                                                                                                             | ions                                                                       |                                                                                                                            | Result 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                    |                                                              |                    |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 77                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
| TRH C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S19-Ja24224                                                                                                                                                                                                                                                                                                                 | CP                                                                         | %                                                                                                                          | 83                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | 70-130                                                             | Pass                                                         |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                             | QA                                                                         |                                                                                                                            |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | Acceptance                                                         | Pass                                                         | Qualifying         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lab Sample ID                                                                                                                                                                                                                                                                                                               |                                                                            | Units                                                                                                                      | Result 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                    | газэ                                                         |                    |
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                             | Source                                                                     | Units                                                                                                                      | Result I                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | Limits                                                             | Limits                                                       | Code               |
| Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lab Gample Ib                                                                                                                                                                                                                                                                                                               | Source                                                                     | Units                                                                                                                      | Result 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           | Limits                                                             | Limits                                                       | Code               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                           |                                                                            | Units                                                                                                                      | Result 1                                                                     | Result 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RPD                                                                                                                                                                                                                                       | Limits                                                             | Limits                                                       | Code               |
| Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                           |                                                                            | mg/kg                                                                                                                      |                                                                              | Result 2<br>< 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPD<br><1                                                                                                                                                                                                                                 | Limits<br>30%                                                      | Limits                                                       | Code               |
| Duplicate<br>Total Recoverable Hydrocarbons -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1999 NEPM Fract                                                                                                                                                                                                                                                                                                             | ions                                                                       |                                                                                                                            | Result 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                    |                                                              |                    |
| Duplicate<br>Total Recoverable Hydrocarbons -<br>TRH C6-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1999 NEPM Fract<br>M19-Ja26504                                                                                                                                                                                                                                                                                              | ions<br>NCP                                                                | mg/kg                                                                                                                      | Result 1<br>< 20                                                             | < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                        | 30%                                                                | Pass                                                         |                    |
| Duplicate<br>Total Recoverable Hydrocarbons -<br>TRH C6-C9<br>TRH C10-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1999 NEPM Fract</b><br>M19-Ja26504<br>M19-Ja26902                                                                                                                                                                                                                                                                        | ions<br>NCP<br>NCP                                                         | mg/kg<br>mg/kg                                                                                                             | Result 1<br>< 20<br>63                                                       | < 20<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1<br>2.0                                                                                                                                                                                                                                 | 30%<br>30%                                                         | Pass<br>Pass                                                 |                    |
| Duplicate<br>Total Recoverable Hydrocarbons -<br>TRH C6-C9<br>TRH C10-C14<br>TRH C15-C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>1999 NEPM Fract</b><br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902                                                                                                                                                                                                                                                         | ions<br>NCP<br>NCP<br>NCP                                                  | mg/kg<br>mg/kg<br>mg/kg                                                                                                    | Result 1<br>< 20<br>63<br>210                                                | < 20<br>64<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1<br>2.0<br>2.0                                                                                                                                                                                                                          | 30%<br>30%<br>30%                                                  | Pass<br>Pass<br>Pass                                         |                    |
| Duplicate<br>Total Recoverable Hydrocarbons -<br>TRH C6-C9<br>TRH C10-C14<br>TRH C15-C28<br>TRH C29-C36                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1999 NEPM Fract</b><br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902                                                                                                                                                                                                                                                         | ions<br>NCP<br>NCP<br>NCP                                                  | mg/kg<br>mg/kg<br>mg/kg                                                                                                    | Result 1<br>< 20<br>63<br>210                                                | < 20<br>64<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1<br>2.0<br>2.0                                                                                                                                                                                                                          | 30%<br>30%<br>30%                                                  | Pass<br>Pass<br>Pass                                         |                    |
| Duplicate<br>Total Recoverable Hydrocarbons -<br>TRH C6-C9<br>TRH C10-C14<br>TRH C15-C28<br>TRH C29-C36<br>Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1999 NEPM Fract</b><br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902                                                                                                                                                                                                                                                         | ions<br>NCP<br>NCP<br>NCP                                                  | mg/kg<br>mg/kg<br>mg/kg                                                                                                    | Result 1<br>< 20<br>63<br>210<br>< 50                                        | < 20<br>64<br>210<br>< 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1<br>2.0<br>2.0<br><1                                                                                                                                                                                                                    | 30%<br>30%<br>30%                                                  | Pass<br>Pass<br>Pass                                         |                    |
| Duplicate<br>Total Recoverable Hydrocarbons -<br>TRH C6-C9<br>TRH C10-C14<br>TRH C15-C28<br>TRH C29-C36<br>Duplicate<br>BTEX<br>Benzene                                                                                                                                                                                                                                                                                                                                                                                                                           | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902                                                                                                                                                                                                                                                 | ions<br>NCP<br>NCP<br>NCP<br>NCP                                           | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                                  | Result 1<br>< 20<br>63<br>210<br>< 50<br>Result 1                            | < 20<br>64<br>210<br>< 50<br>Result 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1<br>2.0<br>2.0<br><1<br>RPD                                                                                                                                                                                                             | 30%<br>30%<br>30%<br>30%                                           | Pass<br>Pass<br>Pass<br>Pass                                 |                    |
| Duplicate<br>Total Recoverable Hydrocarbons -<br>TRH C6-C9<br>TRH C10-C14<br>TRH C15-C28<br>TRH C29-C36<br>Duplicate<br>BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504                                                                                                                                                                                                                                  | ions<br>NCP<br>NCP<br>NCP<br>NCP                                           | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                                           | Result 1<br>< 20<br>63<br>210<br>< 50<br>Result 1<br>< 0.1                   | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1<br>2.0<br>2.0<br><1<br>RPD<br><1                                                                                                                                                                                                       | 30%<br>30%<br>30%<br>30%<br>30%                                    | Pass<br>Pass<br>Pass<br>Pass<br>Pass                         |                    |
| Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                                                                                                   | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                             | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                                  | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1                                                                                                                                                                                                 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                 |                    |
| Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                              | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                                                                                    | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                      | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                         | Result 1<br>< 20<br>63<br>210<br>< 50<br>Result 1<br>< 0.1<br>< 0.1<br>< 0.1 | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1                                                                                                                                                                                     | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%                      | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |                    |
| Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                  | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                                                                     | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP               | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                       | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                                                                         | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%               | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                         | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                                                      | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                                                             | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylenes o-Xylene Total Duplicate                                                                                                                                                                                                                                                                                                                                                                               | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                                       | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                       | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                                                             | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total                                                                                                                                                                                                                                                                                                                                                                                         | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                                                       | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                       | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                                                 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene                                                                                                                                                                                                                                                                                                                                  | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                         | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                       | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3<br>Result 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>RPD                                                                                                                                          | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         BETEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10                                                                                                                                                                              | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                         | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                              | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3<br>Result 2<br>< 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                               | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         BETEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10         TRH C6-C16                                                                                                                                                           | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                            | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3<br>Result 2<br>< 0.5<br>< 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                               | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         BETEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10                                                                                                                                                                              | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504                                                                                                                         | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | Result 1         < 20                                                        | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3<br>Result 2<br>< 0.5<br>< 20<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                               | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10         TRH C6-C16         TRH >C16-C34                                                                                                                                                    | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902                                                                            | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3<br>Result 2<br>< 0.5<br>< 20<br>120<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                               | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         BETEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10         TRH >C10-C16         TRH >C16-C34         TRH >C34-C40         Duplicate                                                                                             | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902                                                                            | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | Result 1         < 20                                                        | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3<br>Besult 2<br>< 0.3<br>Besult 2<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3<br>Besult 2<br>< 0.1<br>< 0.3<br>Besult 2<br>< 0.5<br>< 20<br>140<br>< 100<br>< 100<br>< 20<br>< 0.5<br>< 20<br>140<br>< 100<br>< 100<br>< 20<br>< 0.5<br>< 20<br>< 100<br>< 20<br>< <br 20<br 20<br 20</td <td>&lt;1<br/>2.0<br/>2.0<br/>&lt;1<br/>RPD<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1</td> <td>30%<br/>30%<br/>30%<br/>30%<br/>30%<br/>30%<br/>30%<br/>30%<br/>30%<br/>30%</td> <td>Pass<br/>Pass<br/>Pass<br/>Pass<br/>Pass<br/>Pass<br/>Pass<br/>Pass</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                               | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         BTEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10         TRH >C10-C16         TRH >C34-C40         Duplicate         Polycyclic Aromatic Hydrocarbons                                                                          | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902                                                                            | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg          | Result 1         < 20                                                        | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1<br>< 0.3<br>Result 2<br>< 0.5<br>< 20<br>120<br>140<br>< 100<br>Result 2<br>< 0.5<br>< 20<br>120<br>140<br>< 100<br>Result 2<br>< 100<br>< 0<br 100<br -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                               | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         BETEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10         TRH >C10-C16         TRH >C10-C34         TRH >C34-C40         Duplicate         Polycyclic Aromatic Hydrocarbons         Acenaphthene                               | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902                                              | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg          | Result 1         < 20                                                        | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.5<br>< 20<br>120<br>140<br>< 100<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                               | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         BETEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10         TRH >C16-C34         TRH >C34-C40         Duplicate         Polycyclic Aromatic Hydrocarbons         Acenaphthene         Acenaphthylene                             | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>S19-Ja24219<br>S19-Ja24219                               | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg          | Result 1         < 20                                                        | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.5<br>< 20<br>120<br>140<br>< 100<br>Result 2<br>< 0.5<br>< 20<br>120<br>140<br>< 0.0<br>Result 2<br>< 0.5<br>< 0.5<br>< 20<br>120<br>140<br>< 0.5<br>< 0.5<br>< 20<br>140<br>< 0.5<br>< 0.5<br>< 20<br>120<br>140<br>< 0.5<br>< 20<br>120<br>140<br>< 0.5<br>< 0 | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>4.0<br>1.0<br><1<br>8RPD<br><1<br><1<br><1<br><1<br>4.0<br>1.0<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10         TRH >C10-C16         TRH >C10-C16         TRH >C34-C40         Duplicate         Polycyclic Aromatic Hydrocarbons         Acenaphthylene         Acenaphthylene         Anthracene | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>S19-Ja24219<br>S19-Ja24219<br>S19-Ja24219 | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | Result 1           < 20                                                      | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.5<br>< 20<br>120<br>140<br>< 100<br>Result 2<br>< 0.5<br>< | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                                                 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Duplicate         Total Recoverable Hydrocarbons -         TRH C6-C9         TRH C10-C14         TRH C15-C28         TRH C29-C36         Duplicate         BETEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total         Duplicate         Total Recoverable Hydrocarbons -         Naphthalene         TRH C6-C10         TRH >C16-C34         TRH >C34-C40         Duplicate         Polycyclic Aromatic Hydrocarbons         Acenaphthene         Acenaphthylene                             | 1999 NEPM Fract<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26504<br>M19-Ja26902<br>M19-Ja26902<br>M19-Ja26902<br>S19-Ja24219<br>S19-Ja24219                               | ions<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg          | Result 1         < 20                                                        | < 20<br>64<br>210<br>< 50<br>Result 2<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.5<br>< 20<br>120<br>140<br>< 100<br>Result 2<br>< 0.5<br>< 20<br>120<br>140<br>< 0.0<br>Result 2<br>< 0.5<br>< 0.5<br>< 20<br>120<br>140<br>< 0.5<br>< 0.5<br>< 20<br>140<br>< 0.5<br>< 0.5<br>< 20<br>120<br>140<br>< 0.5<br>< 20<br>120<br>140<br>< 0.5<br>< 0 | <1<br>2.0<br>2.0<br><1<br>RPD<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>4.0<br>1.0<br><1<br>8RPD<br><1<br><1<br><1<br><1<br>4.0<br>1.0<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |



| Duplicate                       |               |     |        |          |          |     |      |       |  |
|---------------------------------|---------------|-----|--------|----------|----------|-----|------|-------|--|
| Polycyclic Aromatic Hydrocarbon | <u> </u>      |     |        | Result 1 | Result 2 | RPD |      |       |  |
| Benzo(g.h.i)perylene            | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Benzo(k)fluoranthene            | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Chrysene                        | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Dibenz(a.h)anthracene           | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Fluoranthene                    | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Fluorene                        | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Indeno(1.2.3-cd)pyrene          | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Naphthalene                     | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Phenanthrene                    | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Pyrene                          | S19-Ja24219   | CP  | mg/kg  | < 0.5    | < 0.5    | <1  | 30%  | Pass  |  |
| Duplicate                       | 019-0424219   |     | під/ку | < 0.5    | < 0.5    |     | 5078 | 1 833 |  |
| Organochlorine Pesticides       |               |     |        | Result 1 | Result 2 | RPD |      |       |  |
| Chlordanes - Total              | S19-Ja24219   | СР  | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| 4.4'-DDD                        | S19-Ja24219   | CP  |        | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| 4.4'-DDE                        | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
|                                 |               |     | mg/kg  | 1        |          |     |      |       |  |
| 4.4'-DDT                        | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| a-BHC                           | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Aldrin                          | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| b-BHC                           | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| d-BHC                           | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Dieldrin                        | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
|                                 | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
|                                 | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Endosulfan sulphate             | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Endrin                          | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Endrin aldehyde                 | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Endrin ketone                   | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| g-BHC (Lindane)                 | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Heptachlor                      | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Heptachlor epoxide              | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Hexachlorobenzene               | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Methoxychlor                    | S19-Ja24219   | CP  | mg/kg  | < 0.05   | < 0.05   | <1  | 30%  | Pass  |  |
| Duplicate                       |               |     |        | 1        |          |     | 1    |       |  |
| Heavy Metals                    | 1             |     |        | Result 1 | Result 2 | RPD |      |       |  |
| Arsenic                         | M19-Fe01747   | NCP | mg/kg  | 12       | 12       | 1.0 | 30%  | Pass  |  |
| Cadmium                         | M19-Fe01747   | NCP | mg/kg  | < 0.4    | < 0.4    | <1  | 30%  | Pass  |  |
| Chromium                        | M19-Fe01747   | NCP | mg/kg  | 51       | 51       | <1  | 30%  | Pass  |  |
| Copper                          | M19-Fe01747   | NCP | mg/kg  | 41       | 41       | <1  | 30%  | Pass  |  |
| Lead                            | M19-Fe01747   | NCP | mg/kg  | 31       | 31       | <1  | 30%  | Pass  |  |
| Mercury                         | M19-Fe01747   | NCP | mg/kg  | 0.1      | 0.1      | 3.0 | 30%  | Pass  |  |
| Nickel                          | M19-Fe01747   | NCP | mg/kg  | 34       | 35       | 1.0 | 30%  | Pass  |  |
| Zinc                            | M19-Fe01747   | NCP | mg/kg  | 140      | 140      | <1  | 30%  | Pass  |  |
| Duplicate                       |               |     |        |          |          |     |      |       |  |
| Polychlorinated Biphenyls       |               |     |        | Result 1 | Result 2 | RPD |      |       |  |
| Aroclor-1016                    | M19-Ja21623   | NCP | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| Aroclor-1221                    | M19-Ja21623   | NCP | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| Aroclor-1232                    | M19-Ja21623   | NCP | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| Aroclor-1242                    | M19-Ja21623   | NCP | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| Aroclor-1248                    | M19-Ja21623   | NCP | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| Aroclor-1254                    | M19-Ja21623   | NCP | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| Aroclor-1260                    | M19-Ja21623   | NCP | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| Total PCB*                      | M19-Ja21623   | NCP | mg/kg  | < 0.1    | < 0.1    | <1  | 30%  | Pass  |  |
| Duplicate                       |               |     |        |          |          |     | 0070 |       |  |
|                                 |               |     |        | Result 1 | Result 2 | RPD |      |       |  |
| % Moisture                      | S19-Ja24225   | CP  | %      | 6.4      | 6.0      | 7.0 | 30%  | Pass  |  |
|                                 | 1 010 0024220 |     | /0     | . 0.7    | 0.0      | 1.0 | 0070 | 1 435 |  |



### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

mgt

### **Qualifier Codes/Comments**

Code Description

| N01 | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).                                                                                                                                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N02 | Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. |
| N04 | F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.                                                                                                                              |
| N07 | Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs                                                                                                                                                                                                       |
| R16 | The LORs have been raised due to the high concentration of one or more analytes                                                                                                                                                                                                                                                                                                                                        |

### Authorised By

| Nibha Vaidya    | Analytical Services Manager   |
|-----------------|-------------------------------|
| Joseph Edouard  | Senior Analyst-Organic (VIC)  |
| Harry Bacalis   | Senior Analyst-Volatile (VIC) |
| Nibha Vaidya    | Senior Analyst-Asbestos (NSW) |
| Emily Rosenberg | Senior Analyst-Metal (VIC)    |

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

From: Sent: To: Cc: Subject: Attachments:

Nibha Vaidya Thursday, 7 February 2019 4:34 PM Enviro Sample Vic Alena Bounkeua 1 DAY TAT - FW: Report 637818; Additional Analysis image001.png; image002.jpg

7/2/19 4:34

Kind Regards,

Nibha Vaidya Phone : +61 2 9900 8415 Mobile : +61 499 900 805 Email : <u>NibhaVaidya@eurofins.com</u>

From: Joshua Cranson [mailto:jcranson@jbsg.com.au] Sent: Thursday, 7 February 2019 4:17 PM To: Nibha Vaidya Cc: Daniel Denaro Subject: Report 637818; Additional Analysis

EXTERNAL EMAIL\*

D.5 23/01

Good afternoon Nibha,

Could I please schedule sample BH\_P\_02\_0.4-0.5 from batch 637818 (received 25/1/19) to be analysed for PAHs 24-hour TAT?

Ja24231- 91246 HOLD 1268.

Thankyou, Josh



Joshua Cranson | Environmental Consultant | JBS&G Sydney | Melbourne | Adelaide | Perth | Brisbane | Canberra | Darwin | Wollongong Level 1, 50 Margaret Street Sydney NSW 2000

T: 02 8245 0300 | M: 0424 712 705 | E: jcranson@jbsg.com.au | W: www.jbsg.com.au

Contaminated Land | Groundwater Remediation | Environmental Approvals | Auditing and Compliance | Hygiene and Hazardous Materials | Due Diligence and Liability | Stakeholder and Risk Management

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended immediately lass disclosure on the intended immediately lass disclosure on the intended immediately.

immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that this email or any attachments are free of viruses and the email is and the recipient of the strictly prohibited.

are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subject to limitations.

Click here to report this email as spam.

ScannedByWebsenseForEurofins

| •    | 🔅 eur                                      | ofins                                              | mgt                           |               | ABN– 50 005 (<br>e.mail : Enviro<br>web : www.eur | Sales@                           | eurofins.co<br>m.au          | <b>Melbourne</b><br>6 Monterey Road<br>Dandenong South VIC 3175<br>Phone : +61 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 | <b>Sydney</b><br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | <b>Brisbane</b><br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 2075 |                                                              |
|------|--------------------------------------------|----------------------------------------------------|-------------------------------|---------------|---------------------------------------------------|----------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|      | mpany Name:<br>dress:                      | JBS & G Aus<br>Level 1, 50 N<br>Sydney<br>NSW 2000 | stralia (NSW)<br>⁄largaret St | P/L           |                                                   |                                  | Orde<br>Repo<br>Phon<br>Fax: |                                                                                                                                  |                                                                                                                                        | Received:<br>Due:<br>Priority:<br>Contact Name:                                                                    | Feb 7, 2019 4:34 PM<br>Feb 8, 2019<br>1 Day<br>Daniel Denaro |
|      | oject Name:<br>oject ID:                   | CHATSWOC<br>55579                                  | D EDUCATIO                    | ON PRECINCT F | PRIMARY SCHO                                      | OL                               |                              |                                                                                                                                  | Eurofii                                                                                                                                | ns   mgt Analytical Ser                                                                                            | vices Manager : Nibha Vaidya                                 |
|      |                                            | Sa                                                 | mple Detail                   |               |                                                   | Polycyclic Aromatic Hydrocarbons | Moisture Set                 |                                                                                                                                  |                                                                                                                                        |                                                                                                                    |                                                              |
|      | ourne Laborato                             |                                                    |                               | 271           |                                                   | Х                                | х                            |                                                                                                                                  |                                                                                                                                        |                                                                                                                    |                                                              |
|      | ey Laboratory                              |                                                    |                               |               |                                                   |                                  |                              |                                                                                                                                  |                                                                                                                                        |                                                                                                                    |                                                              |
|      | ane Laboratory                             |                                                    |                               |               |                                                   |                                  |                              |                                                                                                                                  |                                                                                                                                        |                                                                                                                    |                                                              |
|      | <u>h Laboratory - N</u><br>rnal Laboratory |                                                    | 30                            |               |                                                   |                                  |                              |                                                                                                                                  |                                                                                                                                        |                                                                                                                    |                                                              |
| No   | Sample ID                                  | Sample Date                                        | Sampling                      | Matrix        | LAB ID                                            |                                  |                              |                                                                                                                                  |                                                                                                                                        |                                                                                                                    |                                                              |
| 1    | BH_P_02 0.4-<br>0.5                        | Jan 23, 2019                                       | Time                          | Soil          | M19-Fe08490                                       | x                                | x                            |                                                                                                                                  |                                                                                                                                        |                                                                                                                    |                                                              |
| Test | Counts                                     |                                                    | •                             | •             | •                                                 | 1                                | 1                            |                                                                                                                                  |                                                                                                                                        |                                                                                                                    |                                                              |



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000



NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

### Attention:

# Daniel Denaro

Report Project name Project ID Received Date 639419-S CHATSWOOD EDUCATION PRECINCT PRIMARY SCHOOL 55579 Feb 07, 2019

| Client Sample ID                      |     |       | BH_P_02 0.4-<br>0.5 |
|---------------------------------------|-----|-------|---------------------|
| Sample Matrix                         |     |       | Soil                |
| Eurofins   mgt Sample No.             |     |       | M19-Fe08490         |
| Date Sampled                          |     |       | Jan 23, 2019        |
| Test/Reference                        | LOR | Unit  |                     |
| Polycyclic Aromatic Hydrocarbons      |     |       |                     |
| Benzo(a)pyrene TEQ (lower bound) *    | 0.5 | mg/kg | 2.1                 |
| Benzo(a)pyrene TEQ (medium bound) *   | 0.5 | mg/kg | 2.3                 |
| Benzo(a)pyrene TEQ (upper bound) *    | 0.5 | mg/kg | 2.6                 |
| Acenaphthene                          | 0.5 | mg/kg | < 0.5               |
| Acenaphthylene                        | 0.5 | mg/kg | < 0.5               |
| Anthracene                            | 0.5 | mg/kg | < 0.5               |
| Benz(a)anthracene                     | 0.5 | mg/kg | 1.4                 |
| Benzo(a)pyrene                        | 0.5 | mg/kg | 1.6                 |
| Benzo(b&j)fluoranthene <sup>N07</sup> | 0.5 | mg/kg | 1.1                 |
| Benzo(g.h.i)perylene                  | 0.5 | mg/kg | 1.0                 |
| Benzo(k)fluoranthene                  | 0.5 | mg/kg | 1.4                 |
| Chrysene                              | 0.5 | mg/kg | 1.6                 |
| Dibenz(a.h)anthracene                 | 0.5 | mg/kg | < 0.5               |
| Fluoranthene                          | 0.5 | mg/kg | 3.5                 |
| Fluorene                              | 0.5 | mg/kg | < 0.5               |
| Indeno(1.2.3-cd)pyrene                | 0.5 | mg/kg | 0.7                 |
| Naphthalene                           | 0.5 | mg/kg | < 0.5               |
| Phenanthrene                          | 0.5 | mg/kg | 1.2                 |
| Pyrene                                | 0.5 | mg/kg | 3.6                 |
| Total PAH*                            | 0.5 | mg/kg | 17.1                |
| 2-Fluorobiphenyl (surr.)              | 1   | %     | 64                  |
| p-Terphenyl-d14 (surr.)               | 1   | %     | 72                  |
| % Moisture                            | 1   | %     | 8.6                 |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                              | Testing Site | Extracted    | Holding Time |
|----------------------------------------------------------|--------------|--------------|--------------|
| Polycyclic Aromatic Hydrocarbons                         | Melbourne    | Feb 07, 2019 | 14 Day       |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water |              |              |              |
| % Moisture                                               | Melbourne    | Feb 07, 2019 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                          |              |              |              |

| -                                                                               | s eur                  | ofins                                              | mgt                           |                                  | ABN– 50 005 (<br>e.mail : Enviro<br>web : www.eu | Sales@ | eurofins | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 31<br>Phone : +61 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 | Sydney<br>Unit F3, Building F<br>75 16 Mars Road<br>Lane Cove West NSW 206<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | NATA # 1261 Site # 2079                         | <b>Perth</b><br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>MATA # 1261<br>Site # 23736 |
|---------------------------------------------------------------------------------|------------------------|----------------------------------------------------|-------------------------------|----------------------------------|--------------------------------------------------|--------|----------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                 | npany Name:<br>Iress:  | JBS & G Aus<br>Level 1, 50 N<br>Sydney<br>NSW 2000 | stralia (NSW)<br>⁄largaret St | P/L                              |                                                  |        |          | No.:<br>t #: 639419<br>:: 02 8245 0300                                                                                  |                                                                                                                                   | Received:<br>Due:<br>Priority:<br>Contact Name: | Feb 7, 2019 4:34 PM<br>Feb 8, 2019<br>1 Day<br>Daniel Denaro                                                    |
|                                                                                 | ject Name:<br>ject ID: | CHATSWOC<br>55579                                  | DD EDUCATIO                   | ON PRECINCT                      | PRIMARY SCHO                                     | OL     |          |                                                                                                                         | Euro                                                                                                                              | ofins   mgt Analytical Ser                      | rvices Manager : Nibha Vaidya                                                                                   |
| Sample Detail                                                                   |                        |                                                    |                               | Polycyclic Aromatic Hydrocarbons | Moisture Set                                     |        |          |                                                                                                                         |                                                                                                                                   |                                                 |                                                                                                                 |
|                                                                                 |                        | ory - NATA Site                                    |                               | 271                              |                                                  | Х      | Х        |                                                                                                                         |                                                                                                                                   |                                                 |                                                                                                                 |
| Sydney Laboratory - NATA Site # 18217                                           |                        |                                                    |                               |                                  |                                                  |        |          |                                                                                                                         |                                                                                                                                   |                                                 |                                                                                                                 |
| Brisbane Laboratory - NATA Site # 20794<br>Perth Laboratory - NATA Site # 23736 |                        |                                                    |                               |                                  |                                                  |        |          |                                                                                                                         |                                                                                                                                   |                                                 |                                                                                                                 |
|                                                                                 | nal Laboratory         |                                                    | 50                            |                                  |                                                  |        |          |                                                                                                                         |                                                                                                                                   |                                                 |                                                                                                                 |
| No                                                                              | Sample ID              | Sample Date                                        | Sampling<br>Time              | Matrix                           | LAB ID                                           |        |          |                                                                                                                         |                                                                                                                                   |                                                 |                                                                                                                 |
| 1                                                                               | BH_P_02 0.4-<br>0.5    | Jan 23, 2019                                       |                               | Soil                             | M19-Fe08490                                      | x      | х        |                                                                                                                         |                                                                                                                                   |                                                 |                                                                                                                 |
| -                                                                               | Counts                 | •                                                  | •                             |                                  |                                                  | 1      | 1        |                                                                                                                         |                                                                                                                                   |                                                 |                                                                                                                 |



### Internal Quality Control Review and Glossary

### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. \*\*NOTE: pH duplicates are reported as a range NOT as RPD

> ug/L: micrograms per litre %: Percentage

MPN/100mL: Most Probable Number of organisms per 100 millilitres

### Units

| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         |
|------------------------------------------|------------------------------------|
| ppm: Parts per million                   | ppb: Parts per billion             |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units |

### Terms

| re  | rms           |                                                                                                                                                                    |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry | ,             | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| LO  | R             | Limit of Reporting.                                                                                                                                                |
| SP  | KE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RP  | D             | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LC  | S             | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CR  | M             | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Met | thod Blank    | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Sur | r - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Du  | plicate       | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| US  | EPA           | United States Environmental Protection Agency                                                                                                                      |
| AP  | HA            | American Public Health Association                                                                                                                                 |
| тс  | LP            | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| со  | с             | Chain of Custody                                                                                                                                                   |
| SR  | Α             | Sample Receipt Advice                                                                                                                                              |
| QS  | M             | US Department of Defense Quality Systems Manual Version 5.2 2018                                                                                                   |
| СР  |               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NC  | Р             | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TE  | 2             | Toxic Equivalency Quotient                                                                                                                                         |
|     |               |                                                                                                                                                                    |

### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Те                            | st            |              | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------|---------------|--------------|-------|----------|----------------------|----------------|--------------------|
| Method Blank                  |               |              |       |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarl | bons          |              |       |          |                      |                |                    |
| Acenaphthene                  |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Acenaphthylene                |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Anthracene                    |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Benz(a)anthracene             |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene        |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene          |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene          |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Chrysene                      |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene         |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Fluoranthene                  |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Fluorene                      |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene        |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Naphthalene                   |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Phenanthrene                  |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| Pyrene                        |               |              | mg/kg | < 0.5    | 0.5                  | Pass           |                    |
| LCS - % Recovery              |               |              |       |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarl | bons          |              |       |          |                      |                |                    |
| Acenaphthene                  |               |              | %     | 106      | 70-130               | Pass           |                    |
| Acenaphthylene                |               |              | %     | 99       | 70-130               | Pass           |                    |
| Anthracene                    |               |              | %     | 97       | 70-130               | Pass           |                    |
| Benz(a)anthracene             |               |              | %     | 91       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                |               |              | %     | 78       | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene        |               |              | %     | 109      | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene          |               |              | %     | 77       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene          |               |              | %     | 105      | 70-130               | Pass           |                    |
| Chrysene                      |               |              | %     | 104      | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene         |               |              | %     | 82       | 70-130               | Pass           |                    |
| Fluoranthene                  |               |              | %     | 100      | 70-130               | Pass           |                    |
| Fluorene                      |               |              | %     | 104      | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene        |               |              | %     | 81       | 70-130               | Pass           |                    |
| Naphthalene                   |               |              | %     | 108      | 70-130               | Pass           |                    |
| Phenanthrene                  |               |              | %     | 98       | 70-130               | Pass           |                    |
| Pyrene                        |               |              | %     | 103      | 70-130               | Pass           |                    |
| Test                          | Lab Sample ID | QA<br>Source | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery            |               |              |       | 1        | <br>1                |                |                    |
| Polycyclic Aromatic Hydrocarl | bons          |              |       | Result 1 |                      |                |                    |
| Acenaphthene                  | M19-Fe03460   | NCP          | %     | 87       | 70-130               | Pass           |                    |
| Acenaphthylene                | M19-Fe03460   | NCP          | %     | 81       | 70-130               | Pass           |                    |
| Anthracene                    | M19-Fe03460   | NCP          | %     | 88       | 70-130               | Pass           |                    |
| Benz(a)anthracene             | M19-Fe03460   | NCP          | %     | 78       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                | M19-Fe03460   | NCP          | %     | 106      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene        | M19-Fe03460   | NCP          | %     | 98       | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene          | M19-Fe03460   | NCP          | %     | 89       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene          | M19-Fe03460   | NCP          | %     | 125      | 70-130               | Pass           |                    |
| Chrysene                      | M19-Fe03460   | NCP          | %     | 91       | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene         | M19-Fe03460   | NCP          | %     | 82       | 70-130               | Pass           |                    |
| Fluoranthene                  | M19-Fe03460   | NCP          | %     | 100      | 70-130               | Pass           |                    |
| Fluorene                      | M19-Fe03460   | NCP          | %     | 87       | 70-130               | Pass           |                    |



| Test                        | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Indeno(1.2.3-cd)pyrene      | M19-Fe03460   | NCP          | %     | 87       |          |     | 70-130               | Pass           |                    |
| Naphthalene                 | M19-Fe03460   | NCP          | %     | 95       |          |     | 70-130               | Pass           |                    |
| Phenanthrene                | M19-Fe03460   | NCP          | %     | 95       |          |     | 70-130               | Pass           |                    |
| Pyrene                      | M19-Fe03460   | NCP          | %     | 100      |          |     | 70-130               | Pass           |                    |
| Test                        | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                   |               |              |       |          |          |     |                      |                |                    |
| Polycyclic Aromatic Hydroca | rbons         |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Acenaphthene                | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Acenaphthylene              | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene                  | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benz(a)anthracene           | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene              | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene      | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene        | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene        | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Chrysene                    | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene       | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluoranthene                | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluorene                    | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene      | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Naphthalene                 | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Phenanthrene                | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Pyrene                      | M19-Fe07984   | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Duplicate                   |               |              |       | ·        |          |     |                      |                |                    |
|                             |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| % Moisture                  | M19-Fe08369   | NCP          | %     | 20       | 20       | <1  | 30%                  | Pass           |                    |



### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

### **Qualifier Codes/Comments**

Description

Code

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

### Authorised By

Nibha Vaidya Joseph Edouard Analytical Services Manager Senior Analyst-Organic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | rigit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rigit be liable for consequential damages including, but not initiand to, ist provide, damages for dudging, but not be reproduced except in full and relates only to the instent schuld breaks, the tests were performed on the segues including.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# **CERTIFICATE OF ANALYSIS 228207**

| Client Details |                                            |
|----------------|--------------------------------------------|
| Client         | JBS & G (NSW & WA) Pty Ltd                 |
| Attention      | Daniel Denaro                              |
| Address        | Level 1, 50 Margaret St, Sydney, NSW, 2000 |

| Sample Details                       |                             |
|--------------------------------------|-----------------------------|
| Your Reference                       | 55579, Chatswood Highschool |
| Number of Samples                    | 1 Soil                      |
| Date samples received                | 11/10/2019                  |
| Date completed instructions received | 11/10/2019                  |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

# **Report Details**

 Date results requested by
 18/10/2019

 Date of Issue
 17/10/2019

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with \*

### Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu

# Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Chemist Lucy Zhu, Senior Asbestos Analyst Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager



| vTRH(C6-C10)/BTEXN in Soil                           |       |            |
|------------------------------------------------------|-------|------------|
| Our Reference                                        |       | 228207-1   |
| Your Reference                                       | UNITS | QA01       |
| Date Sampled                                         |       | 10/10/2019 |
| Type of sample                                       |       | Soil       |
| Date extracted                                       | -     | 14/10/2019 |
| Date analysed                                        | -     | 16/10/2019 |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25        |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25        |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        |
| Benzene                                              | mg/kg | <0.2       |
| Toluene                                              | mg/kg | <0.5       |
| Ethylbenzene                                         | mg/kg | <1         |
| m+p-xylene                                           | mg/kg | <2         |
| o-Xylene                                             | mg/kg | <1         |
| naphthalene                                          | mg/kg | <1         |
| Total +ve Xylenes                                    | mg/kg | <3         |
| Surrogate aaa-Trifluorotoluene                       | %     | 83         |

| svTRH (C10-C40) in Soil               |       |            |
|---------------------------------------|-------|------------|
| Our Reference                         |       | 228207-1   |
| Your Reference                        | UNITS | QA01       |
| Date Sampled                          |       | 10/10/2019 |
| Type of sample                        |       | Soil       |
| Date extracted                        | -     | 14/10/2019 |
| Date analysed                         | -     | 14/10/2019 |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg | <100       |
| TRH >C10 -C16                         | mg/kg | <50        |
| TRH >C10 - C16 less Naphthalene (F2)  | mg/kg | <50        |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg | <100       |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg | <100       |
| Total +ve TRH (>C10-C40)              | mg/kg | <50        |
| Surrogate o-Terphenyl                 | %     | 78         |

| PAHs in Soil                   |       |            |
|--------------------------------|-------|------------|
| Our Reference                  |       | 228207-1   |
| Your Reference                 | UNITS | QA01       |
| Date Sampled                   |       | 10/10/2019 |
| Type of sample                 |       | Soil       |
| Date extracted                 | -     | 14/10/2019 |
| Date analysed                  | -     | 15/10/2019 |
| Naphthalene                    | mg/kg | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       |
| Fluorene                       | mg/kg | <0.1       |
| Phenanthrene                   | mg/kg | 0.1        |
| Anthracene                     | mg/kg | <0.1       |
| Fluoranthene                   | mg/kg | 0.5        |
| Pyrene                         | mg/kg | 0.5        |
| Benzo(a)anthracene             | mg/kg | 0.3        |
| Chrysene                       | mg/kg | 0.3        |
| Benzo(b,j+k)fluoranthene       | mg/kg | 0.3        |
| Benzo(a)pyrene                 | mg/kg | 0.4        |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | 0.2        |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | 0.3        |
| Total +ve PAH's                | mg/kg | 2.9        |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | 0.5        |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | 0.6        |
| Surrogate p-Terphenyl-d14      | %     | 96         |

| Acid Extractable metals in soil |       |            |
|---------------------------------|-------|------------|
| Our Reference                   |       | 228207-1   |
| Your Reference                  | UNITS | QA01       |
| Date Sampled                    |       | 10/10/2019 |
| Type of sample                  |       | Soil       |
| Date prepared                   | -     | 14/10/2019 |
| Date analysed                   | -     | 14/10/2019 |
| Arsenic                         | mg/kg | 19         |
| Cadmium                         | mg/kg | <0.4       |
| Chromium                        | mg/kg | 9          |
| Copper                          | mg/kg | 31         |
| Lead                            | mg/kg | 37         |
| Mercury                         | mg/kg | <0.1       |
| Nickel                          | mg/kg | 5          |
| Zinc                            | mg/kg | 30         |

| Moisture       |       |            |
|----------------|-------|------------|
| Our Reference  |       | 228207-1   |
| Your Reference | UNITS | QA01       |
| Date Sampled   |       | 10/10/2019 |
| Type of sample |       | Soil       |
| Date prepared  | -     | 14/10/2019 |
| Date analysed  | -     | 15/10/2019 |
| Moisture       | %     | 21         |

| Asbestos ID - soils NEPM - ASB-001    |        |                                                                                           |
|---------------------------------------|--------|-------------------------------------------------------------------------------------------|
| Our Reference                         |        | 228207-1                                                                                  |
| Your Reference                        | UNITS  | QA01                                                                                      |
| Date Sampled                          |        | 10/10/2019                                                                                |
| Type of sample                        |        | Soil                                                                                      |
| Date analysed                         | -      | 14/10/2019                                                                                |
| Sample mass tested                    | g      | 657.61                                                                                    |
| Sample Description                    | -      | Brown coarse-<br>grained soil &<br>rocks                                                  |
| Asbestos ID in soil (AS4964) >0.1g/kg | -      | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg<br>Organic fibres<br>detected |
| Trace Analysis                        | -      | No asbestos<br>detected                                                                   |
| Total Asbestos <sup>#1</sup>          | g/kg   | <0.1                                                                                      |
| Asbestos ID in soil <0.1g/kg*         | -      | No visible<br>asbestos<br>detected                                                        |
| ACM >7mm Estimation*                  | g      | -                                                                                         |
| FA and AF Estimation*                 | g      | _                                                                                         |
| ACM >7mm Estimation*                  | %(w/w) | <0.01                                                                                     |
| FA and AF Estimation*#2               | %(w/w) | <0.001                                                                                    |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASB-001    | Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.                                                                                                                                                                                                                                                                                                                                                                     |
| ASB-001    | Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques.<br>Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site<br>contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-<br>Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard<br>AS4964-2004.<br>Results reported denoted with * are outside our scope of NATA accreditation. |
|            | <b>NOTE</b> <sup>#1</sup> Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | <b>NOTE</b> <sup>#2</sup> The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.                                                                                                                                                                                                                                                                                                                                                                |
|            | Estimation = Estimated asbestos weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Inorg-008  | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Metals-020 | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Org-003    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.<br>F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                |
| Org-003    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-012/017 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.<br>For soil results:-<br>1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql> |
| Org-014     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-016     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Org-016     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.<br>Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil |       |     |         |            |   | Du         | Spike Recovery % |     |            |      |
|---------------------------------------------|-------|-----|---------|------------|---|------------|------------------|-----|------------|------|
| Test Description                            | Units | PQL | Method  | Blank      | # | Base       | Dup.             | RPD | LCS-16     | [NT] |
| Date extracted                              | -     |     |         | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019       |     | 14/10/2019 |      |
| Date analysed                               | -     |     |         | 16/10/2019 | 1 | 16/10/2019 | 16/10/2019       |     | 16/10/2019 |      |
| TRH C <sub>6</sub> - C <sub>9</sub>         | mg/kg | 25  | Org-016 | <25        | 1 | <25        | <25              | 0   | 95         |      |
| TRH C <sub>6</sub> - C <sub>10</sub>        | mg/kg | 25  | Org-016 | <25        | 1 | <25        | <25              | 0   | 95         |      |
| Benzene                                     | mg/kg | 0.2 | Org-016 | <0.2       | 1 | <0.2       | <0.2             | 0   | 105        |      |
| Toluene                                     | mg/kg | 0.5 | Org-016 | <0.5       | 1 | <0.5       | <0.5             | 0   | 99         |      |
| Ethylbenzene                                | mg/kg | 1   | Org-016 | <1         | 1 | <1         | <1               | 0   | 91         |      |
| m+p-xylene                                  | mg/kg | 2   | Org-016 | <2         | 1 | <2         | <2               | 0   | 89         |      |
| o-Xylene                                    | mg/kg | 1   | Org-016 | <1         | 1 | <1         | <1               | 0   | 91         |      |
| naphthalene                                 | mg/kg | 1   | Org-014 | <1         | 1 | <1         | <1               | 0   | [NT]       |      |
| Surrogate aaa-Trifluorotoluene              | %     |     | Org-016 | 90         | 1 | 83         | 82               | 1   | 89         |      |

| QUALITY CONTROL: svTRH (C10-C40) in Soil |       |     |         |            |   | Du         |            | Spike Recovery % |            |      |
|------------------------------------------|-------|-----|---------|------------|---|------------|------------|------------------|------------|------|
| Test Description                         | Units | PQL | Method  | Blank      | # | Base       | Dup.       | RPD              | LCS-16     | [NT] |
| Date extracted                           | -     |     |         | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |                  | 14/10/2019 |      |
| Date analysed                            | -     |     |         | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |                  | 14/10/2019 |      |
| TRH C <sub>10</sub> - C <sub>14</sub>    | mg/kg | 50  | Org-003 | <50        | 1 | <50        | <50        | 0                | 118        |      |
| TRH C <sub>15</sub> - C <sub>28</sub>    | mg/kg | 100 | Org-003 | <100       | 1 | <100       | <100       | 0                | 84         |      |
| TRH C <sub>29</sub> - C <sub>36</sub>    | mg/kg | 100 | Org-003 | <100       | 1 | <100       | <100       | 0                | 92         |      |
| TRH >C <sub>10</sub> -C <sub>16</sub>    | mg/kg | 50  | Org-003 | <50        | 1 | <50        | <50        | 0                | 118        |      |
| TRH >C <sub>16</sub> -C <sub>34</sub>    | mg/kg | 100 | Org-003 | <100       | 1 | <100       | <100       | 0                | 84         |      |
| TRH >C <sub>34</sub> -C <sub>40</sub>    | mg/kg | 100 | Org-003 | <100       | 1 | <100       | <100       | 0                | 92         |      |
| Surrogate o-Terphenyl                    | %     |     | Org-003 | 81         | 1 | 78         | 79         | 1                | 101        |      |

| QUAL                      | ITY CONTRO | L: PAHs | in Soil     |            |   | Du         | uplicate   |     | Spike Recove |      |
|---------------------------|------------|---------|-------------|------------|---|------------|------------|-----|--------------|------|
| Test Description          | Units      | PQL     | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-16       | [NT] |
| Date extracted            | -          |         |             | 14/10/2019 | 1 | 14/10/2019 | 14/10/2019 |     | 14/10/2019   |      |
| Date analysed             | -          |         |             | 15/10/2019 | 1 | 15/10/2019 | 15/10/2019 |     | 15/10/2019   |      |
| Naphthalene               | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | 116          |      |
| Acenaphthylene            | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]         |      |
| Acenaphthene              | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]         |      |
| Fluorene                  | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | 100          |      |
| Phenanthrene              | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | 0.1        | 0.2        | 67  | 106          |      |
| Anthracene                | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]         |      |
| Fluoranthene              | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | 0.5        | 0.6        | 18  | 110          |      |
| Pyrene                    | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | 0.5        | 0.5        | 0   | 112          |      |
| Benzo(a)anthracene        | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | 0.3        | 0.3        | 0   | [NT]         |      |
| Chrysene                  | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | 0.3        | 0.2        | 40  | 100          |      |
| Benzo(b,j+k)fluoranthene  | mg/kg      | 0.2     | Org-012/017 | <0.2       | 1 | 0.3        | 0.3        | 0   | [NT]         |      |
| Benzo(a)pyrene            | mg/kg      | 0.05    | Org-012/017 | <0.05      | 1 | 0.4        | 0.3        | 29  | 108          |      |
| Indeno(1,2,3-c,d)pyrene   | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | 0.2        | 0.2        | 0   | [NT]         |      |
| Dibenzo(a,h)anthracene    | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]         |      |
| Benzo(g,h,i)perylene      | mg/kg      | 0.1     | Org-012/017 | <0.1       | 1 | 0.3        | 0.2        | 40  | [NT]         |      |
| Surrogate p-Terphenyl-d14 | %          |         | Org-012/017 | 95         | 1 | 96         | 95         | 1   | 110          |      |

| QUALITY CONT     | Duplicate |     |            |            | Spike Recovery % |            |            |     |            |      |
|------------------|-----------|-----|------------|------------|------------------|------------|------------|-----|------------|------|
| Test Description | Units     | PQL | Method     | Blank      | #                | Base       | Dup.       | RPD | LCS-16     | [NT] |
| Date prepared    | -         |     |            | 14/10/2019 | 1                | 14/10/2019 | 14/10/2019 |     | 14/10/2019 |      |
| Date analysed    | -         |     |            | 14/10/2019 | 1                | 14/10/2019 | 14/10/2019 |     | 14/10/2019 |      |
| Arsenic          | mg/kg     | 4   | Metals-020 | <4         | 1                | 19         | 10         | 62  | 106        |      |
| Cadmium          | mg/kg     | 0.4 | Metals-020 | <0.4       | 1                | <0.4       | <0.4       | 0   | 105        |      |
| Chromium         | mg/kg     | 1   | Metals-020 | <1         | 1                | 9          | 10         | 11  | 117        |      |
| Copper           | mg/kg     | 1   | Metals-020 | <1         | 1                | 31         | 32         | 3   | 110        |      |
| Lead             | mg/kg     | 1   | Metals-020 | <1         | 1                | 37         | 37         | 0   | 115        |      |
| Mercury          | mg/kg     | 0.1 | Metals-021 | <0.1       | 1                | <0.1       | <0.1       | 0   | 81         |      |
| Nickel           | mg/kg     | 1   | Metals-020 | <1         | 1                | 5          | 4          | 22  | 106        |      |
| Zinc             | mg/kg     | 1   | Metals-020 | <1         | 1                | 30         | 31         | 3   | 109        | [NT] |

| Result Definiti | Result Definitions                        |  |  |  |  |  |  |
|-----------------|-------------------------------------------|--|--|--|--|--|--|
| NT              | Not tested                                |  |  |  |  |  |  |
| NA              | Test not required                         |  |  |  |  |  |  |
| INS             | Insufficient sample for this test         |  |  |  |  |  |  |
| PQL             | Practical Quantitation Limit              |  |  |  |  |  |  |
| <               | Less than                                 |  |  |  |  |  |  |
| >               | Greater than                              |  |  |  |  |  |  |
| RPD             | Relative Percent Difference               |  |  |  |  |  |  |
| LCS             | Laboratory Control Sample                 |  |  |  |  |  |  |
| NS              | Not specified                             |  |  |  |  |  |  |
| NEPM            | National Environmental Protection Measure |  |  |  |  |  |  |
| NR              | Not Reported                              |  |  |  |  |  |  |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |
| Australian Drinking                | Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than                                                                                                                        |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

# Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

# **Report Comments**

### Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.